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1. Introduction

Graphene, a monolayer of a honeycomb lattice of carbon atoms has been attracted a great
amount of attention from both experimental and theoretical points of view Novoselov et al.
(2006). Flat structure of graphene makes its fabrication more straightforward than carbon
nanotubes. Moreover, dreams of carbon nanoelectronic approach to the reality based on
planar graphene structures. This structure overcomes some difficulties of nanoelectronics
based on carbon nanotubes, by using lithography, one-dimensional ribbon patterns on
graphene sheets Liu et al. (2009). Experiments in graphene-based devices Ozyilmaz et al.
(2007) have shown the possibility of controlling their electrical properties by the application
of an external gate voltage. For achieving realistic nanoelectronic applications based on
graphene nanoribbons (GNR), width of ribbon have to be narrow enough that a transport
gap is opened Han el al. (2007); Li et al. (2008); Wang et al. (2008). Using a chemical
process, sub-10 nm GNR field-effect-transistors with very smooth edges have been obtained
in Ref.[ Li et al. (2008); Wang et al. (2008)] and demonstrated to be semiconductors with band-gap
inversely proportional to the width and on/off ratio of current up to 106 at room temperature.
By connecting GNRs with different types of edges and widths, it is applicable to fabricate
electronic devices based on graphene nanoribbons.
The origin of transport gap which is opened in a gate voltage region of suppressed nonlinear
conductance is still not well understood Molitor et al. (2009); Son et al. (2006); Sols et al.
(2007). Two factors are responsible for transport gap: the edge disorder leading to localization
Mucciolo et al. (2009) and the confinement Nakada et al. (1996); Brey & Fertig-a (2006);
Bery&Fertig-b (2006); Zheng et al. (2007); Malysheva& Onipko (2008). However, in nonlinear
regime, transport gap is also opened by transition selection rules which originates from the
reflection symmetry Duan et al. (2008).
Based on the tight-binding approach, GNRs with armchair shaped edges are either metal or
Semiconductor Son et al. (2006); Nakada et al. (1996); Brey & Fertig-a (2006); Bery&Fertig-b
(2006); Zheng et al. (2007). Moreover, in this approach, zigzag edge ribbons are metal
regardless of their widths Malysheva& Onipko (2008). While ab initio calculations Son et al.
(2006) predict that regardless of the shape of the edges, GNRs are semiconductor. In zigzag
GNRs, the bands are partially flat around the Fermi energy, which means that the group
velocity of conduction electrons is close to zero. Their transport properties are dominated
by edge states.
Similar to carbon nanotubes, electronic transition through a ZGNRs follows from some
selection rules. The rotational symmetry of the incoming electron wave function with respect

7

www.intechopen.com



2 Will-be-set-by-IN-TECH

2/sdV 2/sdV

gV

N

2

1

Left electrode

L

Substrate

Right electrode

Graphene
Ribbon

X

Y 1 I i M

-

Fig. 1. Gated Zigzag graphene nanoribbon which is divided into three regions: left, right and
central region. Dotted rectangular is the unit cell which is used for finding the band structure
of graphene ribbons. Lower panel shows a field-effect transistor structure based on graphene
ribbons where the gate voltage is applied on the whole system.

to the tube axis is conserved while passing through nanotubes Farajian& Esfarjani& Kawazoe
(1999). Correspondingly, the transverse reflection symmetry of the incoming and outgoing
wave functions results in the parity conservation in ZGNRs with even number of zigzag
chains Duan et al. (2008); Cresti et al.-a (2008); Cresti et al.-b (2008); Akhmerov et al. (2008);
Nakabayashi et al. (2009); Wakabayashi& Aoki (2002); Wang et al. (2008). As a consequence
of the even-odd effect, a negative differential resistance (NDR) region appears in the I-V
characteristic curve of P-N even ZGNR junctions Wang et al. (2008). However, in experiment,
edges of graphene ribbons can simply absorb some chemical compounds Kobayashi et al.
(2006). Even any small asymmetry is enough to destroy the blocked transitions induced by
the parity conservation rule. Although there is no parity selection rules in armchair GNR’s,
NDR also can be found in their I-V characteristic curves. Such NDR originates from the
interaction between the narrow density of states of the doped leads and the discrete states
in the scattering region Ren et al. (2010). NDR has also been observed in GNR nanojunctions
which its NDR’s origin is traced back to the electrostatic profile. Enhanced localization of the
HOMO and LUMO states induced by a charge depletion reduces overlap of states and current
Cheraghchi& Esfarjani (2008). A NDR behavior has been also reported in P-N nanotube
junctions Farajian& Esfarjani& Kawazoe (1999). Historically, NDR was first observed in the
degenerated N-P diode junctions Esaki (1958). Nowadays, NDR has been reported in many
other molecular devices Dragoman et al. (2007); Cheraghchi& Esfarjani (2008); Cheraghchi&
Esmailzadeh (2010). To shed light on the experimental work in Ref.[Li et al. (2008); Wang et al. (2008)]

and also introducing new origin of transport gap, in this chapter, we investigate nonlinear
transport through ZGNRs by using non-equilibrium Green’s function (NEGF) approach. The
on/off ratio of the current in the NDR region for gated even ZGNR’s reaches up to 106. It
is also shown that a stable NDR against electrostatic interaction up to 105 is appeared in
ultra narrow odd ZGNRs around ±1V in both positive and negative polarity. These NDRs
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Nonlinear Transport Through Ultra Narrow Zigzag Graphene Naoribbons 3

