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1. Introduction

Besides its simple molecular structure, the magic of 2D graphene, a sheet of carbon graphite, is
essentially due to two fundamental electronic properties: First for its peculiar band structure
where valence and conducting bands intersect at two points K+ and K− of the reciprocal
space of the 2D honeycomb making of graphene a zero gap semi-conductor. Second, for
the ultra relativistic behavior of the charge carriers near the Fermi level where the energy
dispersion relation E = E (p) behaves as a linear function in momenta; E (p) = v f p + O

(

p2
)

.
This typical property, which is valid for particles with velocity comparable to the speed of
light, was completely unexpected in material science and was never suspected before 2004;
the year where a sheet of 2D graphene has been experimentally isolated (Geim & Novoselov,
2007; Novoselov et al., 2004). From this viewpoint, graphene is then a new material with
exotic properties that could play a basic role in the engineering of electronic devices with
high performances; it also offers a unique opportunity to explore the interface between
condensed interface between condensed matter physics and relativistic Dirac theory where
basic properties like chirality can be tested; and where some specific features, such as
numerical simulation methods, can be mapped to 4D lattice gauge theory like lattice QCD
(Boriçi, 2008; Capitani et al., 2010; Creutz, 2008). Although looking an unrealistic matter
system, interest into the physical properties of graphene has been manifested several decades
ago. The first model to analyze the band structure of graphite in absence of external fields
was developed by Wallace in 1947 (Wallace, 1947); see also (Slonczewski & Weiss, 1958).
Since then, several theoretical studies have been performed on graphene in the presence
of a magnetic field (Haldane, 1983)-(Goerbig et al., 2006). The link between the electronic
properties of graphene and (2 + 1)-dimensional Dirac theory was also considered in many
occasions; in particular by Semenoff, Fradkin and Haldane during the 80-th of the last century
(Castro-Neto et al., 2009; Haldane, 1988; Semenoff, 1984); see also (Jackiw & Pi, 2007; 2008) and
refs therein.
In this book chapter, we use the tight binding model as well as the SU (3) hidden symmetry
of 2D honeycomb to study some physical aspects of 2D graphene with a special focus on
the electronic properties. We also develop new tools to study some of graphene’s cousin
systems such as the 1D- poly-acetylene chain, cumulene, poly-yne, Kekulé cycles, the 3D
diamond and the 4D hyperdiamond models. As another application of the physics in higher
dimension, we also develop the relation between the so called four dimensional graphene first
studied in (Bedaque et al., 2008; Creutz, 2008; Drissi et al., 2011 a); and 4D lattice quantum
chromodynamics (QCD) model considered recently in the lattice quantum field theory (QFT)
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literature to deal with QCD numerical simulations (Capitani et al., 2009 a;b).
The presentation is as follows: In section 2, we review the main lines of the electronic properties
of 2D graphene and show, amongst others, that they are mainly captured by the SU(3)
symmetry of the 2D honeycomb. In section 3, we study higher dimensional graphene type
systems by using the power of the hidden symmetries of the underlying lattices. In section
4, we give four examples of graphene’s derivatives namely the 1D- poly-acetylene chain,
having a SU(2) invariance, as well as Kekulé cycles thought of as a particular 1D- system.
We also study the 3D diamond model which exhibits a SU (4) symmetry; the corresponding
2D model, with SU(3) invariance, is precisely the graphene considered in section 2. In section
5, we develop the four dimensional graphene model living on the 4D hyperdiamond lattice
with a SU(5) symmetry. In section 6, we study an application of this method in the framework
of 4D lattice QCD. Last section is devoted to conclusion and comments.

2. Two dimensional graphene

First, we give a brief review on the tight binding modeling the physics of 2D graphene; then
we study its electronic properties by using hidden symmetries. We show amongst others that
the 2D honeycomb is precisely the weight lattice of SU (3) (Drissi et al., 2010); and the two
Dirac points are given by the roots of SU (3). This study may be also viewed as a first step
towards building graphene type systems in diverse dimensions.

2.1 Tight binding model

Graphene is a two dimensional matter system of carbon atoms in the sp2 hybridization
forming a 2D honeycomb lattice. This is a planar system made of two triangular sublattices
A2 and B2; and constitutes the building block of the layered 3D carbon graphite. Since its
experimental evidence in 2004, the study of the electronic properties of graphene with and
without external fields has been a big subject of interest; some of its main physical aspects
were reviewed in (Castro-Neto et al., 2009) and refs therein. This big attention paid to the
2D graphene, its derivatives and its homologues is because they offer a real alternative for
silicon based technology and bring together issues from condensed matter and high energy
physics (Giuliani et al., 2010)-Chakrabarti et al. (2009) allowing a better understanding of the
electronic band structure as well as their special properties.
In this section, we focus on a less explored issue of 2D graphene by studying the link
between specific electronic properties and a class of hidden symmetries of the 2D honeycomb.
These symmetries allow to get more insight into the transport property of the electronic
wave modes and may be used to approach the defects and the boundaries introduced
in the graphene monolayer (Cortijo & Vozmediano, 2009). The existence of these hidden
symmetries; in particular the remarkable hidden SU (3) invariance considered in this study,
may be motivated from several views. For instance from the structure of the first nearest
carbon neighbors like for the typical 〈A0-B1〉, 〈A0-B2〉 , 〈A0-B3〉 as depicted in triangle of
fig(1). These doublets A0-B1, A0-B2, A0-B3 are basic patterns generating the three SU (2)
symmetries contained in the hidden SU (3) invariance of honeycomb. The A-B patterns
transform in the isospin 1

2 representations of SU (2) and describe the electronic wave doublets
φ± 1

2
= [a (r) , b (r)] interpreted as quasi-relativistic 2D spinors in the nearby of the Dirac points

(Castro-Neto et al., 2009). The SU (3) hidden symmetry of honeycomb is also encoded in the
second nearest neighbors 〈〈A0-Ai〉〉 and 〈〈B0-Bi〉〉 , i = 1, ..., 6 which capture data on its adjoint
representation where the six 〈〈A0-Ai〉〉 (and similarly for 〈〈B0-Bi〉〉) are precisely associated
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Graphene and Cousin Systems 3

Fig. 1. Sublattices A and B of the honeycomb with unit cell given by dashed area. A-type
carbons are given by red balls and B-type atoms by blue ones. Each carbon has three first
nearest neighbors as shown by the triangle; and six second nearest ones.

with the six roots of SU (3) namely ±α1, ±α2, ±α3; see below. In addition to above mentioned
properties, hidden symmetries of graphene are also present in the framework of the tight
binding model with hamiltonian,

H = −t ∑
ri

3
∑

n=1
ari

b†
ri+vn

−t′ ∑
ri,rj

(

ari
a†

rj
+ bri

b†
rj

)

+ hc , (2.1)

where t ≃ 2.8eV is the hopping energy; and where the fermionic creation and annihilation
operators a, b, a†, b† are respectively associated to the pi-electrons of each atom of the
sublattices A2 and B2. The three relative vectors v1, v2, v3 define the first nearest neighbors,
see fig(2) for illustration. These 2D vectors are globally defined on the honeycomb and obey
the remarkable constraint equation

v1 + v2 + v3 = 0, (2.2)

which, a priori, encodes also information on the electronic properties of graphene.
Throughout this study, we show amongst others, that the three above mentioned SU (2)’s
are intimately related with these vn’s which, as we will see, are nothing but the weight vectors

λn of the SU (3) symmetry; i.e vn = a λn

‖λn‖ . The wave functions φλn
(r) of the delocalized

electrons are organized into a complex SU (3) triplet of waves as given below

⎛

⎜

⎜

⎝

|λ1〉
|λ2〉
|λ3〉

⎞

⎟

⎟

⎠

≡ 3 , λ1 + λ2 + λ3 = 0. (2.3)

The symbol 3 refers to the 3-dimensional representation of SU (3); say with dominant weight
λ1. We also show that the mapping of the condition ∑

3
n=1 λn = 0 to the momentum space can

be interpreted as a condition on the conservation of total momenta at each site of honeycomb.
This connection with SU (3) representations opens a window for more insight into the study
of the electronic correlations in 2D graphene and its cousin systems by using symmetries.
The organization of this section is as follows: In subsection 2, we exhibit the SU (3) symmetry
of graphene. We also give a field theoretic interpretation of the geometric constraint equation
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v1 + v2 + v3 = 0 both in real and reciprocal honeycomb. We also use the simple roots and the
fundamental weights of hidden SU (3) symmetry to study aspects of the electronic properties
of 2D graphene. In subsection 3, we develop the relation between the energy dispersion relation
E
(

kx, ky
)

and the hidden SU (3) symmetry. Comments regarding the link between graphene
bilayers and symmetries are also given.

