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1. Introduction

Hexagon is one of the most beautiful substance structures in nature. From snowflakes to
honeycomb lattices, we can find the presence and stability of this delicate structure. The
two-dimensional hexagon had been investigated in graphite materials which has an evident
layered structure (Painter & Ellis, 1970) long before the discovery of graphene. Since the
successful fabrication of graphene (Berger et al., 2004; Novoselov et al., 2004), a monolayer of
carbon atoms tightly packed into a two-dimensional hexagonal lattice, its various properties
have been widely explored and have received increasing attention (Castro Neto et al., 2009;
Das et al., 2008; Ferrari et al., 2006; Gupta et al., 2006; Partoens & Peeters, 2006; 2007). Its
exotic electronic property has the potential for practical applications and provides a prospect
of theoretical invention. On the other hand, graphene is a basic structural element of many
carbon allotropes including graphite, charcoal, carbon nanotubes and fullerenes. It is also
of theoretical significance and practical guidance to study the physical properties such as
the lattice dynamics and electronic structures starting from graphene and extending to other
related systems.
It is well known that symmetry concept plays an important role in physics. Specifically, in
condensed matter physics, the microscopic symmetry of the structures of materials determines
the symmetry properties of macroscopic physical quantities. Group theory is not only a
powerful tool to classify the electronic and phonon spectra, but also essential to understand
the inherent physical meaning as well as their consequence. The symmetry group D6h of
graphene is the basic building block of all carbon allotropes in a sense that either their
symmetry groups evolve from D6h with a few symmetry operations lifted or added, or some
symmetry operations in D6h are inherited in a certain forms. The study of symmetry provides
an effective way to find the common essence and differences among carbon allotropes. In this
chapter we will analyze the symmetry characteristics as well as symmetry induced constrains
to the lattice dynamics of graphene, multilayered graphene, and nanotubes.
Lattice dynamics studies the vibration of lattice, i.e. the phonons. Many exotic properties
of graphene, such as its very high strength and thermal conductivity are directly connected
to the phonon properties. Its extremely high electrical conductivity is also related to the
phonon dispersion and electron-phonon interactions. We will focus on the lattice dynamics
of the multilayered graphene systems, where graphene is the limit of one layer number,
and the nanotube systems with different radius and charity. In particular, the role of
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2 Will-be-set-by-IN-TECH

symmetry selection in optical activeness of phonon modes in multilayer graphene systems
and symmetry restriction in the phonon dispersion calculation of carbon nanotubes is
emphasized.
Multilayered graphene systems can be viewed as stacking a few number of graphene layers
along the direction perpendicular to planar sheets. Some symmetry operations existed in
graphene such as the space reflection σ̂i or reflection with the plane σ̂h may lift depending on
the arrangement of layers and the layer number. The breaking of the symmetry operations
reduces the order of symmetry groups and causes the change of the optical activities of the
phonon branches. Quantitatively, the phonon modes will be softer or harder (red or blue shift)
as the number of layers changed. All these qualitative and quantitative properties will be
discussed in the next two sections and calculated results are compared with the experimental
measurements.
Carbon nanotubes had been discovered (Iijima, 1991) before the fabrication of graphene. At
first sight, nanotubes and graphene belong to totally different symmetry groups and follow
the different symmetry restrictions on their physical properties. In virtue of the picture that
a single wall carbon nanotube can be viewed as a warped graphene stripe (Saito et al., 1998),
we still can ask what is the effect of the added periodic edge condition on the two sides of the
stripe, and what is the consequence of the three-fold rotational Ĉ3 symmetry on graphene. In
section 4, we will reveal a three-theta role, an universal triple chiral angle (3θ) dependence,
of nanotubes with different chiral angles, which is actually the heritage of the three-fold
rotational symmetry of graphene.
As usual, the enlargement of the primitive cell in real lattice space causes Brillouin zone
folding in reciprocal space. If the edge effects of stripes and the curvature effects of nanotubes
are neglected, the electronic dispersions in new small Brillouin zone can be obtained directly
by folding those of graphene. For phonons, the situation would be more complicated because
of their vector properties. Particularly, flexure modes (a kind of vibrational modes with
parabolic dispersions when surface exists (Mahan & Jeon, 2004)) can be obtained only when
a correct form of the potential energy satisfying the symmetry constrains is adopted. The
emergence of the twist mode is intimately connected with the geometrical structure of the
rod-like cylindrical systems.
The one-dimensional (1D) single wall carbon nanotubes belong to 1D line groups
(Damnjanović et al., 1999; 2000). For chiral nanotubes, the definition of the primary chiral
operation is not unique. This will result in different choice of primitive cells and the different
coordinates in description of the lattice structure of nanotubes. There are two commonly used
coordinates for nanotubes, thus two sets of good quantum numbers. One of them will be
called it Dresselhaus coordinate (Saito et al., 1998), which has the superiority in denoting
the optical transition properties at long wave length limit. The other is White coordinate
(Gunlycke et al., 2008; White et al., 1993), which has a clear relation with the symmetry
generators. Since the quantum numbers in Dresselhaus coordinate are related to an isogonal
group of the symmetry group of the nanotube, the relation between these two sets of quantum
numbers is not trivial and we will discuss it in detail in section 5. With this relation, it is easy
to transform electronic or phonon dispersions with one set of good quantum numbers to the
others. Finally, to illustrate the similarities and differences among carbon allotropes, the lattice
dynamics of single-wall carbon nanotubes is discussed in section 6.
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Symmetry and Lattice Dynamics 3

2. The symmetry consideration in graphene and multilayer graphene systems

Graphene is a monolayer carbon atoms with the hexagonal lattice configuration which is
characterized by the D6h symmetry. There are two identical carbon atoms in one unit cell
as shown in Fig. 1, and the bond length between two nearest-neighbor atoms in the plane
is b = 1.42 Å(Saito et al., 1998). The primitive lattice vectors can be set as �a1 and �a2 with
|�a1| = |�a2| = 2.46 Å. The lattice configuration of multilayer graphene systems (MLGS) is
constructed by stacking N graphene sheets along perpendicular direction, z axis. The distance
between two adjacent layers is about c

2 = 3.35 Å which is much larger than the in-plane bond
length (Manes et al., 2007). AA-stacked or AB-stacked MLGS can be obtained respectively
if all layers have the same configuration or shift alternately along one of the first-nearest
carbon-carbon bonds in horizontal plane as shown in Fig. 2. The three-dimensional (3D)
graphite is the limitation of AB-stacked MLGS with layer number N → ∞.

Fig. 1. The sketch of the lattice configuration of graphene. The vectors shown in the figure
are the primitive lattice vectors�a1 and�a2.

Fig. 2. The sketch of the configurations of AB-stacked in (a) and AA-stacked in (b) for
multilayer graphene.
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There are twelve conjugacy classes in D6h group and thus twelve irreducible representations.
For simplifying the discussion, D6h can be expressed as the direct products of three subgroups,

D6h = D3 ⊗ {Ê, σ̂h} ⊗ {Ê, σ̂i} ,

D3 = {Ê, 2Ĉ3, 3Ĉ2} ,

where σ̂h is the reflection with the plane, σ̂i the space reflection, Ĉ3 three-fold rotation around
the axis perpendicular to the graphene sheet, and Ĉ2 two-fold rotation around axis parallel
to the sheet. There are three irreducible representations for D3 group, two one-dimensional
representations A and B and one two-dimensional representation E. The twelve irreducible
representations of D6h can be denoted by A, B, and E with the subscripts 1, 2 and u, g, where
letters are for representations of D3, and the subscripts correspond to the parity under σ̂h and
σ̂i respectively. The symbol for the irreducible representations we used here is the notation
used in Ref. (Eyring et al., 1949) which is most commonly used in the treatment of molecules.
For AB-stacked MLGS, the symmetry operations σ̂h and σ̂i existed in graphene cannot coexist
anymore, and the point groups will depend on the layer number (Manes et al., 2007). For
AB-stacked even number MLGS (EMLGS), the space reflection σ̂i exists with respect to the
middle point of pair atoms 2’ in the N

2 -th layer and 1” in the N
2 + 1-th layer as shown in

Fig. 2(a). But there is no planar reflection σ̂h. Same as that in graphene, the two Ĉ3 and three Ĉ2
operations exist. The three two-fold axes are perpendicular to z axis with angle π/3 between
each other. All the symmetry operations constitute the point group D3d = D3 ⊗ {Ê, σ̂i}. In
AB-stacked odd number MLGS (OMLGS), the space reflection σ̂i is lift instead of σ̂h in EMLGS.
The reference plane of σ̂h is set at the middle layer of OMLGS as shown in Fig. 2(b). All
operations of D3 also exist, but the three 2-fold axes are one to one perpendicular to those of
Ĉ2 in EMLGS. Consequently, the symmetry group of OMLGS is D3h = D3 ⊗ {Ê, σ̂h}.
The point group of the 3D graphite is the non-symmorphic group D4