2.2 Symmetries and electronic properties

2.2.1 Hidden symmetries of graphene

In dealing with pristine 2D graphene, one immediately notices the existence of a hidden
SU (3) group symmetry underlying the crystallographic structure of the honeycomb lattice
and governing the hopping of the pi-electrons between the closed neighboring carbons. To
exhibit this hidden SU (3) symmetry, let us start by examining some remarkable features
on the graphene lattice and show how they are closely related to SU(3). Refereing to the
two sublattices of the graphene monolayer by the usual letters A2 and B2 generated by the

vectors a1 = d(
√

3, 0), a2 = d
2 (−

√
3, 3); together with the three relative v1 = d

2 (
√

3, 1),

v2 = d
2 (−

√
3, 1), v3 = −v1 − v2 with carbon-carbon distance d ≃ 1.42 A; and denoting by

φA (ri) and φB

(

rj

)

the wave functions of the corresponding pi-electrons, one notes that the

interactions between the first nearest atoms involve two kinds of trivalent vertices capturing
data on SU (3) symmetry, see fig(2) for illustration. This hidden SU (3) invariance can be

Fig. 2. (a) Nearest neighbors of a A- type atom. (b) Nearest neighbors of a B-type atom.
These two configurations are precisely the representations 3 and 3∗ of SU (3) .

made more explicit by remarking that the relative vectors v1, v2, v3 describing the three first
closed neighbors to a A- type carbon at site ri of the honeycomb, together with their opposites
−vn for B-type carbons, are precisely the weight vectors of the 3-dimensional representations

of the SU (3) symmetry, vn = d
√

3
2 λn. For readers not familiar with representation group

theory terminology, we give here below as well in the beginning of section 3.a summary on
the SU (N) symmetry.
some useful tools on SU(3)
Roughly, the SU (3) symmetry is the simplest extension of the SU (2) symmetry group behind
the spin of the electron. The basic relation v1 + v2 + v3 = 0 of the honeycomb, which

upon setting vn = d
√

3
2 λn, reads also as λ1 + λ2 + λ3 = 0. This constraint relation has an

interpretation in SU (3) representation theory; it should be put in one to one correspondence
with the well known SU (2) relation ( 1

2 − 1
2 ) = 0 of the spin 1

2 representation;

⎛

⎝

∣

∣

∣

+1
2

〉

∣

∣

∣

−1
2

〉

⎞

⎠ ≡ 2 , 1
2 − 1

2 = 0, (2.4)
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see also eq(3.3) for details. The basic properties of the SU (3) symmetry are encoded in the so

called Cartan matrix Kij and its inverse K−1
ij which read as

Kij =

(

2 −1
−1 2

)

, K−1
ij =

(

2
3

1
3

1
3

2
3

)

. (2.5)

These matrices can be also written as the intersection of 2D- vectors as Kij = αi · αj, K−1
ij =

ωi · ωj where α1 and α2 are the two simple roots of SU (3) and where ω1 and ω2 are the
corresponding two fundamental weights which related to the simple roots by the following
duality relation

αi · ωj = δij , αi = Kijωj. (2.6)

Using these tools, the honeycomb relation λ1 + λ2 + λ3 = 0 is naturally solved in terms of the
fundamental weights as follows

λ1 = ω1, λ2 = ω2 − ω1, λ3 = ω2 . (2.7)

We also have the following relations between the ai vectors and the vi ones: a1 = (v1 − v2),
a2 = v2 − v3 and a3 = v3 − v1. Notice that the vectors ±a1, ±a2, ±a3 are, up to the scale

factor d
√

3
2 , precisely the six roots of the SU (3) symmetry

a1 = d
√

3
2 α1, a2 = d

√

3
2 α2, a3 = −d

√

3
2 (α1 + α2) , (2.8)

where we have also used the remarkable relation between roots and weights that follow from
eqs (2.5-2.6).

α1 = 2ω1 − ω2, α2 = 2ω2 − ω1 (2.9)

2.2.2 Electronic properties

Quantum mechanically, there are two approaches to deal with the geometrical constraint
relation (2.2). The first one is to work in real space and think about it as the conservation
law of total space-time probability current densities at each site ri of the honeycomb. The
second approach relies on moving to the reciprocal space where this constraint relation
and the induced electronic properties get a remarkable interpretation in terms of SU (3)
representations.
1) conservation of total current density
In the real space, the way we interpret eq(2.2) is in terms of the relation between the time

variation of the probability density ρ (t, ri) = |φ (t, ri)|2 of the electron at site ri and the sum

∑
3
n=1 Jvn (t, ri) = J (t, ri) of incoming and outgoing probability current densities along the vn-

directions. On one hand, because of the equiprobability in hopping from the carbon at ri to each
one of the three nearest carbons at ri + vn, the norm of the Jvn - vector current densities should
be equal and so they should have the form

Jvn (t, ri) = j (t, ri) en , n = 1, 2, 3 . (2.10)

These probability current densities together with the unit vectors en = vn
d pointing in the

different vn- direction; but have the same non zero norm: ‖Jv1‖ = ‖Jv2‖ = ‖Jv3‖ = |j|.
Substituting in the above relation, the total probability current density J (t, ri) at the site r and
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time t takes then the factorized form

J (t, r) =
j (t, r)

d

(

∑
n

λn

)

. (2.11)

On the other hand, by using the Schrodinger equation ih̄
∂φ
∂t =

(

− h̄2

2m∇2 + V
)

φ describing the

interacting dynamics of the electronic wave at r, we have the usual conservation equation,

∂ρ (t, r)

∂t
+ div J (t, r) = 0 , (2.12)

with probability density ρ (t, r) as before and J = ih̄
2m (φ∇φ∗ − φ∗∇φ) with m the mass of the

electron and φ = φ (t, r) its wave. Moreover, assuming
∂ρ
∂t = 0 corresponding to stationary

electronic waves φ (t, r) = eiωtφ (r), it follows that the space divergence of the total current
density vanishes identically; div J = 0. This constraint equation shows that generally J
should be a curl vector; but physical consideration indicates that we must have J (t, r) = 0, in
agreement with Gauss-Stokes theorem

∫

V div J dV =
∫

∂V J.dσ leading to the same conclusion.

Combining the property J (t, r) = 0 with its factorized expression
j
d (∑n vn) given by eq(2.11)

together with j �= 0, we end with the constraint relation ∑n vn = 0.
2) conservation of total phase
In the dual space of the electronic wave of graphene, the constraint relation (2.2) may be
interpreted in two different, but equivalent, ways; first in terms of the conservation of the
total relative phase ∆ϕtot = ∑ k.∆r of the electronic waves induced by the hopping to the
nearest neighbors. The second way is in terms of the conservation of the total momenta at
each site of the honeycomb.
Decomposing the wave function φ (r), associated with a A-type carbon at site r, in Fourier
modes as ∑k ei2πk·r φ̃ (k); and similarly for the B-type neighboring ones φ (r + vn) =
∑k ei2πk·r φ̃n (k) with k =

(

kx, ky
)

, we see that φ̃ (k) and the three φ̃n (k) are related as

φ̃n (k) = ei2πθn φ̃ (k) , n = 1, 2, 3 , (2.13)

with relative phases θn = k · vn. These electronic waves have the same module, |φ̃n (k)|
2 =

|φ̃ (k)|2; but in general non zero phases; θ1 �= θ2 �= θ3. This means that in the hop of an
electron with momentum p = h̄k from a site ri to the nearest one at ri + vn, the electronic
wave acquires an extra phase of an amount θn; but the probability density at each site is
invariant. Demanding the total relative phase to obey the natural condition,

θ1 + θ2 + θ3 = 0 , mod (2π) , (2.14)

one ends with the constraint eq(2.2). Let us study two remarkable consequences of this special
conservation law on the θn phases by help of the hidden SU (3) symmetry of graphene. Using
eq(2.7), which identifies the relatives vn vectors with the weight vectors ωn, as well as the
duality relation αi · ωj = δij (2.6), we can invert the three equations θn = k · vn to get the
momenta pn=h̄kn of the electronic waves along the vn-directions. For the two first θn’s, that
is n = 1, 2, the inverted relations are nicely obtained by decomposing the 2D wave vector k
along the α1 and α2 directions; that is k = k1α1 + k2α2; and end with the following particular
solution,
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θ1 = k1d, θ2 = (k2 − k1) d, θ3 = −k2d . (2.15)

2.3 Band structure

We first study the case of graphene monolayer; then we extend the result to the case of
graphene bilayers by using the corresponding hidden symmetries.

2.3.1 Graphene monolayer

By considering a graphene sheet and restricting the tight binding hamiltonian (2.1) to the first
nearest neighbor interactions namely,

H = −t ∑
ri

2

∑
n=1

ari
b†

ri+vn
+ hc, (2.16)

we can determine the energy dispersion relation and the delocalized electrons by using

the SU (3) symmetry of the 2D honeycomb. Indeed performing the Fourier transform of
the various wave functions, we end with the following expression of the hamiltonian in the
reciprocal space

H = −t ∑
k

(

a+k , b+k
)

(

0 ε̄k

εk 0

)(

ak

bk

)

. (2.17)

The diagonalization of this hamiltonian leads to the two eigenvalue E± = ±t |εk| giving the

energy of the valence and conducting bands. In these relations, the complex number εk is an

oscillating wave vector dependent function given by εk = eidQ1 + eidQ2 + e−id(Q1+Q2) where
we have set Ql = k.λl . This relation, which is symmetric under permutation of the three Qi,
can be also rewritten by using the fundamental weights as follows,

εk =
(

eid[k.ω1 ] + eid[k.(ω2−ω1)] + e−id[k.ω2 ]
)

. (2.18)

Up on expanding the wave vector as k = k1α1 + k2α2, this relation reads also as εk =

eik1d + ei(k2−k1)d + e−ik2d. Notice that from (2.18), we learn that εk is invariant under the
translations k → k+ 2π

d (N1α1 + N2α2) with N1, N2 arbitrary integers; thanks to the duality
relation αi.ωj = δij.

Notice also that near the origin k = 0, we have εk = 3 + O
(

k2
)

, in agreement with non
relativistic quantum mechanics. The three terms which are linear terms in k cancel each
others due to the SU (3) symmetry. Notice moreover that the Hamiltonian (2.16) has Dirac
zeros located, up to lattice translations, at the following wave vectors

(k1, k2) =

⎧

⎨

⎩

2π
3d (1, 0) , − 2π

3d (1, 0)
2π
3d (0, 1) , − 2π

3d (0, 1)
2π
3d (1, 1) , − 2π

3d (1, 1)

(2.19)

Notice that these six zero modes, which read also as

K±
1 = ± 2π

3d (2ω1 − ω2) , K±
2 = ± 2π

3d (−ω1 + 2ω2) , K±
3 = ± 2π

3d (ω1 + ω2) , (2.20)
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Fig. 3. On left the band structure of the graphene monolayer where one recognizes the Dirac
points. On right, it is shown the relativistic behavior near a Dirac point where conducting
and valence bands touch. On right the band structure in GGA approximation using QE
code.

are not completely independent; some of them are related under lattice translations. For
instance, the three K+

i are related to each others as follows

K+
1 + 2π

d ω2 = K+
2 + 2π

d ω1 = K+
3 . (2.21)

The same property is valid for the other three K−
i ’s; so one is left with the usual K± Dirac

zeros of the first Brillouin zone,

K± = ± 2π

3d
(ω1 + ω2) = ± 2π

3d
(α1 + α2) . (2.22)

These two zeros are not related by lattice translations; but are related by a Z2 symmetry
mapping the fundamental weights and the simple roots to their opposites.
We end this section by noting that the group theoretical approach developed in this study
may be also used to deal with graphene multi-layers and cousin systems. Below, we describe
briefly the bilayers; the cousin systems are studied in next sections.

2.3.2 Bilayer graphene

Bilayer graphene was studied for the first time in McCann & Falko (2006). It was modeled
as two coupled hexagonal lattices including inequivalent sites in the two different layers that
are ranged in the Bernal stacking (the stacking fashion of graphite where the upper layer has its B
sublattice on top of sublattice A of the underlying layer) as showed in the figure (4). This leads

Fig. 4. On right bilayer graphene in the AB stacking allotrope with hop energy t⊥ between
the layers. On right bilayer graphene projection in the x-y plane.

to a break of the D6h Bravais symmetry of the lattice with respect to the c axis. Comparing
bilayer graphene to monolayer one, we notice that its unit cell contains four atoms. There
exist other arrangements such as the AA stacking, where the two lattices are directly above
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each other and bonds form between the same sublattices. The AB stacking arrangement
was experimentally verified in epitaxial graphene by Ohta et al. (Ohta et al., 2007) . The
tight-binding model describing bilayer graphene is an extension of the one corresponding to
the monolayer (2.1), by adding interlayer hopping elements H = H1 + H2 + H⊥ where Hi are
as in (2.1) and where

H⊥ = −t⊥ ∑
ri

3
∑

n=1
a1 (ri) b†

2 (ri) + a2 (ri) b†
1 (ri) + hc , (2.23)

with t⊥ is the hop energy of the pi-electrons between layers calculated to be t⊥ ∼ t
10

(Charlier et al., 1991). From the view of hidden symmetries, the bilayer graphene has a
symmetry type SU (3) × SU (2) × SU (3); each SU (3) factor is associated with a graphene
sheet; while the SU (2) corresponds to the transitions between the two layers and is associated
with propagation along the z-direction of the 3D-space.
Applying Fourier transform, the above hamiltonian can be rewritten in the following form:

H = −t ∑
k

(

a+1k, b+1k, a+2k, b+2k

)

⎛

⎜

⎜

⎝

0 εk 0 t⊥
t

ε∗k 0 t⊥
t 0

0 t⊥
t 0 εk

t⊥
t 0 ε∗k 0

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

a1k

b1k

a2k

b2k

⎞

⎟

⎟

⎠

, (2.24)

with εk is as in eq(2.18). The diagonalization of this hamiltonian leads to the following energy
dispersion relations,

E±
k = ± 1

t

√

(

t⊥ − tε∗k
)

(t⊥ − tεk), E±′
k = ± 1

t

√

(

t⊥ + tε∗k
)

(t⊥ + tεk) , (2.25)

The corresponding band structure has two additional bands, π and π∗ states having
lower energy bands, that is consequence of the number of atoms per unit cell. Neutral
bilayer graphene is gapless McCann & Falko (2006) and exhibits a variety of second-order
effects. The studies on bilayer graphene show that it has many common physical properties

Fig. 5. Band structure of the bilayer graphene

with the monolayer, such as the exceptionally high electron mobility and high mechanical
stability (Ohta et al., 2007)-Novoselov et al. (2006). The synthesis of bilayer graphene thin
films was realized by deposition on a silicon carbide (SiC) substrate (Ohta et al., 2006).
The measurements of their electronic band structure, using angle-resolved photo-emission
spectroscopy (ARPES), suggest the control of the gap at the K Point by applying Coulomb
potential between the two layers. This tuning of the band gap changed the biased bilayer
from a conductor to a semiconductor.
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3. Higher dimensional graphene systems

Motivated by the connection between 2D graphene and SU (3) symmetry, we study in this
section the extension of the physics of 2D graphene in diverse dimensions; that is 1D, 2D, 3D,
4D, and so on; the 2D case is obviously given by 2D graphene and its multi-layers considered
in previous section. The precited dimensions are not all of them realizable in condensed matter
physics; but their understanding may help to get more insight on the specific properties of 2D
graphene since the SU (3) is the second element of the SU (N) symmetries series.
First we develop our proposal regarding higher dimensional graphene systems that are based
on SU (N) symmetry including the particular 1D poly-acetylene chain which corresponds to
SU (2) symmetry. Then, we compute the energy dispersion relation of these kinds of lattice
quantum field theory (QFT). Explicit examples of such lattice fermionic models will be studied
in the next sections.

3.1 The SU (N) model

Higher dimensional graphene systems are abstract extensions of 2D graphene; the analogue of
the 2D honeycomb is given by a real N-dimensional lattice Lsu(N). The quantum hamiltonian
describing these systems is a generalization of (2.1) and reads as follows,

HN = −t ∑
ri

(

N
∑

n=1
ari

b†
ri+vn

)

+ hc − t′ ∑
ri

N
∑

n<m=1

(

ari
a†

ri+Vnm
+ bri

b†
ri+Vnm

)

, (3.1)

where ari
, bri+vn , a†

ri
, b†

ri+vn
are fermionic annihilation and creation operators living on Lsu(N).

Moreover the vectors v1, ..., vN are, up to a global scale factor, the fundamental weights of the
N-dimensional representation of the SU (N) symmetry constrained by the typical property

v1 + ... + vN = 0. (3.2)

The vectors Vnm = (vn − vm) are, up to a scale factor, precisely the N (N − 1) roots of SU (N);
they obey as well the group property ∑ Vnm = 0.
These particular features of HN let understand that its physical properties are expected to be
completely encoded by the hidden SU (N) symmetry of the model. Below, we show that this
is indeed the case; but for simplicity we will focus on the first term of HN ; i.e working in the
limit t′ → 0.

3.1.1 Useful tools on SU (N) symmetry

Since one of our objectives in this paper is to use the SU (N) symmetry of the crystals to
study higher dimensional graphene systems; and seen that readers might not be familiar with
these tools; we propose to give in this subsection some basic tools on SU (N) by using explicit
examples.
a) cases SU (2) and SU (3)
The SU (2) symmetry is very familiar in quantum mechanics; it is the symmetry that describes
the spin of the electrons and the quantum angular momentum states.
Roughly speaking, the SU (2) symmetry is a 3-dimensional space generated by three matrices
which can be thought of as the usual traceless Pauli matrices

σ0 =

( 1
2 0

0 − 1
2

)

, σ− =

(

0 0
1 0

)

, σ+ =

(

0 1
0 0

)

, (3.3)
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involving one diagonal matrix σ0, giving the charge operator, and two nilpotent matrices σ±

interpreted as the step operators or equivalently the creation and annihilation operators in the
language of quantum mechanics. These three matrices obey commutation relations

[

σ0, σ±] =
±2σ± that define the su (2) algebra. Observe also the traceless property of the charge operator
Trσ0 = 1

2 − 1
2 = 0, which should be related to the constraint relation (3.2) with N = 2.

The SU (3) symmetry group is 8-dimensional space generated by 8 matrices which can be
denoted as

h1, h2, e±α1 , e±α2 , e±(α1+α2) , (3.4)

with h1, h2 two diagonal matrices defining the charge operators and six step operators e±α1 ,
e±α2 , e±α3 playing the role of creation and annihilation operators. The e±αi ’s are nilpotent and

are related as
(

e−αi
)+

= e+αi . An example of these matrices is given by the following 3 × 3
matrices

h1=

⎛

⎝

µ1 0 0
0 µ2 0
0 0 µ3

⎞

⎠ , h2=

⎛

⎝

µ′
1 0 0

0 µ′
2 0

0 0 µ′
3

⎞

⎠ ,

e+α1=

⎛

⎝

0 1 0
0 0 0
0 0 0

⎞

⎠ , e+α2=

⎛

⎝

0 0 0
0 0 1
0 0 0

⎞

⎠ , e+α3=

⎛

⎝

0 0 1
0 0 0
0 0 0

⎞

⎠

(3.5)

with the traceless property of the charge operators which reads as follows

λ1 + λ2 + λ3 = 0 , λi =

(

µi
µ′

i

)

, (3.6)

and which should be compared with the case N = 3 in (3.2).
The vectors α1 and α2 are the simple roots encountered in the previous section; their scalar
product αi.αj gives precisely the Cartan matrix Kij of eq(2.5).
b) case SU (N)
In the general case N ≥ 2, the corresponding SU (N) symmetry is

(

N2 − 1
)

-dimensional

space generated by
(

N2 − 1
)

matrices; N − 1 of them are diagonal

h1, ... hN−1, (3.7)

and are interpreted as the charge operators; and N (N − 1) step operators giving the creation
and annihilation operators e+α, e−α with α standing for generic roots containing the two
following:
(a) N-1 simple ones namely α1, α2, ..., αN−1 (together with their opposites) whose scalar
products αi.αj give precisely the following (N − 1)× (N − 1) Cartan matrix

K =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

2 −1 0 · · · 0 0
−1 2 −1 0 0
0 −1 2 0 0
...

. . .
...

0 0 0 2 −1
0 0 0 · · · −1 2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (3.8)

331Graphene and Cousin Systems

www.intechopen.com



12 Will-be-set-by-IN-TECH

(b) non simple roots given by linear (positive and negative) combinations of the simple ones;

these roots are given by ±βij = ±
(

αi + ...+ αj

)

with 1 ≤ i < j ≤ N − 1.

Notice that the above Cartan matrix K and its inverse

K−1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

N
N+1

N−1
N+1

N−2
N+1 · · · 2

N+1
1

N+1
N−1
N+1

2(N−1)
N+1

2(N−2)
N+1 · · · 4

N+1
2

N+1
N−2
N+1

2(N−2)
N+1

3(N−2)
N+1 · · · 6

N+1
3

N+1
...

...
...

. . .
...