6h with non-primitive
translation �τ = 1

2�c (Brillson et al., 1971). In addition to the in-plane translation symmetry,
there exists translation symmetry along z for the 3D graphite. The primitive vector along z is
set as�c which crosses the two adjacent layers. Thus there are four carbon atoms 1, 2, 1’, and 2’
in one unit cell as represented in Fig. 2(a).
As described in Ref. (Jiang et al., 2008, a), the environment of an atom in graphite or
AB-stacked MLGS is more complicated than that in 2D graphene. The in-layer situation
is the same as that of graphene, i.e. three nearest-neighbor carbon atoms and six
next-nearest-neighbors for any one of carbon atom. For the inter-layer atomic positions,
picking atom 2’ in the middle layer of Fig. 2(a) as an example, there are two inter-layer
nearest-neighbor atoms 2 and 2” in each of the two adjacent layers with the distance c/2
respectively. Furthermore, there are three inter-layer next-nearest-neighbor atoms around
atom 2’ with distance

√

b2 + (c/2)2 in one of the adjacent layer (such as atom 1 is one of
them). The adjacent environment of atom 1 is quite different from that of atom 2’. Because
the position 1’ in Fig. 2(a) has no atom, atom 1 has no inter-layer nearest-neighbors. Instead it
has six inter-layer next-nearest-neighbors in one of the adjacent layer with the same distance
√

b2 + (c/2)2.
In the AA-stacked MLGS as well as the AA-stacked 3D graphite, all layers have the same
configuration. So that all of them have the same point group D6h as that in graphene whatever
the layer number is even or odd. Different from the graphite (AB-stacked 3D graphite),
there are only two atoms in the unit cell and the primitive translation along z axis is �c/2
for AA-stacked 3D graphite. As shown in Fig. 2(b), the environment of a carbon atom in
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the AA-stacked MLGS is simpler than that in AB-stacked MLGS. For each atom, there are
one inter-layer nearest-neighbors in one of the adjacent layer with the distance c/2 and three
inter-layer second-nearest-neighbors with distance

√

b2 + (c/2)2.
Taking the lattice displacements �ui (i runs over all atoms in one unit cell) as bases,
the dynamical representation Γdyn can be expressed as the direct products of the vector
representation Γv and atomic permutation representation Γatom for a given group, Γdyn =
Γv ⊗ Γatom. By applying the projection operator technique, the dynamical representation Γdyn

is decomposed into the irreducible representations of the corresponding groups of graphene,
MLGS with N even and odd, and 3D graphite respectively. Referring to Ref. (Elliott & Dawber,
1979), the infra-red (Ir) active phonon modes should be compatible with the same decomposed
irreducible representations as the vector representation Γv, while the Raman active phonon
modes correspond to the same irreducible representations shown up in the decomposition of
a six-dimension representation with d-wave like bases: x2 + y2, z2, x2 − y2, xy, yz, and zx.
The three acoustic modes with zero frequency at the Γ point, which correspond to the vector
representation Γv, are excluded in the consideration of Ir and Raman active modes.

Group Γdyn ΓIr ΓR

graphenea D6h A2u
⊕

B2g
⊕

E1u
⊕

E2g / E2g

AB-stacked D3d
b N(A1g

⊕

A2u
⊕

Eg
⊕

Eu) (N − 1)A2u
⊕

(N − 1)Eu NA1g
⊕

NEg

D3h
b (N − 1)A1g

⊕

(N + 1)A2u NA2u
⊕

NEg (N − 1)A1g
⊕

(N + 1)Eg
⊕

(N − 1)Eu
⊕

NEg
⊕

(N − 1)Eu

D4
6h

c 2(A2u
⊕

B2g
⊕

E1u
⊕

E2g) A2u
⊕

E1u 2E2g

AA-stacked D6h
N
2 (A1g

⊕

A2u
⊕

B1u
⊕

B2g
⊕

E1u ( N
2 − 1)(A2u

⊕

E1u)
N
2 (A1g

⊕

E1g
⊕

E2g)
(even)

⊕

E1g
⊕

E2g
⊕

E2u)

D6h
N−1

2 (A1g
⊕

B1u
⊕

E1g
⊕

E2u)
N−1

2 (A2u
⊕

E1u)
N−1

2 (A1g
⊕

E1g)

(odd)
⊕ N+1

2 (A2u
⊕

B2g
⊕

E1u
⊕

E2g)
⊕ N+1

2 E2g

D6h A2u
⊕

B2g
⊕

E1u
⊕

E2g / E2g

Table 1. The symmetry analysis of the phonon modes at the center point of Brillouin zone for
AA- or AB-stacked MLGS. Phonon modes are classified by the decomposition of Γdyn . The
irreducible representations of the Ir and Raman active modes are also listed.
aReference (Saito et al., 1998); bReference (Manes et al., 2007); cReference (Mani et al., 1974).

We show in Table 1 the symmetry analysis (Jiang et al., 2008, a) of phonon modes and the
Raman active and Ir active modes for graphene, AB- and AA-stacked MLGS, and 3D graphite.
Two straightforward consequences can be find out for the Ir and Raman active modes in
AB-stacked MLGS. Firstly, in the EMLGS with D3d point group, as well as in graphene and
3D graphite, phonon modes cannot be Ir and Raman active simultaneously. However, in
the OMLGS with D3h point group, the N Eg modes are both Ir and Raman active. This
is because there is no inversion center in the OMLGS. Secondly, an optical mode (denoted
as the inter-layer optical mode) belongs to the A1g representation with Raman active in the
EMLGS (D3d) and A2u Ir active in the OMLGS (D3h). This mode can be further identified as
vibrational displacements perpendicular to the constituent layers, and oscillating with each
layer as a whole but alternatively from layer to layer. These properties can be used as criterion
to identify the layer number being even or odd for AB-stacked MLGS.
In the AA-stacked MLGS with N either even or odd, the symmetry group is D6h which
includes both σi and σh. Consequently, no phonon modes would be Ir and Raman active
simultaneously in AA-stacked MLGS. Interestingly, the inter-layer optical mode mentioned
above belongs to the different representations so that different active for even and odd layer
numbers. In detail, it belongs to A1g Raman active in the EMLGS and A2u Ir active in the

187Symmetry and Lattice Dynamics
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OMLGS, which is the same as that in AB-stacked MLGS. Due to its vibration direction, the
inter-layer optical mode favors to take the maximum advantage of the inter-layer interactions.
From the next section, it is known that this optical mode would be the most sensitive mode to
the layer numbers in a few layer systems and becomes a useful candidate in experiments to
identify the even-oddness of the MLGS and the layer numbers.

3. Lattice dynamics of multilayer graphene systems

3.1 Vibrational potential energy

For providing a simple and straightforward method to relate the phonon modes with atomic
movement modality, we choose an semi-phenomenological model of vibrational potential
energy (Aizawa et al., 1990; Aizawa, 1991; Jiang et al., 2008, a) to study the lattice dynamics
of graphene and multilayer graphene systems (MLGS). The lattice vibration energy in this
model is expressed in quadratic terms of lattice displacements. So that it is easy to check term
by term the symmetric invariance, such as the translational invariance and rigid rotational
invariance, which are the essential restrictions to derive the correct phonon modes. Besides,
because the potential energy is one of the key aspects in determine the vibration properties, it
is possible to use the same potential terms of graphene into in-layer case of MLGS and even
to carbon nanotubes, which will be discussed in more detailed in section 6.
We begin from the one graphene layer, where the vibrational potential energy can be
described by five quadratic terms (Aizawa et al., 1990; Aizawa, 1991). They are the first
and second nearest-neighbor radical spring stretching, the in-plane bond angle variations,
the out-of-surface bond bending, and the bond twisting energies. The detailed expressions of
five terms, taking atom 1 in Fig. 1 as an example, are listed in the following.
(1) Vl is the potential of the radical spring force between the nearest-neighbor atom pair,

Vl =
kl

2

4

∑
i=2

[(�ui −�u1) ·�el
1i]

2 , (1)

where kl is the first-order force constant and�el
1i =

�r1i

|�r1i| .
(2) Vsl is similar to the first term but between a pair of next nearest-neighbored atoms
illustrated as (1, 5 . . . 10) in Fig. 1,