...
2

N+1
4

N+1
6

N+1 · · · 2(N−1)
N+1

N−1
N+1

1
N+1

2
N+1

3
N+1 · · · N−1

N+1
N

N+1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(3.9)

capture many data on the SU (N) symmetry; they give in particular the expression of the
simple roots α1, α2, ..., αN−1 in terms of the fundamental weights ω1, ..., ωN−1 and vice versa;

that is αi = ∑j Kijωj and ωi = ∑j K−1
ij αj. Recall that simple roots and fundamental weights

obey the duality property αi.ωj = δij; we also have ωi.ωj = K−1
ij .

3.1.2 The lattice Lsu(N)

The lattice Lsu(N) is a real (N − 1)- dimensional crystal with two superposed integral

sublattices AN and BN ; each site rm of these sublattices is generated by the SU (N) simple
roots α1, ..., αN−1;

rm = m1α1 + m2α2 + ...mN−1αN−1 , (3.10)

with mi integers; for illustration see the schema (a), (b), (c) of the figure (6) corresponding
respectively to N = 2, 3, 4; and which may be put in one to one with the sp1, sp2 and sp3

hybridization of the carbon atom orbital 2s and 2p.
On each lattice site rm of Lsu(N); say of A-type, lives a quantum state Arm coupled to the

Fig. 6. (a) 1A+2B lattice sites of Lsu(2); A-type in blue and B-type in red; the 2B form a su (2)

doublet. (b) 1A+3B sites of Lsu(3); the 3B form a su (3) triplet. (c) 1A+4B sites of Lsu(4) with
4B sites forming a regular tetrahedron.

nearest neighbor states; in particular the first nearest states Brm+vi
and the second nearest

ones Arm+Vij
.

Generally, generic sites in Lsu(N) have the following properties:
(1) N first nearest neighbors with relative position vectors vi constrained as

v1 + . . .+ vN = 0 . (3.11)
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These constraint relations are solved in terms of the SU (N) weight vectors λi (resp. −λi) of
the fundamental (anti-fundamental) representation as follows

vi = aλi ≡ d λi

‖λi‖ , (3.12)

where d is the relative distance between the closest Lsu(N) sites. The λi’s which satisfy λ1 +
. . .+ λN = 0 can be nicely expressed in terms of the fundamental weights ω1, ..., ωN−1 as
follows

λ1 = ω1, λi = ωi − ωi−1, λN = −ωN−1 . (3.13)

From the QFT view, this means that the quantum states at rm + vi sites are labeled by the λi

weights as Brm+vi
≡ Bλi

(rm) and so the multiplet

⎛

⎜

⎝

|λ1 >

...
|λN >

⎞

⎟

⎠
≡ N, λ1 + . . . + λN = 0, (3.14)

transform in the fundamental representation of SU (N).
(2) N (N − 1) second nearest neighbors of A-type with relative position vectors Vij given by
vi − vj and obeying the constraint relation ∑i,j Vij = 0. This condition is naturally solved
by (3.11) and (3.12) showing that the relative vectors between second nearest neighbors are
proportional to SU (N) roots βij like

Vij = aβij , βij = λi − λj, (3.15)

and so the condition ∑ Vij = 0 turns to a SU (N) property on its adjoint representation labeled
by the roots.

3.2 Energy dispersion relation

Restricting the analysis to the first nearest neighbors described by eq(3.1) in the limit t′ → 0,
the hamiltonian HN on Lsu(N) reduces to

HN = −t ∑
ri

(

N
∑

n=1
ari

b†
ri+vn

)

+ hc , (3.16)

where now ri and vn are (N − 1)- dimensional vectors. By using the Fourier transform of the
field operators ari

and B±
rm+vi

namely,

ari
∼ ∑

k

eik.rm a±k , brm+vi
∼ ∑

k

eik.(rm+vi)bk (3.17)

we can put the hamiltonian HN as a sum over the wave vectors k in the following way;

HN = ∑
k

(

a†
k, b†

k

)

(

0 εk

ε∗k 0

)(

ak

bk

)

, (3.18)

with εk = t ∑i eiak.λi . This complex number can be also written as t ∑i eiak.(ωi−ωi−1) with
ω−1 = 0 = ωN . The energy dispersion relation of the "valence" and "conducting" bands are
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obtained by diagonalizing the hamiltonian HN ; they are given by ± |εk| with,

|εk| = t

√

√

√

√N + 2
N

∑
i<j=1

cos
[

ak.
(

λi−λj

)]

. (3.19)

Notice that |εk| depends remarkably in the difference of the weights λi−λj; which by help of
eq(3.13), can be completely expressed in terms of the fundamental weights.
To get the Fermi wave vectors kF for which the oscillating multi-variable function εk =
t ∑l eiak.λl vanish, we will proceed as follows: First, we work out an explicit example; then
we give the general result. To that purpose, we expand the wave vector k in the weight vector
basis as follows,

k =
N−1

∑
i=1

Qiωi, (Q1, ..., QN) ∈ R
N , (3.20)

and focus on working out the solution for the particular case where all the Qi’s are equal,
i.e: Q1 = Q2 = ... = QN−1 = Q. General solutions are obtained from this particular case
by performing lattice translations along the ωi-directions; this leads to the new values Ql =

Q + 2πnl
N with nl integers. Obviously, one may also expand the wave vector k like

k =
N−1

∑
i=1

kiαi , (k1, ..., kN) ∈ R
N . (3.21)

But this is equivalent to (3.20); the relation between the Ql ’s and the kl’s is obtained by
substituting αi = ∑j Kijωj into (3.21) and identifying it with (3.20). To compute the factors

eiak.λl , we express the vectors λl in terms of the simple roots as follows

λ1 = ω1, λ2 = ω1 − α1, . . . λN = ω1 − α1 − ...− αN−1 , (3.22)

then we use the root/weight duality relation ωi.αj = δij as well as the simple choice
Ql = Q to put the scalar product k.λl into the following form (k.λl) = (k.ω1) − lQ,
l = 1, ..., N − 1. Putting this expression back into εk and setting ξ = eiaQ, we obtain

εk = eiak.ω1

[

1 + ξ + ... + ξN−1
]

= 0 which is exactly solved by the N-th roots of unity namely

Q = ± 2sπ
aN , s = 1, ...,

[

N
2

]

. (3.23)

Therefore the Dirac points are, up to lattice translations, located at the wave vectors ks =
± 2sπ

aN ∑i ωi = ± 2sπ
aN ∑i αi.

4. Leading models

In this section, we study the cases N = 2, 4 as N = 3 corresponds precisely to the 2D graphene
before. The case N = 5 will be studied in the next section seen its remarkable relation with 4D
lattice QCD.

4.1 The su (2) model

In this case, the lattice Lsu(2), which is depicted in the figure (7), is a one dimensional chain
with coordinate positions rm = ma where a is the site spacing and m an arbitrary integer.
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Fig. 7. the lattice Lsu(2) given by the superposition of two sublattices Asu(2) (in blue) and

Bsu(2) (in red). The atoms may be thought of as carbons in the sp1 hybridization state.

Examples of carbon chains with delocalized electrons are given by one of the three following
molecules

chain molecule delocalized electrons

polyacetylene ... − CH = CH − CH = CH − CH − ... 1

cumulene ... = C = C = C = C = C = ... 2

poly-yne ... − C ≡ C − C ≡ C − C ≡ C − ... 2

(4.1)

These molecules can be taken as the graphene bridge ultimately narrowed down to a few-
carbon atoms or a single-atom width (Giritet et al., 2009; Jun, 2008; Koskinen et al., 2008). Each
site of Lsu(2) has two first nearest neighbors forming an su (2) doublet; and two second nearest

ones that are associated with the two roots ±α of su (2) in agreement with the generic result
summarized in the table,

nearest neighbors SU (N) SU (2) SU (3) SU (4) SU (5)
first N 2 3 4 5
second N (N − 1) 2 6 12 20

(4.2)

In the SU (2) lattice model, eqs(3.2) read as

v0 + v1 = 0 , (a)
V01 = v0 − v1 , (b)

(4.3)

and are solved by the fundamental weights λ1 = + 1
2 , λ2 = − 1

2 of the SU (2) fundamental
representation; i.e the isodoublet.
1) polyacetylene
The hamiltonian of the polyacetylene, where each carbon has one delocalized electron, is given
by

Ht = −t ∑
m

(

arm b+rm+a + arm b+rm−a

)

+ hc . (4.4)

Substituting N = 2 in (3.19), we get the following energy dispersion relation

|εk| = t
√

2 + 2 cos (2ak) (4.5)

which is also equal to 2t cos (ka) in agreement with the expression εk = t
(

eiak + e−iak
)

; see

also figure (8). Moreover, the vanishing condition ε2 (k) = 0 is solved by the wave vectors

k± = ± π
2a mod

(

2π
a

)

.

2) cumulene and poly-yne
In the case of cumulene and poly-yne, the two delocalized electrons are described by two wave
functions φ1

rm
, φ2

rm
. The tight binding hamiltonian modeling the hopping of these electrons is a
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Fig. 8. Energy dispersion relation of 1D poly-acetylene chain.

generalization of Ht. Let aα
rm

, aα+
rm

, α = 1, 2 (resp. bα
rm±a, bα+

rm±a) be the annihilation and creation
operators at the site rm (resp. rm ± a), the hamiltonian reads as follows

Ht,t′ = −∑
m

2

∑
α,β=1

(

aα
rm

tαβb
β+
rm+a + aα

rm
t′αβb

β+
rm−a

)

+ hc , (4.6)

where tαβ and t′αβ are hop energy matrices which are identical for cumulene (tαβ = t′αβ), but

different for poly-yne (tαβ �= t′αβ). Mapping this hamiltonian to the reciprocal space, we get

Ht,t′ = −2 ∑
m

2

∑
α,β=1

(

a1
k , b1

k , a2
k , b2

k

)

⎛

⎜

⎜

⎝

0 A 0 B
A∗ 0 C∗ 0
0 C 0 D

B∗ 0 D∗ 0

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎝

a1+
k

b1+
k

a2+
k

b2+
k

⎞

⎟

⎟

⎟

⎠

, (4.7)

with
A (k) = t11eika + t′11e−ika

B (k) = t12eika + t′12e−ika

C (k) = t21eika + t′21e−ika

D (k) = t22eika + t′22e−ika

(4.8)

Now, using the fact that the two delocalized electrons are indistinguishable, it is natural to
assume the following relations on the hop energies t11 = t22, t12 = t21 and the same thing
for the t′αβ matrix. This leads to the relations A = D, B = C and so the above hamiltonian

simplifies. In this case, the four energy eigenvalues are given by

E± = ±
√

(A∗ + B∗) (A + B) ,

E′
± = ±

√

(A∗ − B∗) (A − B) ,
(4.9)

and the zeros modes are given by e2ika = − t′11
t11

= − t′12
t12

. Since in the case of cumulene we have

tαβ = t′αβ, it follows that the zero modes are located as k = ± π
2a mod 2π

a .

3) nanoruban
We end this paragraph noting that such analysis may be also extended to the particular case of
the periodic chain made by the junction of hexagonal cycles as depicted in the figure (9). This
chain, which can be also interpreted as the smallest graphene nanoruban, is very particular
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Fig. 9. a periodic chain in 3D space with unit cells given by hexagonal cycles. Each cycle has
six delocalized electrons.

from several issues; first its unit cells can be taken as given by the hexagonal cycles; second
amongst the 6 carbons of the unit cycle, 4 of them have two first nearest neighbors and the 2
others have three first nearest ones. The third particularity is that the tight binding description
of this chain is somehow more complicated with respect to the previous examples. Below we
focus on the electronic properties of a given cycle by using the same approach we have been
considering in this study.

4.2 Kekulé cycles

Kekulé cycles are organic molecules named in honor to the German chemist Friedrich Kekulé
known for his works on tetravalent structure of carbon and the cyclic structure of benzene
C6H6. These molecules; in particular the family Cn Hn with n ≥ 3, may be thought of as one
dimensional cycles living in the 3D space; they involve carbon atoms (eventually other atoms
such as Nitrogen) arranged in a cyclic lattice with both σ- and π-bonds. All these carbon atoms
are in the sp2 hybridization; they have 3n covalent σ-bonds defining a quasi-planar skeleton;
and n delocalized π-bonds with Pi electron orbital expanding in the normal direction as shown
in the examples of fig(10). Our interest into Kekulé molecules, in particular to the C2N H2N

Fig. 10. Six examples of Kekulé cycles type Cn Hn with n = 3, 4, 5, 6, 7, 8 . The cations C+ of
these molecules form a heavy skeleton represented by n-polygons. The orbitals in the normal
direction are associated with the delocalized Pi-electrons.

family, comes from the fact that they can be viewed as the 1D analogue of the 2D graphene
monolayer; they may be also obtained from the poly-acetylene chain by gluing the ends. It is
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then interesting to explore the electronic properties of this special class of systems by using
the tight binding model and symmetries. To illustrate the method, we focus on the benzene
C6H6 thought of as the superposition of two C3H3 sub-molecules as depicted in figure (11).
From group theory view, the positions v1, v2, v3, v4, v5, v6 of the carbon atoms are given by

Fig. 11. Kekulé molecules as the superposition of two sublattices. Sublattice A in blue and
sublattice B in red. Except the benzene, these molecules are generally are non planar.

the six roots of the SU (3) symmetry.; that is

vi = aαi , v3+i = −aαi , (4.10)

where a = 1.39 Å and where the three αi’s are as in section 2.
tight binding description
The electronic properties of the C6H6 are captured by the pi-electrons of the carbons. Denoting
by a†

ri
, ari (resp. b†

ri
, bri) the usual electronic creation and annihilation operators associated

with the Ai (Bj) atoms in the sublattice Abenz (Bbenz), the tight binding hamiltonian of the
benzene, restricted to first nearest neighbors, reads as follows,

Hbenz = −t
∞

∑
m=−∞

3
∑

l=1

(

2
∑

j=1
arl,m

b†
rl,m+vl,j

)

+ hc . (4.11)

In this relation, the position vectors rlm have two indices; l and m. The first one takes the
values l = 1, 2, 3; it indexes the three atoms in Abenz; and the three ones in Bbenz. These
positions are as follows,

rA
2l−1,m = rA

1m, rA
3m, rA

5m , rB
2l,m = rB

2m, rB
4m, rB

6m . (4.12)

The second integer is an arbitrary number (m ∈ Z); it captures the periodicity of the cycle and
encodes in some sense the rotational invariance with respect to the axis of the planar molecule.
To fix the ideas, think about rlm as the l-th electron in the sublattice Abenz; that is rlm ≡ rA

2l−1,m.
After a hop of this electron to the two first nearest carbons in Bbenz, the new position is

rB
2l,m = rlm + vl j , j = ± . (4.13)

where the vl js are the relative positions of the first nearest neighbors.

Taking the Fourier transform of the creation and annihilation operators, c±rn
= ∑k e±ik.rn c±k

with c±k standing for a±k , b±k , we get an expression involving the product of three sums ∑k ∑k′

∑m. Then, using the discrete rotational invariance with respect to the axis of the molecule,
we can eliminate the sum ∑m in terms of a Dirac delta function δ2 (k − k′) and end, after
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integration with respect k′, with the following result,

Hbenz = ∑
k

(ak, bk)

(

0 εk

ε∗k 0

)(

a†
k

b†
k

)

. (4.14)

with

εk = −t
3
∑

l=1

(

eik.vl− + eik.vl+

)

. (4.15)

Notice that like in graphene, the above hamiltonian has two eigenvalues ± |εk|. Moreover,
substituting the vl±’s by their explicit expressions in terms of the SU (3) roots αl , we obtain
the following dispersion relation together with a constraint relation capturing the planarity
property of the molecule

εk = −2t
2
∑

l=0
cos

(

a
√

2
2 k.αl

)

, ηk =
2
∑

l=0
sin

(

a
√

2
2 k.αl

)

= 0 . (4.16)

Notice that the constraint equation ηk = 0 allows us to express the k2 component of the wave
vector in terms of k1 and vice versa as depicted in fig(12). This relation plays a crucial role in
the determination of the wave vectors at the Fermi level.

Fig. 12. the plot of the energy dispersion relation εk1,k2
and the constraint relation ηk1,k2

=
sin k1 + sin k2 − sin (k1 + k2) = 0 in the reciprocal space.

4.3 The diamond model

The diamond model lives on the lattice Lsu(4); this is a 3-dimensional crystal given by the
superposition of two isomorphic sublattices A4 and B4 along the same logic as in the case of
the 2D honeycomb. Each site rm in Lsu(4) has 4 first nearest neighbors at (rm + vi) forming the
vertices of a regular tetrahedron. A way to parameterize the relative positions vi with respect
to the central position at rm is to embed the tetrahedron inside a cube; in this case we have:

v1 = d√
3
(−1,−1,+1) , v2 = d√

3
(−1,+1,−1)

v3 = d√
3
(+1,−1,−1) , v0 = d√

3
(+1,+1,+1)

(4.17)
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Clearly these vectors satisfy the constraint relation v0 + v1 + v2 + v3 = 0. Having these
expressions, we can also build the explicit positions of the 12 second nearest neighbors; these
are given by Vij = vi − vj; but are completely generated by the following basis vectors

R1 = d√
3
(2, 2, 0) , R2 = d√

3
(0,−2, 2) , R3 = d√

3
(−2, 2, 0) (4.18)

that are related to Vij as Ri = V(i−1)i. We also have:

• the intersection matrix of the Ri vectors

Ri.Rj =
4d2

3
Kij (4.19)

with

Kij =

⎛

⎝

2 −1 0
−1 2 −1
0 −1 2

⎞

⎠ , K−1
ij =

⎛

⎝

3
4

2
4

1
4

2
4

4
4

2
4

1
4

2
4

3
4

⎞

⎠ (4.20)

• the special relation linking the Ri’s and v0,

3
4 R1 +

2
4 R2 +

1
4 R3 = v0 . (4.21)

Concerning the vector positions of the remaining 9 second neighbors, 3 of them are given by
−R1,−R2,−R3 and the other 6 by the linear combinations R4 = V02, R5 = V13, R6 = V03 with

V02 = R1 + R2, V13 = R2 + R3, V03 = R1 + R2 + R3. (4.22)

From this construction, it follows that generic positions rA
m ≡ rm and rB

m in the A4 and B4

sublattices are given by
A4 : rm = m1R1 + m2R2 + m3R3 ,

B4 : rB
m = rm + v ,

(4.23)

where m = (m1,m2,m3) is an integer vector and where the shift vector v = rB
m − rA

m is one of
vi’s in (4.17).
1) Energy dispersion relation
First notice that as far as the electronic properties are concerned, the figures (a), (b), (c) of (6)
are respectively associated with the sp1, sp2 and sp3 hybridizations of the atom orbitals; i.e:

figures hybridization example of molecules

(6-a) sp1 acetylene

(6-b) sp2 graphene

(6-c) sp3 diamond

(4.24)

In (6-a) and (6-b), the atoms have delocalized pi- electrons that capture the electronic
properties of the lattice atoms and have the following dispersion relation,

∣

∣

∣εsu(N) (k)
∣

∣

∣ = t1

√

√

√

√N + 2
N−1

∑
i<j=0

cos
[

ak.
(

λi−λj

)]

(4.25)

with N = 2, 3. However, in the case of sp3, the atoms have no delocalized pi-electrons;
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they only have strongly correlated sigma- electrons which make the electronic properties of
systems based on Lsu(4) different from those based on Lsu(3) and Lsu(2). Nevertheless, as
far as tight binding model idea is concerned, one may consider other applications; one of
which concerns the following toy model describing a system based on the lattice Lsu(4) with
dynamical vacancy sites.

Fig. 13. the lattice Lsu(4) with sublattices Asu(4) (in blue) and Bsu(4) (in red). Each atom has
4 first nearest neighbors, forming a tetrahedron, and 12 second nearest ones.