Vsl =
ksl

2

10

∑
i=5

[(�ui −�u1) ·�el
1i]

2 (2)

with ksl the second-order force constant.
(3) The potential energy for the in-plane bond bending VBB is actually a term associated with
bond angle variations. Three atoms are involved:

VBB =
kBB

4 ∑
ji

∑
j′i

(j′i �=ji)

[

�uji
−�ui

riji

· (�el
ij′i
− cos θ0�e

l
iji
) +

�uj′i
−�ui

rij′
· (�el

iji
− cos θ0�e

l
ij′i
)

]2

=
kBB

4 ∑
ji

∑
j′i

(j′i �=ji)

(cos θ′jiij
′
i
− cos θ0)

2 . (3)
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As i is 1 (or 2), (ji, j′i) take the sites (2, 3), (3, 4), and (4, 2) (or (1, 5), (5, 6), and (6, 1)) respectively
as shown in Fig. 1. In Eq. (3), θ0 = 120◦ stands for the equilibrium angle, while θ′jiij

′
i

for angle
in vibration between the bonds�riji

and�rij′i
. The expression in terms of �uji

− �ui and �uj′i
− �ui is

exactly same as that of cos θ′.
(4) The potential of the out-of-plane bond bending Vrc describes a kind of withdrawn energy
of atom i by its three nearest-neighbor atoms ji. It contains four atoms simultaneously,

Vrc =
krc

2
[(3�ui − ∑

ji

�uji
) ·�ez]

2, (4)

Where i takes 1 or 2 with ji running over the three nearest neighbors of atom i. This potential
has the physical intuition as that responsible for the perpendicular optical mode and is trying
to keep the four atoms on the plane.
(5) The twist potential energy for bond�r1k is

Vtw =
ktw

2 ∑
〈i,j〉

[(�ui −�uj − (�ui′ −�uj′ )) ·�ez]
2 , (5)

where 〈i, j〉 represents a pair of atoms nearest-neighbored with atom 1 while k the third of its
nearest neighbors. Pair 〈i′, j′〉 is for a pair of atoms nearest-neighbored with atom k. It has the
intuition that responsible for modes with twisted vibrations.
From the modality of atomic movements, we can classify the above in-plane vibrational
potential terms into three types and extend them to the inter-layer case (Jiang et al., 2008,
a). The first type is for radical stretching movements between the two atoms located in the
adjacent layers. The second describes the relative movement between the two pairs of atoms
with a common one as an apex. It is evolved from the above bond bending term and three
atoms form one bond in a layer and another connecting the two nearest layers. The third
type is new for simulating the twist force affected on the inter-layer “bond” as shown in the
sketch 3, which involves more than three atoms according to the specific bond configurations.
The whole of these terms is actually a generalized valence force model to including far away
atoms in response to the bond charge effect (Jeon and Mahan, 2005) in certain extent. Because
the inter-layer “bond” is much longer than the in-plane bond, it is resulted that all inter-layer
interactions are one or two orders less than their counterparts in layer, but they themselves
have comparable contributions. We give out the inter-layer terms for the AB-stacked MLGS
in the following and they can be similarly generalized to the AA-stacked MLGS.

Fig. 3. The sketch of the twist force for a “bond” connecting the two adjacent layers.

189Symmetry and Lattice Dynamics
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(1) The inter-layer “bond” stretching energies V
(int)
l (or V

(int)
sl ):

∑
i,j

k′ l
2
[(�ui −�uj) ·�el

ij]
2, (6)

where �ui(�uj) is the displacement vector of the atom i(j) and �el
ij is the unit vector from atom

i to atom j. If the summation is taken over the nearest-neighbored inter-layer pair of atoms,
the corresponding force constant is denoted as k′ l , while k′sl for the next nearest-neighbor
inter-layer pairs.
(2) For the three atoms 2, 2’ and i, where i is the in-plane nearest neighbor of atom 2 (atom 1 is
one of them as shown in Fig. 2), we found by practice that under a specific configuration with
atom i rather than atom 2 as an apex, a correlation term k′rr has the most sensitive contribution
to the layer dependence of the optical modes,

k′rr

2 ∑
i

[(�u2 −�ui) ·�el
i2 − (�u2′ −�ui) ·�el

i2′ ]
2.

Actually the two square terms in above modality have already been accounted in the in-plane
and inter-plane stretching terms respectively. Only the across term

Vrr = −k′rr ∑
i

[(�u2 −�ui) ·�el
i2][(�u2′ −�ui) ·�el

i2′ ] (7)

plays a real role, which weakens the interaction between the two adjacent layers. The positive
definite condition for getting real frequencies is k′sl ≥ k′rr.
(3) The twisting potential for an inter-layer bond between atoms 2 and 2’ is coming from the
two sets of three nearest-neighbors of atoms 2 and 2’ respectively. It can be described as

Vtw =
k′tw

2
[∑

i

(�ui −�u2) ·�eθ
i − ∑

j

(�uj −�u2′ ) ·�eθ
j ]

2, (8)

where ∑i and ∑j represent the summation over the three in-plane first-nearest-neighbors for
atoms 2 and 2’ respectively. �eθ

i = �ez ×�el
2i is the tangential unit vector in the plane formed

by three nearest-neighbor atoms. The quadratic form as a whole ensures a proper definition
for the torsion angle. For pure rotations around the bond, this expression gives zero torsion
consistently. In contrast, the bond is most severely twisted when the three neighbors around
atom 2 and those of atom 2’ rotate reversely.
By comparing the k′rr term with Vb−b term (Jeon and Mahan, 2005) originated from the
bond-charge model, a common point can be found that both terms have the same negative
cross term. In addition, from the calculation results shown in the next subsection, two quite
different frequency values in long wave length limit can be obtained to distinguish clearly the
in-plane vibration and vibration along z axis. These provide an evidence that the polarization
effect of graphitic materials (Saito et al., 1998) can be properly described by our vibration
potential model. It can also be checked one by one that all above nine vibrational potential
energy terms satisfy the rigid rotational symmetry constrain(Jiang et al., 2006; Mahan & Jeon,
2004; Popov et al., 2000) which guarantees the existence of the flexure modes with correct
parabolic dispersion in low-frequency limit in low-dimensional systems. Details will be
discussed in the next subsection.

190 Graphene Simulation
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Symmetry and Lattice Dynamics 9

3.2 Results and discussions

Because the microscopic environment of a carbon atom is almost the same in graphene, the
in-layer of MLGS, and carbon nanotubes, the five intra-layer force constants we used in the
following are taken from Ref. (Jiang et al., 2008, b) as kl = 305 N m−1, ksl = 68.25 N
m−1, kBB = 1.38 × 10−11 erg, krc = 14.8 N m−1, ktw = 6.24 N m−1. They are originally
taken references from a force-constant model for monolayer graphite formed on surfaces
(Aizawa et al., 1990; Aizawa, 1991). The four inter-layer force constants are adjusted to fit
the experimental values of four modes in 3D graphite as shown in Table 2. The fitting error
for phonon modes is kept less than 7%. The inter-layer force constants are k′ l = 0.77 Nm−1,
k′sl = 0.95 Nm−1, k′ tw = 0.64 Nm−1, k′rr = 0.9 Nm−1.

Reps A
′
1 E2g A2u E2g

Experiments 30a 40a 868b 1586b

Theory 30.2 42.7 869.9 1586.6

Table 2. Comparison of several mode frequencies (in the unit of cm−1) for the AB-stacked 3D
graphite between our calculating results and the experimental values: aRef. (Nicklow et al.,
1972), bRef. (Maultzsch et al., 2004).

The phonon dispersions for the AB-stacked graphite are calculated (Jiang et al., 2008, a)
according to the vibration potential energy discussed in the above subsection and shown in
Fig. 4. The theoretical calculations meet the experimental results not only in the low frequency
region (Nicklow et al., 1972), but also in the high frequency region (Maultzsch et al., 2004;
Mohr et al., 2007). The good consistency with the experimental data shows that the vibrational
potential energies and parameters are reasonable and applicable. In the figure, Γ, K, M and
A points are the standard notations for the specific symmetric points in the Brillouin zone
hexagonal reciprocal lattice.

(a) The low-frequency region (b) The high-frequency region

Fig. 4. Phonon dispersion for the 3D graphite for the low-frequency region (a), and the
high-frequency region (b). Solid dots are the experimental results of Ref. (Nicklow et al.,
1972) in (a), and Ref. (Maultzsch et al., 2004; Mohr et al., 2007) in (b). Lines are the theoretical
calculations. In Ref. (Maultzsch et al., 2004; Mohr et al., 2007), those phonon wave vectors,
which were not exactly along the Γ-M or Γ-K-M direction, were projected onto the closest
high-symmetry direction.

191Symmetry and Lattice Dynamics
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The phonon dispersions of graphene and AA-stacked 3D graphite are further calculated as
shown in Fig. 5. Since the unit cell in both cases contains only two atoms in contrast to
that of the AB-stacked graphite, there are six branches of phonon dispersion. Focus on the
Γ point, a long wave length limit, we would mainly discuss three kinds of optical modes
whose atomic movement modalities are sketched in Fig. 6. (1) The optical C-C in-plane
stretching modes shown in Fig. 6(a) exist at about 1580 cm−1 for all three cases of graphene,
AB-, and AA-stacked 3D graphite. These modes are doubly degenerated and Raman active
with E2g irreducible representation. Additional two degenerate optical in-plane modes very
near them, which are Infra-red active belonging to E1u, exist only in AB-stacked 3D graphite
because it has four atoms in the unit cell. (2) An out-of-plane optical mode shown in Fig. 6(b)
exists at about 860 cm−1 for graphene and AA-stacked 3D graphite, as well as for AB-stacked
3D graphite but double degenerated. The obvious difference between 1580 cm−1 mode and
860 cm−1 mode comes from the polarization effect of graphitic materials (Saito et al., 1998). (3)
Except graphene, there exists an inter-layer optical mode shown in Fig. 6(c) for layer number
equal to or greater than 2. Noticed that this mode exists at A point instead of Γ point for
AA-stacked 3D graphite due to a phase factor difference of π needed between two adjacent
layers. Asymptotic frequency of inter-layer optical mode in large number N is 150 cm−1 or
134 cm−1 for AB- or AA-stacked MLGS, respectively.
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Fig. 5. The calculated phonon dispersions of graphene (a), and AA-stacked 3D graphite (b).

The phonon dispersions for AA- and AB-stacked MLGS with an arbitrary layer number N can
be calculated. In Fig. 7, the frequency of the intra-layer optical C-C stretching mode (Fig. 6(a))

Fig. 6. Modality of atomic movements for three kinds of optical phonon modes in
multilayered graphene systems.
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Fig. 7. The calculated frequency value for the optical C-C stretching mode vs the layer
number N. Lines are draw to guide eyes.

in long wave length limit is represented as layer number N for AA- and AB-stacked MLGS.
The layer number dependence of the frequency behaves a red shift as number increase which
is in agreement with the experimental measurements. The frequency for this mode is about
1588 cm−1 in the single graphene layer, decreases with N increase, and almost saturates at
about N = 10. The 3D limit is 1586.7 cm−1 (1584.7 cm−1) for the AB- (AA-) stacked system.
The amount of red shift value in the theoretical calculation corresponds excellently with that
measured by experiments within the ranges 3 ∼ 5, 5 ∼ 6, and 8 cm−1 in Refs (Ferrari et al.,
2006), (Gupta et al., 2006), and (Das et al., 2008), respectively.
At Γ point, the out-of-plane optical mode (Fig. 6(b)) is Ir active in the AB-stacked MLGS for
both even and odd layer number (belong to A2u irreducible representation). It is neither
Raman active nor Ir active in the AA-stacked MLGS irrespective of the even-oddness of
the layer number N. The optical activeness of the mode is useful in determining whether
the MLGS is of AB- or AA-stacking. The frequency of the mode as the function of layer
number N is shown in Fig. 8. In contrast to the C-C stretching optical mode, the frequency
of the out-of-plane mode raises from 864.8 cm−1 to 872.6 cm−1 and exhibits a blue shift as
layer number increase which could be identified with the development of the experimental
technique.
For the inter-layer optical mode, the layer number dependence of long wave length frequency
is shown in Fig. 9. This mode takes the greatest advantage of the inter-layer interaction and
is considerably dependent on the layer number N as well as the stack style. When N = 2,
this mode has the frequencies 106 cm−1 and 94.5 cm−1 for the AB- and AA-stacked MLGS
respectively. The frequencies increase with increasing N and almost saturate at about N = 10.
The 3D limit values are 149.8 cm−1 and 133.6 cm−1 for the AB- and AA-stacked MLGS
respectively. The frequency differences as well as the alternation of Raman and Ir active
of the mode might inspire considerably experimental interesting. For comparison, we plot
the low-frequency phonon dispersions of the AB-stacked 2-layer system and 3D AB-stacked
graphite in the same Fig. 10. The frequencies of the low-frequency optical modes in the 2-layer
graphene are much smaller than their counterparts in the 3D graphite. For three acoustic
modes shown in Fig. 10, because there is no Ĉ4 symmetry in the systems, two linear acoustic
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Fig. 8. The calculated frequency value for the out-of-plane optical mode vs the layer number
N. This mode is Ir active in the AB stacking while it is neither Ir nor Raman active in the AA
stacking. Lines are draw to guide eyes.

Fig. 9. The frequencies of the inter-layer optical mode vs the layer number N. Datas for the
AB- and AA-stacked MLGS are designated by pentagrams and circles, respectively. The
Raman and Infra-red activities for this mode are displayed by the full and empty symbols,
respectively. The broken and dashed lines correspond to the frequencies of corresponding 3D
graphite, respectively.

modes have different dispersions. And the third one marked in Fig. 10 is the flexure modes
with quadratic dispersions near Γ point.

4. The effect of three-fold rotation symmetry of graphene on nanotubes

As constrain imposed by three-fold rotation symmetry Ĉ3, all the physical quantities of
graphene have the same symmetry property. Consequently, the physical quantities of a
single wall carbon nanotube (SWCNT), which can be viewed as wrapped graphene stripes,
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Fig. 10. In the low frequency region, there is significant difference between 3D AB-stacked
graphite and the 2-layer AB-stacked graphene.

should also reserve some kind of similar symmetry property. It will manifest itself as the
three-theta dependence for all physical quantities. In this section we will analysis this
universal three-theta role in detail.
We start with the definition of a chiral vector for SWCNT as �R = n1�a1 + n2�a2 on the graphene
lattice planer sheet, where�a1 and�a2 are the primitive lattice vectors (see Fig. 1) and (n1, n2) a
pair of integers (Saito et al., 1998). Equivalently, a nanotube can also be denoted by the radius
r and chiral angle θ (z axis is set parallel to the tube axis). They have the relations as

r =
|�a1|
2π

√

n2
1 + n1n2 + n2

2, θ = arctan

√
3n2

2n1 + n2
. (9)

We may establish a mapping from the space of chiral vectors on the planar sheet to that of the
nanotube structure in a fixed way of wrapping

f : {chiral vector set} �→ {nanotube set} .

However this is not a one-to-one mapping. As mentioned in Ref. (Ye et al., 2006), a given
SWCNT can be equivalently composed by three chiral vectors �R0, �R2 and �R4 with chiral angles
as θ, θ + 2π/3 and θ + 4π/3 respectively within the corresponding graphene sheet. Due to the
Ĉ6 = Ĉ3Ĉ2 symmetry of the hexagonal graphene lattice sheet, there is another set of vectors
�R1, �R3 and �R5 with chiral angles as θ + π/3, θ + π and θ + 5π/3 respectively on the graphene
sheet. These three chiral vectors correspond again to the same SWCNT which is actually
the nanotube by rotating the tube formed by �R0 upside down, i.e. a Ĉ2x operation. The net
result of the operation is an exchange of A and B carbon atoms in unit cells with the sign
of its chiral index ν = mod{n1 − n2, 3} also changed. There is one another operation σ̂xz

connecting a pair of SWCNT which is the mirror reflection onto each other with respect to xz

plane. Correspondingly �R0 in the sheet is changed into its countpart �R
′
0 with θ → −θ but ν
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kept unchanged. These vectors, as shown in Fig. 11, have the explicit forms

�R0 = n1�a1 + n2�a2,
�R2 = −(n1 + n2)�a1 + n1�a2,
�R4 = n2�a1 − (n1 + n2)�a2,
�R1 = −n2�a1 + (n1 + n2)�a2,
�R3 = −n1�a1 − n2�a2,
�R5 = (n1 + n2)�a1 − n1�a2,
�R′

0 = (n1 + n2)�a1 − n2�a2 .

(10)

Obviously, all these seven chiral vectors have the same radius.

Fig. 11. Illustration of hexagonal lattice. A set of chiral vectors are shown after the symmetric
operations on �R0.