2) Toy model
This is a lattice QFT on the Lsu(4) with dynamical particles and vacancies. The initial state of
the system correspond to the configuration where the sites of the sublattice A4 are occupied
by particles and those of the sublattice B4 are unoccupied.

sublattice initial configuration quantum state

A4 particles at rm Arm

B4 vacancy at rm + v Brm+v

(4.26)

Then, the particles (vacancies) start to move towards the neighboring sites with movement
modeled by hops to first nearest neighbors. Let Arm and Brm+vi

be the quantum states
describing the particle at rm and the vacancy at rm + vi respectively. Let also A±

rm
and B±

rm+vi
be

the corresponding creation and annihilation operators. The hamiltonian describing the hops
of the vacancy/particle to the first nearest neighbors is given by

H4 = −t

(

3

∑
i=0

A−
rm

B+
rm+υi

+ hc

)

. (4.27)

By performing the Fourier transform of the wave functions A±
rm

, B±
rm+υi

, we end with the
dispersion energy ±t |εk| where

εk =

√

4 + 2 ∑
i<j

cos
(

k.Vij

)

, (4.28)
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and Vij are as in (4.21-4.22). The Dirac points are located at ks = ± sπ
2a ∑

3
i=1 ωi with s = 1, 2.

5. Four dimensional graphene

The so called four dimensional graphene is a QFT model that lives on the 4D hyperdiamond;
it has links with lattice quantum chromodynamics (QCD) to be discussed in next section. In
this section, we first study the 4D hyperdiamond; then we use the results of previous section
to give some physical properties of 4D graphene.

5.1 Four dimensional hyperdiamond

Like in the case of 2D honeycomb, the 4D hyperdiamond may be defined by the superposition
of two sublattices A4 and B4 with the following properties:

• sites in A4 and B4 are parameterized by the typical 4d- vectors rn with n = (n1, n2, n3, n4)
and ni’s arbitrary integers. These lattice vectors are expanded as follows

A4: rn = n1 a1 + n2 a2 + n3 a3 + n4 a4 , B4: r′n = rn + e5 , (5.1)

where a1, a2, a3, a4 are primitive vectors generating these sublattices; and e5 is a shift
vector which we describe below.

• the vector e5 is a global vector taking the same value ∀ n; it is a shift vector giving the
relative positions of the B4 sites with respect to the A4 ones, e5= r′n − rn, ∀ n.

The al ’s and e5 vectors can be chosen as

a1 = e1 − e5, a2 = e2 − e5, a3 = e3 − e5, a4 = e4 − e5 (5.2)

with
e

µ
1 = 1

4

(

+
√

5,+
√

5,+
√

5,+1
)

,

e
µ
2 = 1

4

(

+
√

5,−
√

5,−
√

5,+1
)

,

e
µ
3 = 1

4

(

−
√

5,−
√

5,+
√

5,+1
)

,

e
µ
4 = 1

4

(

−
√

5,+
√

5,−
√

5,+1
)

,

(5.3)

and e5 = − ∑
4
i=1 ei. Notice also that the 5 vectors e1, e2, e3, e4, e5 define the first nearest

neighbors to (0, 0, 0, 0) and satisfy the constraint relations,

ei.ei = 1, ei.ej = cos ϑij = − 1
4 , i �= j , (5.4)

showing that the ei’s are distributed in a symmetric way since all the angles satisfy cos ϑij =
−1
4 ; see also figure (14) for illustration.

some specific properties
From the figure (14) representing the first nearest neighbors in the 4D hyperdiamond and
their analog in 2D graphene, we learn that each A4- type node at rn, with some attached wave
function Arn , has the following closed neighbors:
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Fig. 14. On left the 5 first nearest neighbors in the pristine 4D hyperdiamond with the
properties ‖ei‖ = 1 and e1 + e2 + e3 + e4 + e5 = 0. On right, the 3 first nearest in pristine
2D graphene with ‖ei‖ = 1 and e1 + e2 + e3 = 0.

• 5 first nearest neighbors belonging to B4 with wave functions Brn+dei
; they are given by:

lattice position attached wave

rn + de1 Brn+de1

rn + de2 Brn+de2

rn + de3 Brn+de3

rn + de4 Brn+de4

rn + de5 Brn+de5

(5.5)

Using this configuration, the typical tight binding hamiltonian describing the couplings
between the first nearest neighbors reads as

−t ∑
rn

5

∑
i=1

Arn B+
rn+dei

+ hc . (5.6)

where t is the hop energy and where d is the lattice parameter.
Notice that in the case where the wave functions at rn and rn + dei are rather given by two
component Weyl spinors

Aa
rn

=

(

A1
rn

A2
rn

)

, B̄ȧ
rn+dei

=

(

B̄1̇
rn+dei

B̄2̇
rn+dei

)

, (5.7)

together with their adjoints Āȧ
rn

and B̄a
rn+dei

, as in the example of 4D lattice QCD to be

described in next section, the corresponding tight binding model would be,

−t ∑
rn

5

∑
i=1

[

4

∑
µ=1

e
µ
i

(

Aa
rn

σ
µ
aȧB̄ȧ

rn+dei

)

]

+ hc . (5.8)

where the e
µ
i ’s are as in (5.3); and where σ1, σ2, σ3 are the Pauli matrices and σ4 = I2×2.

Notice moreover that the term ∑
5
i=1 e

µ
i

(

Aa
rn

σ
µ
aȧB̄ȧ

rn

)

vanishes identically due to ∑
5
i=1 e

µ
i =

0.
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• 20 second nearest neighbors belonging to the same A4 with the wave functions
Arn+d(ei−ej); they read as

rn ± d (e1 − e2) , rn ± d (e1 − e3) , rn ± d (e1 − e4) ,
rn ± d (e1 − e5) , rn ± d (e2 − e3) , rn ± d (e2 − e4) ,
rn ± d (e2 − e5) , rn ± d (e3 − e4) , rn ± d (e3 − e5) ,
rn ± d (e4 − e5) .

(5.9)

The 5 vectors e1, e2, e3, e4, e5 are, up to a normalization factor namely
√

5
2 , precisely the weight

vectors λ0, λ1, λ2, λ3, λ4 of the 5-dimensional representation of SU (5); and the 20 vectors
(

ei − ej

)

are, up to a scale factor
√

5
2 , their roots βij =

(

λi − λj

)

. We show as well that the

particular property ei.ej = − 1
4 , which is constant ∀ ei and ej, has a natural interpretation in

terms of the Cartan matrix of SU (5).
2D/4D Correspondence
First notice that a generic bond vector ei in the hyperdiamond links two sites in the same unit
cell of the 4D lattice as shown on the typical coupling term Arn B+

rn+dei
. This property is quite

similar to the action of the usual γµ matrices on 4D (Euclidean) space time spinors which links
the components of spinors.
Mimicking the tight binding model of 2D graphene, it has been proposed in (Bedaque et al.,
2008) a graphene inspired model for 4D lattice QCD. There, the construction relies on the use
of the following:

• the naive correspondence between the bond vectors ei and the γi matrices

ei ←→ γi , i = 1, ..., 4 , (5.10)

together with
−e5 = e1 + e2 + e3 + e4 ,
−Γ5 = γ1 + γ2 + γ3 + γ4 .

(5.11)

• as in the case of 2D graphene, A4-type sites are occupied by left φa
r and right φ̄ȧ

r
2-component Weyl spinors. B4-type sites are occupied by right χ̄ȧ

r+dei
and left χa

r+dei
Weyl

spinors.

lattice 2D graphene 4D hyperdiamond

A4-sites at rn Ar φa
r , φ̄ȧ

r

B4-sites at rn + dei B+
r+dei

χ̄ȧ
r+dei

, χa
r+dei

couplings
ArB+

r+dei

Br+dei
A+

r

e
µ
i

(

φa
r σ

µ
aȧ χ̄ȧ

r+dei

)

e
µ
i

(

χa
r+dei

σ̄
µ
aȧ φ̄ȧ

r

)

(5.12)

where the indices a = 1, 2 and ȧ = 1̇, 2̇; and where summation over µ is in the Euclidean
sense.

For later use, it is interesting to notice the two following:

(a) in 2D graphene, the wave functions Ar and Br+dei
describe polarized electrons in first

nearest sites of the 2D honeycomb. As the spin up and spin down components of the
electrons contribute equally, the effect of spin couplings in 2D graphene is ignored.
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(b) in the 4D hyperdiamond, we have 4+4 wave functions at each A4-type site or B4-type
one. These wave functions are given by:

(i) φa =
(

φ1
rn

, φ2
rn

)

and φ̄ȧ
r =

(

φ̄1̇
rn

, φ̄2̇
rn

)

having respectively positive and negative γ5

chirality,

(ii) χ̄ȧ
r+dei

=
(

χ̄1̇
r+dei

, χ̄2̇
r+dei

)

and χa
r+dei

=
(

χ1
r+dei

, χ2
r+dei

)

having respectively negative

and positive γ5 chirality.

By mimicking the 2D graphene study, we have the couplings

e
µ
i σ

µ

11̇

(

φ1
r χ̄1̇

r+dei

)

, e
µ
i σ

µ

22̇

(

φ2
r χ̄2̇

r+dei

)

e
µ
i σ̄

µ

11̇

(

χ1
r+dei

φ̄1̇
r

)

, e
µ
i σ̄

µ

22̇

(

χ2
r+dei

φ̄2̇
r

) (5.13)

building the hamiltonian
To describe 4D lattice fermions, one considers 4D space time Dirac spinors together with the
following γµ matrices realizations,

γ1 = τ1 ⊗ σ1 , γ2 = τ1 ⊗ σ2 , γ3 = τ1 ⊗ σ3 ,

γ4 = τ2 ⊗ I2 , γ5 = τ3 ⊗ I2 ,
(5.14)

where the τi’s are the Pauli matrices acting on the sublattice structure of the hyperdiamond
lattice,

τ1 =

(

0 1

1 0

)

, τ2 =

(

0 −i

i 0

)

, τ3 =

(

1 0

0 −1

)

. (5.15)

The 2 × 2 matrices σi satisfy as well the Clifford algebra σiσj + σjσi = 2δij I2 and act through
the coupling of left/right Weyl spinors at neighboring sites

φa
r σ

µ
aȧ χ̄ȧ

r+d
√

5
2 λi

− χa
r σ̄

µ
aȧ φ̄ȧ

r−d
√

5
2 λi

=

(

φrσµχ̄
r+d

√
5

2 λi
− χrσ̄µφ̄

r−d
√

5
2 λi

)

(5.16)

where σµ =
(

σ1, σ2, σ3,+i I2

)

and σ̄µ =
(

σ1, σ2, σ3,−i I2

)

. For later use, it is interesting to set

σµ.e
µ
1 =

√
5

4 σ1 +
√

5
4 σ2 +

√
5

4 σ3 + i
4 I2,

σ̄µ.e
µ
1 =

√
5

4 σ1 +
√

5
4 σ2 +

√
5

4 σ3 − i
4 I2,

(5.17)

and similar relations for the other σ.ei and σ̄.ei.