As one of the direct consequences of the above observations, any physical quantity Qν(r, θ) of
the SWCNT should be a periodical function of the chiral angle θ with period 2π

3 , i.e., Qν(r, θ)
can be expanded as (Ye et al., 2006)

Qν(r, θ) =
∞

∑
n=0

aν
n cos(3nθ) + bν

n sin(3nθ) . (11)

This is an universal triple chiral angle (3θ) dependence of the SWCNT, which is actually the
heritage of the three-fold rotational symmetry of graphene.
The permutation symmetry of the two carbon atoms in one unit cell would further give out the
symmetry constrain under the operation θ → θ + π/3. That is any scalars S keep unchanged,
so do the radial components of the normal vectors, the azimuthal and axial components of the
normal vectors change signs under the π/3 rotation in graphene plane (Jiang et al., 2008, a):

{

Sν(θ + π
3 ) = S−ν(θ) ,

�vν(θ + π
3 ) = Ĉ2x�v

−ν(θ)
(12)
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with Ĉ2x�er = �er, Ĉ2x�eφ = −�eφ, Ĉ2x�ez = −�ez. Here �er, �eφ and �ez are unit vectors oriented
towards radial, azimuthal and axial directions upon the cylindrical surface respectively.
In addition, the symmetry operation σ̂xz emerged in SWCNT gives that any scalars or radial
and axial components of vectors are even functions of θ, while azimuthal components are odd,

{

Sν(−θ) = Sν(θ) ,

�vν(−θ) = σ̂xz�v
ν(θ)

(13)

with σ̂xz�er = �er, σ̂xz�eφ = −�eφ, σ̂xz�ez = �ez. Combined these symmetry restrictions Eqs (12) and
(13), the general expression Eq. (11) can be further reduced. Taking the physical quantities
of lattice dynamics as examples, we write the final expansions with all above symmetry
restrictions considered in the following (Jiang et al., 2008, a).
The frequency ω of phonon is a scalar,

ω±(θ) = a0 ± a1 cos(3θ) + a2 cos(6θ)± a3 cos(9θ) + . . . ;

ω0(θ) = a0 + a2 cos(6θ) + . . . .
(14)

The three components of a vector can be expanded as

vν
r (θ) =

∞

∑
n=0

ν[
1−(−1)n

2 ]an cos 3nθ = a0 + νa1 cos 3θ + a2 cos 6θ + . . . ,

vν
φ(θ) =

∞

∑
n=0

ν[
1+(−1)n

2 ]bn sin 3nθ = b1 sin 3θ + νb2 sin 6θ + . . . ,

vν
z (θ) =

∞

∑
n=0

ν[
1+(−1)n

2 ]an cos 3nθ = νa0 + a1 cos 3θ + νa2 cos 6θ + . . . . (15)

Different from those physical quantities of normal vectors, the phonon polarization vector can
be measured up to a global phase factor as ±1. Therefore, the corresponding transformation
properties with respect to the operations θ → θ + π

3 and θ → −θ need to be generalized to
⎧

⎨

⎩

v
ν(m)
P (θ + π

3 ) = λ(m)(Ĉ2x)Ĉ2xv
−ν(m)
P (θ) ,

v
ν(m)
P (−θ) = λ(m)(σ̂xz)σ̂xzv

ν(m)
P (θ) ,

(16)

respectively, where λ(m)(ô) is a phase factor taking value either 1 or −1 depending on which
phonon mode m we considered among �er acoustic (AC), �eφ optical (OP) and �ez OP modes
(these three modes are non-zero frequency modes of SWCNT in long wave length limit which
will be discussed in the next section) and on what kind of the symmetry operations ô is
applied, such as Ĉ2x and σ̂xz. In particular,

λ(�erAC)(Ĉ2x) = λ(�erAC)(σ̂xz) = 1 ,

λ(�eφOP)(Ĉ2x) = λ(�eφOP)(σ̂xz) =−1 ,

λ(�ezOP)(Ĉ2x) =−λ(�ezOP)(σ̂xz) =−1 .

(17)
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The detailed expressions of polarization vectors with λm(σxz) = −1, and λm(C2x) = −1 are

vν
r (θ) =

∞

∑
n=0

ν[
1+(−1)n

2 ]bn sin 3nθ = b1 sin 3θ + νb2 sin 6θ + . . . ,

vν
φ(θ) =

∞

∑
n=0

ν[
1−(−1)n

2 ]an cos 3nθ = a0 + νa1 cos 3θ + a2 cos 6θ + . . . ,

vν
z (θ) =

∞

∑
n=0

ν[
1−(−1)n

2 ]bn sin 3nθ = νb1 sin 3θ + b2 sin 6θ + . . . . (18)

While for λm(σxz) = 1, and λm(C2x) = −1, the polarization vectors can be expressed as

vν
r (θ) =

∞

∑
n=0

ν[
1+(−1)n

2 ]an cos 3nθ = νa0 + a1 cos 3θ + νa2 cos 6θ + . . . ,

vν
φ(θ) =

∞

∑
n=0

ν[
1−(−1)n

2 ]bn sin 3nθ = νb1 sin 3θ + b2 sin 6θ + . . . ,

vν
z (θ) =

∞

∑
n=0

ν[
1−(−1)n

2 ]an cos 3nθ = a0 + νa1 cos 3θ + a2 cos 6θ + . . . . (19)

Then for λm(σxz) = −1, and λm(C2x) = 1, they are

vν
r (θ) =

∞

∑
n=0

ν[
1−(−1)n

2 ]bn sin 3nθ = νb1 sin 3θ + b2 sin 6θ + . . . ,

vν
φ(θ) =

∞

∑
n=0

ν[
1+(−1)n

2 ]an cos 3nθ = νa0 + a1 cos 3θ + νa2 cos 6θ + . . . ,

vν
z (θ) =

∞

∑
n=0

ν[
1+(−1)n

2 ]bn sin 3nθ = b1 sin 3θ + νb2 sin 6θ + . . . . (20)

For the second rank tensor ǫ, the helical symmetry of SWCNT results (Damnjanović et al.,
1999)

ǫxx = ǫyy,

ǫxx = −ǫyy,

ǫxz = ǫyz = ǫzx = ǫzy = 0. (21)

Similar to the analysis above, it is obtained (Ye et al., 2006) that

ǫ
(ν)
ii (θ + π/3) = ǫ

(−ν)
ii (θ),

ǫ
(ν)
ii (−θ) = ǫ

(ν)
ii (θ),

ǫ
(ν)
xy (θ + π/3) = −ǫ

(−ν)
xy (θ),

ǫ
(ν)
xy (θ + π/3) = ǫ

(−ν)
xy (θ),

ǫ
(ν)
xy (−θ) = −ǫ

(ν)
xy (θ), (22)
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where i = x, y, z. By noticing that the diagonal term is unchanged when the tube is reversed
or reflected, and off-diagonal term vanishes, then

ǫ
(±)
ii = a0 ± a1 cos(3θ) + a2 cos(6θ) + · · · ,

ǫ
(0)
ii = a0 + a2 cos(6θ) + a4 cos(12θ) + · · · ,

ǫ
(ν)
xy = 0 . (23)

The coefficients a′ns for different chirality have no direct relationships.

5. Coordinate systems in carbon nanotubes

As stated in the above section, an SWCNT can be identified by a chiral vector �R = n1�a1 + n2�a2
defined on the graphene lattice sheet with (n1, n2) a pair of integers. A graphene stripe is
obtained by cutting the graphene sheet along the direction perpendicular to �R, which ensures
the same edge structures of the two sides of the stripe. A nanotube is formed by wrapping the
stripe, or vice verse, the stripe is the unfold plane of the nanotube. Obviously, �R corresponds

to the circumference of the tube and �R
N (N = GCD(n1, n2)) corresponds to a pure rotational

symmetry operation ĈN of the tube. Along the tube axis, i.e. z axis, a translational vector �T
can be defined as �T · �R = 0 and its corresponding translation symmetry operation is T̂. In the
frame of (�a1,�a2), it is �T = t1�a1 + t2�a2 with

t1 = − 2n2 + n1
M

, t2 =
2n1 + n2

M
, (M = GCD(2n2 + n1, 2n1 + n2)).

It can be further obtained that

|
�R

N
× �T| = n1(2n1 + n2) + n2(2n2 + n1)

NM
|�a1 ×�a2| ≡ NT |�a1 ×�a2|.