Now extending the tight binding model of 2D graphene to the 4D hyperdiamond; and using
the weight vectors λi instead of ei, we can build a free fermion action on the 4D lattice by

attaching a two-component left-handed spinor φa (r) and right-handed spinor φ̄ȧ
r to each

A4-node r, and a right-handed spinor χ̄ȧ

r+d
√

5
2 λi

and left-handed spinor χa

r+d
√

5
2 λi

to every

B4-node at r + d
√

5
2 λi.

The hamiltonian, describing hopping to first nearest-neighbor sites with equal probabilities in
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all five directions λi, reads as follows:.

H4 = ∑
r

4

∑
i=0

(

φrσµχ̄
r+d

√
5

2 λi
− χr σ̄µφ̄

r−d
√

5
2 λi

)

λ
µ
i . (5.18)

Expanding the various spinorial fields ξr±v in Fourier sums as
∫

d4k

(2π)4 e−ik.r
(

e∓ik.vξk

)

with k

standing for a generic wave vector in the reciprocal lattice, we can put the field action H4 into
the form

H4 = i ∑
k

(φ̄k, χ̄k)

(

0 −iD
iD̄ 0

)(

φk
χk

)

(5.19)

where we have set

D =
4

∑
l=0

Dle
id

√
5

2 k.λl =
4

∑
µ=1

σµ

(

4

∑
l=0

λ
µ
l eid

√
5

2 k.λl

)

, (5.20)

with

Dl =
4

∑
µ=1

σµλ
µ
l =

(

λ3
l + iλ4

l λ1
l − iλ2

l

λ1
l + iλ2

l λ3
l − iλ4

l

)

, (5.21)

and pl = k.λl = ∑µ kµλ
µ
l . Similarly we have

D̄ =
4

∑
l=0

D̄le
−id

√
5

2 k.λl =
4

∑
µ=1

σ̄µ

(

4

∑
l=0

λ
µ
l e−id

√
5

2 k.λl

)

. (5.22)

5.2 Energy dispersion and zero modes

To get the dispersion energy relations of the 4 waves components φ1
k, φ2

k, χ1
k, χ2

k and their
corresponding 4 holes, one has to solve the eigenvalues of the Dirac operator (5.19). To that
purpose, we first write the 4-dimensional wave equation as follows,

(

0 −iD
iD̄ 0

)(

φk
χk

)

= E

(

φk
χk

)

, (5.23)

where φk =
(

φ1
k, φ2

k

)

, χk =
(

χ1
k, χ2

k

)

are Weyl spinors and where the 2 × 2 matrices D, D̄
are as in eqs(5.20,5.22). Then determine the eigenstates and eigenvalues of the 2 × 2 Dirac
operator matrix by solving the following characteristic equation,

det

⎛

⎜

⎜

⎝

−E 0 D11 D12

0 −E D21 D22

D̄11 D̄21 −E 0
D̄12 D̄22 0 −E

⎞

⎟

⎟

⎠

= 0 (5.24)

from which one can learn the four dispersion energy eigenvalues E1 (k), E2 (k), E3 (k), E4 (k)
and therefore their zeros.
1) computing the energy dispersion
An interesting way to do these calculations is to act on (5.23) once more by the Dirac operator
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to bring it to the following diagonal form

(

DD̄ 0
0 DD̄

)(

φk
χk

)

= E2

(

φk
χk

)

. (5.25)

Then solve separately the eigenvalues problem of the 2-dimensional equations DD̄φk = E2φk
and D̄Dχk = E2χk. To do so, it is useful to set

u (k) = ϑ1 + iϑ2 , v (k) = ϑ3 + iϑ4 (5.26)

with ϑµ = ∑l λ
µ
l exp(id

√
5

2 k.λl). Notice that in the continuous limit, we have ϑµ → id
√

5
2 kµ,

u (k) → id
√

5
2

(

k1 + ik2
)

, v (k) → id
√

5
2

(

k3 + ik4
)

. (5.27)

Substituting (5.26) back into (5.20) and (5.22), we obtain the following expressions,

DD̄ =

(

|u|2 + |v|2 2ūv

2uv̄ |u|2 + |v|2

)

, D̄D =

(

|u|2 + |v|2 2ūv̄

2uv |u|2 + |v|2

)

(5.28)

By solving the characteristic equations of these 2 × 2 matrix operators, we get the eigenstates
φa′

k , χa′
k with their corresponding eigenvalues E2

±,

eigenstates eigenvalues

φ1′
k =

√

vū
2|u||v|φ

1
k +

√

uv̄
2|u||v|φ

2
k E2

+ = |u|2 + |v|2 + 2 |u| |v|
φ2′

k = −
√

vū
2|u||v|φ

1
k +

√

uv̄
2|u||v|φ

2
k E2

− = |u|2 + |v|2 − 2 |u| |v|
χ1′

k =
√

ūv̄
2|u||v|χ

1
k +

√

uv
2|u||v|χ

2
k E2

+ = |u|2 + |v|2 + 2 |u| |v|
χ2′

k = −
√

ūv̄
2|u||v|χ

1
k +

√

uv
2|u||v|χ

2
k E2

− = |u|2 + |v|2 − 2 |u| |v|

(5.29)

By taking square roots of E2
±, we obtain 2 positive and 2 negative dispersion energies; these

are

E± = +
√

(|u| ± |v|)2, E∗
± = −

√

(|u| ± |v|)2 (5.30)

which correspond respectively to particles and the associated holes.
2) determining the zeros of E± and E∗

±
From the above energy dispersion relations, one sees that the zero modes are of two kinds:
E2
+ = 0, E2

− = 0; and E2
− = 0 but E2

+ = E2
+min �= 0. Let us consider the case E2

+ = E2
− = 0;

in this situation the zero modes are given by those wave vectors KF solving the constraint
relations u (KF) = v (KF) = 0. These constraints can be also put in the form

λ
µ
0 eid

√
5

2 KF.λ0 + λ
µ
1 eid

√
5

2 KF.λ1+

+λ
µ
2 eid

√
5

2 KF.λ2 + λ
µ
3 eid

√
5

2 KF .λ3 + λ
µ
4 eid

√
5

2 KF.λ4 = 0

(5.31)

for all values of µ = 1, 2, 3, 4, or equivalently like d
√

5
2 KF.λl = 2π

5 N + 2πNl . Notice that
setting k = KF + q with small q = ‖q‖ and expanding D and D̄, eq(5.23) gets reduced to the
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following familiar wave equation in Dirac theory

d
√

5
2

4

∑
µ=1

qµ

(

0 σµ

σ̄µ 0

)(

φk
χ̄k

)

= E

(

φk
χ̄k

)

. (5.32)

6. Graphene and lattice QCD

In this section, we would like to deepen the connection between 2D graphene and 4D
lattice QCD. This connection has been first noticed by M.Creutz (Creutz, 2008) and has been
developed by several authors seen its convenience for numerical simulations in QCD .

6.1 More on link graphene/lattice QCD

2D graphene has some remarkable properties that can be used to simulate 4D lattice QCD.
Besides chirality, one of the interesting properties is the existence of two Dirac points that can
be interpreted as the light quarks up and down. This follows from the study of the zero modes
of the 2 × 2 Dirac operator which corresponds also to solve the vanishing of the following
energy dispersion relation

l

∑
l=1

cos akl + i
l

∑
l=1

sin akl = 0 , (6.1)

which has two zeros as given by (2.22).
To make contact with lattice QCD, we start by recalling the usual 4D hamiltonian density of a
free Dirac fermion Ψ =

(

ψ1, ψ2, χ̄1̇, χ̄2̇

)

living in a euclidian space time,

H =
1

2

∫

d4x

(

4

∑
µ=1

Ψ̄ (x) γµ ∂Ψ (x)

∂xµ + hc

)

, (6.2)

where γµ are the usual 4 × 4 Dirac matrices given by (5.14). Then, we discretize this energy
density H by thinking about the spinorial waves Ψ

(

x1, ..., x4
)

as Ψrn living at the rn-nodes of a

four dimensional lattice L4 and its space time gradient
∂Ψ(x)

∂xµ like 1
a

(

Ψrn+aµ − Ψrn

)

. The field
Ψrn+aµ is the value of the Dirac spinor at the lattice position rn + aµ with the unit vectors µ
giving the four relative positions of the first nearest neighbors of rn. Putting this discretization
back into (6.2), we end with the free fermion model

H = 1
2a ∑

rn

(

4

∑
µ=1

[

Ψ̄rn γµΨrn+aµ − Ψ̄rn+aµγµΨrn

]

)

. (6.3)

The extra two term Ψ̄rn ΓΨrn and (Ψ̄rn ΓΨrn)
+

with Γ = 1
2 ∑µ γµ cancel each other because of

antisymmetry of the spinors. Clearly, this hamiltonian looks like the tight binding hamiltonian
describing the electronic properties of the 2D graphene; so one expects several similarities for
the two systems.
Mapping the hamiltonian (6.3) to the Fourier space, we get H = ∑k (Ψ̄kDΨk) with Dirac

operator D = i
a ∑

4
µ=1 γµ sin

(

akµ
)

,where we have set kµ = (k.µ); giving the wave vector

component along the µ-direction. The D- operator is a 4 × 4 matrix that depends on the wave
vector components (k1, k2, k3, k4) and has 24 zeros located as

k1 = 0, π
a ; k2 = 0, π

a ; k3 = 0, π
a ; k4 = 0, π

a . (6.4)
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However, to apply these formalism to 4D lattice QCD, the number of the zero modes of the
Dirac operator should be two in order to interpret them as the light quarks up and down.
Following (Creutz, 2008), this objective can be achieved by modifying (6.3) so that the Dirac
operator takes the form

D =
i

a

4

∑
µ=1

γµ sin
(

akµ
)

+
i

a

4

∑
µ=1

γ′µ cos
(

akµ
)

(6.5)

where γ′µ is some 4 × 4 matrix that is introduced in next subsection.