Because NT ≥ 1, the set ( �RN ,�T) cannot be used as the primitive lattice vectors in unfold plane.
The one-dimensional (1D) single wall carbon nanotubes belong to 1D line groups
(Damnjanović et al., 1999; 2000). For chiral nanotubes, the definition of the primary chiral
operation is not unique. Correspondingly, the different choices of primitive translational
vectors exist on the unfold plane. Any proper pair of vectors which can map all lattice points
on stripe can form the unit cell. In SWCNT, these two vectors correspond to two primitive
chiral operations. There are two commonly used coordinates (Saito et al., 1998; White et al.,
1993). The first one uses the rotational ĈN and helical Ŝ1(α, h) symmetry descriptions for

SWCNT(White et al., 1993), i.e. �R
N and �H as the primitive lattice vectors on unfold plane,

which will be called White coordinate hereafter. Another chooses translational T̂ and helical
Ŝ2(α0, hb) symmetry descriptions with �T and �Q on unfold plane referred as Dresselhaus
coordinate (Saito et al., 1998). The unit cells on unfold plane for two coordinate systems are

shown in Fig. 12(a). Under the definition of | �RN × �H| = |�a1 ×�a2| or |�T × �Q| = |�a1 ×�a2|, some
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useful relations can be obtained (the arbitrariness of sign has be fixed),
⎧

⎪

⎨

⎪

⎩

R =
√

n2
1 + n2

2 + n1n2 |�a1|,

T =
√

3
M

√

n2
1 + n2

2 + n1n2 |�a1| ,
(24)

{

�H = p1�a1 + p2�a2,

n1p2 − n2 p1 = N ,
(25)

{

�Q = q1�a1 + q2�a2,

q1(2n1 + n2) + q2(2n2 + n1) = M .
(26)

The rotation angles α (α0) as well as translations along z axis h (hb) in helical symmetry
operations can be derived by projecting �H (�Q) to the directions of �R and �T respectively,

�H ·
�R

R
≡ R

2π
α ⇒ α = 2π

(2n1 + n2)p1 + (2n2 + n1)p2

(2n1 + n2)n1 + (2n2 + n1)n2
,

�H ·
�T

T
≡ h ⇒ h =

√
3N

2
√

n2
1 + n2

2 + n1n2

|�a1| , (27)

�Q ·
�R

R
≡ R

2π
α0 ⇒ α0 = 2π

M

(2n1 + n2)n1 + (2n2 + n1)n2
,

�H ·
�T

T
≡ hb ⇒ hb =

√
3(n1q2 − n2q1)

2
√

n2
1 + n2

2 + n1n2

|�a1| . (28)

Before go to the reciprocal space and discuss the good quantum numbers within two
coordinate systems, we introduce four important integers and review their geometric
meanings.

NT =
T

h
=

n1(2n1 + n2) + n2(2n2 + n1)

MN
, (29)

ND = NT N =
2π

α0
=

n1(2n1 + n2) + n2(2n2 + n1)

M
, (30)

Nb =
hb

h
=

n1q2 − n2q1
N

, (31)

Ω =
α

α0
= ND

α

2π
=

(2n1 + n2)p1 + (2n2 + n1)p2

M
. (32)

From above formulae, it shows that NT is the number of White unit cells stacked along the
tube axis to form a minimum translation period; ND represents, in one side, the unit cell
numbers in tubular section with height T called as a “giant" cell, or in the other side, the times
of minimum rotation angle α0 in one circle; Nb describes the ratio of translations along tube
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(a) Unfold plane of nanotube (b) Reciprocal lattice on unfold plane

Fig. 12. The unfold plane (a) and reciprocal lattice (b) of the nanotube (4, 2). The unit cells
and primitive lattice vectors of White {�R/N, �H} ↔ {ĈN , Ŝ1(α, h)} and Dresselhaus
{�T, �Q} ↔ {T̂, Ŝ2(α0, hb)} coordinates are shown in (a). The Brillouin zones and quantum
numbers of White {n, κ} and Dresselhaus {kz, ni} are shown in (b).

axis of the two helical symmetry operations; and Ω is the ratio of rotation angles of the two
helical operations, which can be proved to be relatively prime with NT .
The 1D group characters of symmetry operators in White and Dresselhaus coordinates can be
written respectively as:

{ĈN , Ŝ1(α, h)} −→ {ei 2π
N n, eiκ} for White coordinate,

{T̂, Ŝ2(α0, hb)} −→ {eiNTkzT, eiκ′} for Dresselhaus coordinate. (33)

The prefix NT on the character eiNTkzT is for taking the same length units for two
coordinate systems. Using the periodical boundary conditions and notice that ŜND

2 (α0, hb) =

Ŝ2(2π, Nb NT) = T̂Nb N → eiNDκ′
= eiNb NNTkzT, it is

n = 0, 1, . . . , N − 1 , (34)

κ ∈ [ 0, 2π) , (35)

kz ∈ [ 0, 2π/NTT) , (36)

κ′ = NbkzT +
2π

ND
ni , (37)

ni = 0, 1, . . . , ND − 1 . (38)

According to symmetry operators, the good quantum numbers in the two coordinate system
should be {n, κ} and {kz, κ′} respectively. But as seen from Eq. (38), κ′ has a complicate form,
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it is commonly to use {kz, ni} instead of {kz, κ′} as “good quantum number” in Dresselhaus
coordinate. Since the nanotube has no ĈND

symmetry, which is only an isogonal group of the
symmetry group of the nanotube, strictly speaking, ni is not a good angular quantum number
of the rotational symmetry as seemed to be.
For deducing the relations between two sets of quantum numbers, the following equivalence
is used:

ĈN = ŜNT
2 (α0, hb)T̂

−Nb ,

T̂ = ŜNT
1 (α, h)Ĉ−Ω

N ,

Ŝ1(α, h) = ŜΩ
2 (α0, hb)(T̂

1/NT )−(ΩNb−1). (39)

Then from the characters of the operations, it is followed that

2π

N
n =

2π

N
ni + 2πI1,

NTkzT = NTκ − NTnα + 2πI2,

κ = niα + kzT + 2πI3, (40)

where I1, I2, and I3 are arbitrary integers. The first two of Eq. (40) give the following relations
directly,

n = ni (mod N), or ni = n + NJ (J an integer), (41)

kz =
2π

NTT
Frac

(

NT
κ − nα

2π

)

. (42)

The third of Eq. (40) contains fraction and integer parts of information. From its fraction part,

κ = 2πFrac
(

kzT + niα

2π

)

. (43)

From the integer part,

J Ω = Int
[

NT
κ − nα

2π
− Frac

(

NT
κ − nα

2π

)]

(mod NT). (44)

The equations (41), (42), (43), and (44) provide the complete relations between the two sets
of quantum numbers (Tang et al., 2009). The Brillouin zones and quantum numbers {n, κ}
and {kz, ni} are shown in Fig. 12(b). Actually, Eq. (44) can uniquely determine the integer J
and shows the nontrivial relation between n and ni. Interested readers can refer monographs
about number theory.

6. Lattice dynamics of single-wall carbon nanotubes

6.1 Vibrational potentials

We discuss the lattice dynamics of single-wall carbon nanotubes (SWCNT) within the White
coordinate system (White et al., 1993) which has been described detailed in the above section.
Setting the z axis along the tube axis and the x axis across the middle point of a C-C bond, any
unit cell in the (n1, n2) or equivalently (r, θ) tubule can be notated by a pair of integers (m, l):

�rm,l = m�H + l
�R

N
. (45)
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In other words, any unit cell on SWCNT can be covered by m screw operations Ŝ1(α, h) and l
rotations ĈN successively (see the details in section 4).
Again, we use the idea of five distinctive terms (Aizawa et al., 1990) for the potential of
graphene sheet, and extend them to the nanotube cases. What we stress is that the satisfying
of the rigid translational and rotational invariance must be kept in the generalization, i.e.,
the potential energy must keep unchanged term by term when the tube is rigidly translated
or rotated around any axis. Introduce �ri as the equilibrium position of atom i and �ui

as its displacement vector. �rij = �rj −�ri is the vector from atom i to j in the nanotube
while the modulus rij represents the length of C-C bond between atoms i and j. The
vector�ri is determined following the geometry of a warped graphene sheet. Unlike that in
graphene, the geometrical curvature results to that not only the three tridental bond lengths
nearest-neighbored with the atom i but also the angles between any of the two bonds are
not equal to each other even in equilibrium position, especially for thin tubes. We express
in the following a detailed expression of the vibrational potential for the SWCNT with the
curvature effect being carefully in-cooperated. It satisfies precisely the requirements of the
rigid translational and rotational invariance and realizes the corresponding general symmetry
sum rules in Ref. (Popov et al., 2000).
The five terms of potential energy are basically the same as those in graphene sheet with
rigorous modification of unit vectors in the present case (Jiang et al., 2006). We list them in the
following for completeness.
(1) Vl is the potential of the spring force between the nearest-neighbor atom pair,

Vl =
kl

2

4

∑
i=2

[(�ui −�u1) ·�el
1i]

2 , (46)

where kl is the first-order force constant and �el
1i = �r1i

|�r1i| . We’d like to point out that the

component of the displacement vectors perpendicular to �el
1i violates the rigid rotational

invariance and is forbidden.
(2) Vsl is also the potential of the spring force but between the next nearest-neighbored atoms
illustrated as (1, 5 . . . 10) in Fig. 1,

Vsl =
ksl

2

10

∑
i=5

[(�ui −�u1) ·�el
1i]

2 (47)

with ksl the second-order force constant.
(3) The potential energy for the in-surface bond bending VBB with three atoms involved is
more complicated than that in graphene planar sheet due to the curvature-resulted deviation
of an equilibrium angle from a constant.