6.2 Boriçi-Creutz fermions

Following (Capitani et al., 2009 a;b) and using the 4-component Dirac spinors Ψr =
(

φa
r , χ̄ȧ

r

)

,
the Boriçi-Creutz (BC) lattice action of free fermions reads in the position space, by dropping
mass term m0, as follows:

HBC ∼ 1
2a ∑

r

(

4

∑
µ=1

Ψ̄rΥµΨr+aµ −
4

∑
µ=1

Ψ̄r+aµῩµΨr

)

− 2i
a ∑

r

Ψ̄rΓΨr (6.6)

where, for simplicity, we have dropped out gauge interactions; and where Υµ = γµ + iγ′µ;
which is a kind of complexification of the Dirac matrices.
Moreover, the matrix Γ appearing in the last term is a 4× 4 matrix linked to γµ, γ′µ as follows:

γ′µ = Γ − γµ, 2Γ =
4

∑
µ=1

γµ, γµ + iγ′µ = Υµ, γµγν + γνγ = 2δµνµ , (6.7)

Mapping (6.6) to the reciprocal space, we have

HBC ∼ ∑
k

Ψ̄kDBCΨk (6.8)

where the massless Dirac operator DBC is given by

DBC = + 1
2a

(

Υµ − Ῡµ
)

cos
(

akµ
)

+ i
2a

(

Υµ + Ῡµ
)

sin
(

akµ
)

− 2i
a Γ .

(6.9)

Upon using Υµ + Ῡµ = 2γµ and Υµ − Ῡµ = 2iγ′
µ, we can put DBC in the form

DBC = Dk + D̄k − 2i

a
Γ (6.10)

with

Dk = i
a

(

4

∑
µ=1

γµ sin akµ

)

, D̄k = i
a

(

4

∑
µ=1

γ′µ cos akµ

)

, (6.11)

where kµ = k.µ. In the next subsection, we will derive the explicit expression of these kµ’s in
terms of the weight vectors λl of the 5-dimensional representation of the SU (5) symmetry as
well as useful relations.
The zero modes of DBC are points in the reciprocal space; they are obtained by solving DBC =
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0; which leads to the following condition

4

∑
µ=1

γµ
(

sin aKµ − cos aKµ
)

− Γ

(

2 −
4

∑
µ=1

cos aKµ

)

= 0 . (6.12)

This condition is a constraint relation on the wave vector components Kµ; it is solved by the
two following wave vectors:

point KBC : K1 = K2 = K3 = K4 = 0 ,
point K′

BC : K′
1 = K′

2 = K′
3 = K′

4 = π
2a ,

(6.13)

that are interpreted in lattice QCD as associated with the light quarks up and down.
Notice that if giving up the γ′

µ- terms in eqs(6.6-6.8); i.e γ′
µ → 0, the remaining terms in DBC

namely Dk ∼ γµ sin aKµ have 16 zero modes given by the wave components Kµ = 0, π. By
switching on the γ′

µ-terms, 14 zeros are removed.

6.3 Hyperdiamond model

The hamiltonian HBC is somehow very particular; it let suspecting to hide a more fundamental
property which can be explicitly exhibited by using hidden symmetries. To that purpose,
notice that the price to pay for getting a Dirac operator with two zero modes is the
involvement of the complexified Dirac matrices Υµ, Ῡµ as well as the particular matrix Γ.
Despite that it violates explicitly the SO (4) Lorentz symmetry since it can be written as

Γ = 1
2

4

∑
µ=1

γµυµ, υµ =

⎛

⎜

⎜

⎝

1
1
1
1

⎞

⎟

⎟

⎠

, (6.14)

the matrix Γ plays an important role in studying the zero modes. The expression of the matrix
Γ (6.7) should be thought of as associated precisely with the solution of the constraint relation

2Γ − ∑
4
µ=1 γµ = 0 that is required by a hidden symmetry of the BC model. This invariance is

precisely the SU (5) symmetry of the 4D hyperdiamond to be identified below. Moreover, the
BC hamiltonian HBC lives on a 4D lattice L

BC
4 generated by µ ≡ vµ; i.e the vectors

v1=

⎛

⎜

⎜

⎝

vx
1

v
y
1

vz
1

vt
1

⎞

⎟

⎟

⎠

, v2=

⎛

⎜

⎜

⎝

vx
2

v
y
2

vz
2

vt
2

⎞

⎟

⎟

⎠

, v3=

⎛

⎜

⎜

⎝

vx
3

v
y
3

vz
3

vt
3

⎞

⎟

⎟

⎠

, v4=

⎛

⎜

⎜

⎝

vx
4

v
y
4

vz
4

vt
4

⎞

⎟

⎟

⎠

(6.15)

These µ-vectors look somehow ambiguous to be interpreted both by using the analogy with
4D graphene prototype; and also from the SU (5) symmetry view. Indeed, to each site r ∈ L

BC
4

there should be 5 first nearest neighbors that are rotated by SU (5) symmetry. But from the BC
hamiltonian we learn that the first nearest neighbors to each site r are:

r →

⎧





⎨





⎩

r+av1

r+av2

r+av3

r+av4

. (6.16)
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The fifth missing one, namely r → r+av5 may be interpreted in the BC fermions as associated
with the extra term involving the matrix Γ. To take into account the five nearest neighbors, we
have to use the rigorous correspondence Γµ → vµ and Γ5 → v5 which can be also written in a

combined form as follows ΓM → vM with ΓM =
(

Γµ, Γ5
)

and vM =
(

vµ, v5

)

. Because of the
SU (5) symmetry properties, we also have to require the condition v1 + v2 + v3 + v4 + v5 =
0 characterizing the 5 first nearest neighbors. To determine the explicit expressions of the
matrices ΓM in terms of the usual Dirac ones, we modify the BC model (6.6) as follows

H′
BC ∼ 1

2a ∑
r

(

5

∑
M=1

Ψ̄rΓMΨr+avM −
5

∑
M=1

Ψ̄r+avM ΓMΨr

)

, (6.17)

exhibiting both SO (4) and SU (5) symmetries and leading to the following free Dirac operator

D = i
2a

4

∑
µ=1

(

Γµ + Γ̄µ
)

sin
(

akµ
)

+ i
2a (Γ5 + Γ̄5) sin (ak5)

1
2a

4

∑
µ=1

(

Γµ − Γ̄µ
)

cos
(

akµ
)

+ 1
2a (Γ5 − Γ̄5) cos (ak5)

(6.18)

where kM = k.vM and where Π5
M=1

(

eiakM

)

= 1, ∑
5
M=1 kM = 0 expressing the conservation

of total momenta at each lattice site. Equating with (6.9-6.10-6.11), we get the identities

Υµ + Ῡµ = Γµ + Γ̄µ, Υµ − Ῡµ = Γµ − Γ̄µ, (6.19)

and
i

2a (Γ5 + Γ̄5) sin (ak5) +
1
2a (Γ5 − Γ̄5) cos (ak5) = − 4i

2a Γ . (6.20)

Eqs(6.19) are solved by Γµ = Υµ; that is Γµ = γµ + i (Γ − γµ) while

Γ5 = −2iΓ for sin (ak5) = 0 ,
Γ5 = −2Γ for sin (ak5) = 1 .

(6.21)

where k5 = − (k1 + k2 + k3 + k4). In this 5-dimensional approach, the ambiguity in dealing
with the µ-vectors is overcome; and the underlying SO (4) and SU (5) symmetries of the
model in reciprocal space are explicitly exhibited.

7. Conclusion and comments

Being a simple lattice-carbon based structure with delocalized electrons, graphene has been
shown to exhibit several exotic physical properties and chemical reactions leading to the
synthesis of graphene type derivatives such as graphAne and graphOne. In this book chapter,
we have shown that graphene has also very remarkable hidden symmetries that capture basic
physical properties; one of these symmetries is the well known SU (2) invariance of the unit
cells that plays a crucial role in the study of the electronic properties using first principle
calculations. Another remarkable hidden invariance, which has been developed in this work,
is the SU(3) symmetry that captures both crystallographic and physical properties of the
graphene. For instance, first nearest neighbors form 3-dimensional representations of SU (3);
and the second nearest neighbor ones transform in its adjoint. Moreover, basic constraint
relations like υ1 + υ2 + υ3 = 0 is precisely a SU (3) group property; and its solutions are
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exactly given by group theory. Furthermore, the location of the Dirac zero modes of graphene
is also captured by SU (3) seen that these points are given by ± 2π

3d α1, ± 2π
3d α2, ± 2π

3d α3 where
the αi’s are the SU (3) roots that generate the reciprocal space.
On the other hand, from SU (3) group theory’s point of view, graphene has cousin systems
with generic SU (N) symmetries where the integer N takes the values 2, 3, 4, .... The leading
graphene cousin systems are linear molecules with hidden SU(2) invariance; this is precisely
the case of poly-acetylene, cumulene and poly-yne studied in section 4. The graphene
cousin systems with hidden SU(4) and SU(5) symmetries are given by 3D diamond; and
4D hyperdiamond which has an application in 4D- lattice QCD.
Finally, it is worth to mention that the peculiar and unique properties of graphene are expected
to open new areas of applications due to its important electronic, spintronic, mechanical
and optical properties. The challenge is find low-cost-processes for producing graphene and
graphene-based structures and to tune its properties to the targeted applications such as the
replacement of silicon in the field of new-type of semiconductors and new electronics, new
data-storage devices, new materials with exceptional mechanical properties and so on.
Various attempts are also made to incorporate other atoms within the structure of graphene
or combine the graphene-based structures with other materials in sandwich type structure or
in chemical way by binding it to various molecules with divers topologies and functionalities.
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