VBB =
kBB

4 ∑
ji

∑
j′i

(j′i �=ji)

[

�uji
−�ui

riji

· (�el
ij′i
− cos θjiij

′
i
�el

iji
) +

�uj′i
−�ui

rij′
· (�el

iji
− cos θj′i iji

�el
ij′i
)

]2

=
kBB

4 ∑
ji

∑
j′i

(j′i �=ji)

(cos θ′jiij
′
i
− cos θjiij

′
i
)2 . (48)
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Where i, ji, and j′i take the same sites as those in graphene (see Eq. (3) and Fig. 1 in section 3).
The difference is here θjiij

′
i

for the equilibrium angle between the bonds�riji
and�rij′i

which is
no more 120◦ in general. θ′jiij

′
i

is for the corresponding angle in vibration. The bond angles
are expressed in terms of �uji

− �ui and �uj′i
− �ui, which can be proved that the rigid rotational

invariance referred to an arbitrary axis is kept only when the differences among bond lengths
and bond angles be carefully accounted.
(4) Extending the out-of-surface bond bending Vrc term into SWCN,

Vrc =
krc

2
[(3�ui − ∑

ji

�uji
) ·�erc

i ]
2, (49)

�erc
i = − ∑ji

�rji

| ∑ji
�rji

| , (50)

where i takes 1 or 2 with ji running over the three nearest neighbors of atom i. Different from
graphene, an unit vector�erc

i is introduced for keeping the rigid rotational invariance. We show
the difference between�erc

i and radial unit vector�er
1 in Fig. 13. When the radius of tube is large

enough, the vector�erc
i is close enough to the�er

1. However, we stress that the potential term Vrc

with�erc
i substituted by�er

i would break the rotational symmetry.

Fig. 13. The projection of�erc
1 on�er

1 for tubes (2n, n) with n ∈ [1, 15]. It shows that�erc
1 only

deviates about 2% from�er
1 even in the small radius (2, 1) tube.

(5) The twist potential energy for bond�r1k is generalized as

Vtw =
ktw

2 ∑
〈i,j〉

[(�ui −�uj − (�ui′ −�uj′)) ·�er
1k]

2 , (51)

where�er
1k is the unit vector along the radial direction of the middle point of�r1k, 〈i, j〉 represents

a pair of atoms nearest-neighbored with atom 1 while k the third of its nearest neighbors (see
Fig. 1 for reference). Pair 〈i′, j′〉 is the image of 〈i, j〉 referring to a Ĉ2 rotation around the axis
in�er

1k.
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Obviously, it can be checked that all above five potential energy terms satisfy the translational
invariance (Jiang et al., 2006). When �ui = �uj, �ui −�uj = 0 leads to

Vl = Vsl = VBB = Vrc = Vtw = 0 .

For the rotational invariance, we have to consider the five potentials term by term separately
(Born & Huang, 1954; Madelung, 1978). When the tube rotates rigidly around an arbitrary
axis for a small angle δ�ω with its direction along the axis δ�ω

|δ�ω| , each lattice site acquires a
displacement �ui = δ�ω ×�ri,

�ui −�uj = δ�ω × (�ri −�rj) = δ�ω ×�rji . (52)

Substituting Eq. (52) into the first two potential terms (46) and (47), it is straightforward to
have (�uj −�ui) ·�el

ij = rij(δ�ω ×�el
ij) ·�el

ij = 0. Then

Vl = Vsl = 0 .

Substituting Eq. (52) into the third potential term (48), a typical representative term in
summation becomes

VBB ∼ kBB

4
[δ�ω · (�el

12 ×�el
13 +�el

13 ×�el
12)]

2 = 0 .

In which a fact has been used that rij in the denominate is canceled by that in the numerator
when Eq. 52 is applied. Moreover, for each typical representative term in potentials (49) and
(51), we have

Vrc ∼ krc
2 [δ�ω × (�r12 +�r13 +�r14) ·�erc

1 ]2 = 0 ,
Vtw ∼ ktw

2 [δ�ω × (�r43 −�r56) ·�er
12]

2 = 0 .

For further clarification, we show the phonon spectrum with all the bond lengths and bond
angles assumed to be equal to that of the graphene in Fig. 14(a) for SWCNT (5,2). It shows
clearly that the twisting mode (TW) at (κ, n) = (0, 0) is no longer a zero mode and there is a
finite gap with the order of 0.5 cm−1. Although it is a minute number and entirely negligible
in practice, it is of qualitative significance. When we take the proper bond lengths with about
−1.3%, −0.3% and 0.0% shorter than that of graphene 1.42 Å respectively, the correct phonon
spectrum is calculated and shown in Fig. 14(b) for the same SWCNT.

Fig. 14. The effect of bond lengths on TW mode in tube (5, 2). (a) All bonds are assumed to be
the same. The frequency of TW mode at κ = 0 is nonzero. (b) The differences between bonds
are considered. The frequency of TW mode is precisely zero.
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As a one-dimensional system, SWCNT has a distinguished feature that the two degenerate
transversal acoustic (TA) modes shown up at (κ, n) = ±(α, 1) are flexure modes. Instead of
the conventional linear behaviors, the low frequency limits of their dispersions are parabolic
as ω2 = β2(κ ∓ α)4. We stress that the rigid rotational invariance around z axis itself is not
a sufficient condition for the existence of the flexure modes. It can be declared more clearly
by a counter example. By introducing a potential term Vτi =

kτi
2 [(�u2 − �u1) ·�eτi

12]
2 with �eτi

12 =

�er
12 ×�el

12, which satisfies Vτi = 0 when the tube rotates around the z axis, there will be no
flexure mode in SWCNT (Dobardz̆ić et al., 2003). This is because that Vτi is not zero when the
tube rotates around any axis perpendicular to the z axis.
By tuning the calculated results to the experimental data (Rao et al., 1997) for the Raman
modes of (10, 10) tube (see Table 3), the corresponding force constants are fit as kl =
364.0 Nm−1, ksl = 62.0 Nm−1, kBB = 1.07× 10−11 erg, krc = 14.8 Nm−1, and ktw = 6.24 Nm−1

(Jiang et al., 2006). For chiral SWCNT, all tubes belong to the fifth 1D line group (Popov et al.,
2000) with two atoms in one unit cell and have six phonon modes at any point of reciprocal
space . Looking at three specific points (κ, n) = (0, 0), (κ, n) = (α, 1), and (κ, n) = (2α, 2), 18
phonon modes are successfully identified (Alon, 2001; Jiang et al., 2006). They are (I) 3 zero
modes: two at (κ, n) = (0, 0) as longitudinal acoustic (LA) and TW modes both belonging to
0 A−

0 representation (Reps), and one at (κ, n) = (α, 1) as the flexure mode; (II) 9 Raman active
modes: three at (κ, n) = (0, 0) belonging to 0 A+

0 Reps as�er acoustic (AC),�eθ optical (OP) and
�ez OP, and six at (κ, n) = (2α, 2) belonging to the same 2αE2 Reps; (III) 1 Ir active mode: at
(κ, n) = (0, 0) as the OP mode with A and B atoms oscillating out of surface in tubular radial
direction and belonging to 0 A−

0 Reps; (IV) 5 Raman and Ir active modes at (κ, n) = (α, 1)
assigned to αE1 Reps.

Reps 0 A+
0 0 A+

0 αE−
1 αE−

1 2αE+
2 2αE+

2 2αE+
2 2αE+

2
Theory 167 1588 105 1588 21 367 873 1584

Experiment (Rao et al., 1997) 186 1593 118 1567 / 377 / 1606

Table 3. Comparison between the calculated results and the experimental values for several
mode frequencies (in the unit of cm−1) of SWCNT (10,10).

6.2 Chiral angle and radius dependence of phonon properties

With the phenomenological vibration potential model described in above subsection, the
phonon frequencies, acoustic velocities, and eigenvectors are calculated as the functions of
radius and chiral angles, and further fitted following the three-fold symmetry expansion
discussed in section 4. Because we are interested in SWCNT with smaller radius which should
be quite different from those of graphene stripe, the fitting range is chosen as r ∈ [4.0, 10.0] Å
and θ ∈ [− π

6 , π
6 ] for frequencies and velocities, r ∈ [2.0, 10.0] Å and θ ∈ [− π

3 , π
3 ] for

polarization vectors. The relative errors in fitting are set less than 5 × 10−4. The expansions
of frequencies of Raman and Ir active modes, the velocities at (κ, n) = (0, 0) and flexure
parabolic at (κ, n) = (α, 1), and the polarization vectors of nonzero modes at (κ, n) = (0, 0)
are listed in Tables 4, 5, and 6 respectively (Jiang et al., 2006). In Table 4, data are represented
in three parts corresponding to (κ, n) = (0, 0), (α, 1), and (2α, 2) respectively. From the fitting
results, we can see that the contributions of θ dependence are notable comparing to those of r
dependence. The velocity of the twist mode (in Table 5) as well as the polarization vectors of
modes with 0 A+

0 Reps (in Table 6) are typical examples shown up an evident θ dependence.
It can be checked that all the numerically fitting expressions satisfy the symmetry
requirements of Eqs (12) and (13) in section 4, where the velocities (slopes of the dispersions)
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Reps Mode ω(θ) fi(r)

0 A+
0 R �er AC, 1 f0(r) f0(r) =

1133.86
r − 139.65

r3

�eθ OP, 2 f0(r) + f1(r) cos 6θ f0(r) = 1594.00 − 266.98
r2 , f1(r) =

8.65
r2

�ez OP, 3 f0(r) + f1(r) cos 6θ f0(r) = 1594.00 − 91.81
r2 , f1(r) = − 15.68

r2 , f2(r) = − 0.68
r2

+ f2(r) cos 12θ

0 A−
0 Ir �er OP, 4 f0(r) + f1(r) cos 6θ f0(r) = 864.81 + 990.22

r2 − 1117.30
r4 , f1(r) =

9.16
r2

αE1 R Ir 1 f0(r) + f1(r) cos 6θ f0(r) =
710.16

r + 45.07
r3 , f1(r) =

1.99
r3 − 31.55

r4

2 f0(r) + f1(r) cos 6θ f0(r) =
1603.51

r − 746.51
r3 , f1(r) = − 115.54

r3

3 f0(r) + f1(r) cos 6θ f0(r) = 864.84 + 860.00
r2 − 1758.70

r4 , f1(r) =
11.63

r2 − 206.52
r4

ν = ±1, 4 f0(r)± f1(r) cos 9θ f0(r) = 1594.13 − 316.67
r2 , f1(r) =

31.92
r3

ν = 0, 4 f0(r) + f1(r) cos 6θ f0(r) = 1594.14 − 318.48
r2 , f1(r) =

7.83
r2 − 19.03

r4

+ f2(r) cos 12θ f2(r) =
2.70
r2 + 0.60

r4

5 f0(r) + f1(r) cos 6θ f0(r) = 1593.97 − 277.49
r2 , f1(r) = − 12.45

r2

2αE2 R 1 f0(r) + f1(r) cos 6θ f0(r) =
959.33

r2 − 736.60
r4 + 779.59

r5

+ f2(r) cos 12θ f1(r) =
6.19
r3 + 73.37

r4 , f2(r) = − 0.06
r3 + 9.34

r4

2 f0(r) + f1(r) cos 6θ f0(r) =
1420.21

r + 54.52
r3 − 1246.29

r5 , f1(r) =
204.34

r3

3 f0(r) + f1(r) cos 6θ f0(r) =
2535.48

r − 2426.65
r3 , f1(r) = − 412.23

r3

4 f0(r) + f1(r) cos 6θ f0(r) = 864.80 + 486.71
r2 − 4711.81

r4 + 12425.61
r6

f1(r) =
9.89
r2 − 524.74

r4

5 f0(r) + f1(r) cos 6θ f0(r) = 1594.00 − 869.19
r2 + 978.77

r4

f1(r) = − 16.15
r2 + 363.41

r4

6 f0(r) + f1(r) cos 6θ f0(r) = 1594.01 − 392.92
r2 − 2160.15

r4 + 5416.26
r6

f1(r) =
7.88
r2 − 297.88

r4

Table 4. Frequencies (in the unit of cm−1) of 15 Raman and Ir active modes as functions of r
(in Å) and θ.

Velocity(θ) fi(r)

CTW f0(r) + f1(r) cos 6θ f0 = 13.5 − 1.63
r2 , f1 = 2.38

r2

CLA f0(r) + f1(r) cos 6θ f0 = 21.0706 + 0.0055
r − 0.6860

r2 , f1 = 0.00091
r − 0.01679

r2

β f0(r) + f1(r) cos 6θ f0 = 1.3767r − 0.00142r2 − 5.8 × 10−5r3, f1 = − 0.143
r + 0.04994

r3

Table 5. Sound velocities (in kms−1) of the TW and LA modes, and β (in 10−6m2s−1) of the
flexure mode as functions of r (in Å) and θ.

and frequencies are scalars while polarizations are vectors. One of the αE1 modes in Table 4
manifests different parameter dependence for different chiral index ν, i.e. it has different
expressions for ν = ±1 and ν = 0 respectively. This is still consistent with the general
constrains Eqs (12) and (13).
In certain extent, the planar graphene can be viewed as the r → ∞ limit of the SWCNT. As
pointed out in Ref. (Jiang et al., 2006), six modes at different (κ, n) points in Table 4 evolve in
this limit to the two degenerate in-plane optical modes of the graphene with approximately
the same frequency limit 1594.0. While three modes with f0(r) → 864.8 approach the
out-of-plane optical mode of the graphene. Moreover as shown in Table 5, the sound velocities
of the two zero modes, i.e. LA and TW modes belonging to 0 A−

0 , have nonzero limits
with different values. Therefore, it is expected that these two modes would approach two
in-plane non-degenerate acoustic modes of the graphene sheet. The situation of flexure mode
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Vector(θ) fi(r)

R1 (�er AC) ur(A) f0(r) f0(r) = 0.7071 − 0.0028
r2

uφ(A) f1(r) sin 3θ f1(r) =
0.0518

r + 0.0468
r2

uz(A) f1(r) cos 3θ f1(r) =
0.0517

r + 0.0749
r2

R2 (�eφ OP) ur(A) f1(r) sin 3θ f1(r) = − 0.0542
r − 0.0455

r2

uφ(A) f0(r) + f1(r) cos 12θ f0(r) = 0.7056 + 0.0019
r2 , f1(r) = 0.0015 − 0.003

r2

uz(A) f1(r) sin 6θ + f2(r) sin 12θ f1(r) = 0.0656 − 0.0801
r2 , f2(r) = 0.0048 − 0.0112

r2

R3 (�ez OP) ur(A) f1(r) cos 3θ f1(r) = − 0.0447
r − 0.0417

r2

uφ(A) f1(r) sin 6θ + f2(r) sin 12θ f1(r) = −0.0656 + 0.0773
r2 , f2(r) = −0.0048 + 0.0111

r2

uz(A) f0(r) + f1(r) cos 12θ f0(r) = 0.7056 + 0.0019
r2 , f1(r) = 0.0015 − 0.0033

r2

Table 6. Polarization vectors �u ≡ (�u(A),�u(B)) at (κ, n) = (0, 0) as functions of r (in Å) and θ.
Where �u(A) and �u(B) indicate the displacement vectors of atoms A and B in the (0, 0) unit
cell respectively. For the three modes in this table, ur(B) = ur(A), uφ(B) = −uφ(A),
uz(B) = −uz(A).

is complicated. The frequency of the �er AC mode in SWCNT (Table 4) tends towards zero
with its polarization vector perpendicular to the limiting sheet. This might be interpreted
as a kind of precursor of the flexure mode of graphene. However, at (κ, n) = ±(α, 1) of
SWCNT, the dispersion of the two TA branch is quadratic in κ. It should be noticed that the
parameterization for the coefficient β cannot be extrapolated to r → ∞. This is prohibited by a
kind of symmetry argument that the rod-like tube has two flexure modes with the cylindrical
symmetry while the plate-like graphene sheet breaks the symmetry so as to have only one
flexure mode. There is no way to cross continuously from the former to the latter.
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