are induced by transport gaps which are opened by two selection rules governing electron
transition through ZGNRs: (i) the parity conservation, and (ii) that allowed transition are
between connected bands Cresti et al.-a (2008); Cresti et al.-b (2008). Based on band structure
analyzing, we show that transport gap opened by the second selection rule is filled for ribbons
wider than 10nm. So, sub-10nm ribbons with long enough length provide experimental
manifestation of the NDR phenomenon in I-V curve of GNRs. On the other hand, the gate
voltage regulates the current flow by shifting the blocked energy regions with respect to the
Fermi level. Moreover, for gated even ZGNRs, on/off ratio of the current displays a power
law behavior as a function of ribbon length as M7.5. However, on-off current ratio for odd
ZGNRs increases exponentially with the ribbon length.
This NDR is still robust against edge impurities when the edges are doped by slightly
amount of impurity. These edge impurities can significantly affect the electronic structure
and transition selection rules of even ZGNRs. Edge states with energies about −0.1 to 0.2eV
have been observed Kobayashi et al. (2006).
Our calculations show that the details of the electrostatic potential profile along the
ribbon can not affect the emergence of NDR. The same conclusion has been reported
by Ref.[ Wang et al. (2008)], but they have not elaborated on the physical reason behind this
robustness. By following the self-consistent charge and potential profiles at different voltages,
we demonstrate that at low voltages, strong screening of the external potential at contacts
results in a flat electrostatic potential along the ribbon. Subsequently, the e-e interaction at a
mean field level, does not change the magnitude of Ion. However, for voltages higher than
the NDR threshold Von, the transfer of charge along the edges, leads to more reduction in Ioff

which improves the switch performance.
This chapter is organized as follows: in section 2, we briefly explain transition selection rules
in symmetric and asymmetric ZGNRs which govern transport properties of GNRs. In section
3, we present Hamiltonian and a short review of NEGF. The origin of NDR seen in the I-V
curve of even and odd ZGNRs is explained in section 4. We demonstrate in section 5 that the
e-e interaction does not have a significant effect on the phenomena of NDR in the I-V curve.
The last section concludes our results.

2. Transition rules

2.1 Transition selection rules in symmetric ZGNR

Presence of the reflection symmetry in the incoming and outgoing wave functions leads to the
transition selection rule which regulates the current flow through ZGNRs Duan et al. (2008);
Wang et al. (2008). However, there is no reflection symmetry in ZGNRs with odd zigzag
chains along the width while even ZGNRs have a mirror symmetric plate which bisects the
ribbon plane (Fig.(1)). By application of the symmetry operator on the wave function of even
ZGNRs, odd or even parity can be realized for each subband.

Pψn,kx
(x, y) = ψn,kx

(x,−y) = ηψn,kx
(x, y) (1)

where P is the parity operator and ψn,kx
is the eigen function of nth subband with the wave

vector kx along the longitudinal direction. The eigenvector contains two parts: a plane wave

(eikx x) along the longitudinal axis, and a constraint solution along the transverse direction

with free boundary condition. So the eigenvector can be shown as eikx xφn(y) Rainis et al.
(2009). Eigenvalues of the parity operator are as η = (−1)n+1, where n = 1, 2, ..., 2N counts
bands from the bottom to the top of the band structure, respectively. Eigenvalues of the parity
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operator are independent of the value of kx. As an example, in even ZGNR, lower subband of
two central bands has negative parity and upper one has positive parity (Fig.2).
Using the tight-binding approximation, eigenvectors and eigenvalues of the ribbon is derived
by diagonalization of the following Hamiltonian Ezawa (2006):

Hψn,kx
(x, y) = E(n, kx)ψn,kx

(x, y)

H = H0 + V0,+1eikx x + V0,−1e−ikx x
(2)

where H0 is the tight-binding Hamiltonian of the unit cell shown in Fig.(1.a). In the nearest
neighbor approximation, V0,+1, V0,−1 are the overlap matrices between the marked unit cell
(’0’) and its left (’-1’) and right (’+1’) unit cells. Having eigenvalues of this Hamiltonian
E(n, kx) results in the energy spectrum of graphene ribbons.

0 2 4

Transmission

-4

-3

-2

-1

0

1

2

3

4

2Δ

-1 -0.5 0 0.5 1
-4

-3

-2

-1

0

1

2

3

4

E
n
e
rg

y

V
drain

=0.0 V

k
x
a/π

Left Electrode

+

-
+
-

+
-

+
-

Δ

(a)

γ

-1 -0.5 0 0.5 1
-4

-3

-2

-1

0

1

2

3

4

k
x
a/ π

Right Electrode

-

+

+

-
+

-
+
-

δ

V
source

=0.0 V

(a)

0 1 2

Transmission

-4

-3

-2

-1

0

1

2

3

4

A

B
C
D

V
sd

Δ−δ+V
sd

δ −V
sd

-1 -0.5 0 0.5 1
-4

-3

-2

-1

0

1

2

3

4

E
n
e
rg

y

V
drain

=-0.5V

k
x
a/π

Left Electrode

+
-
+
-

+

-
+
-

Δ

(b)

-1 -0.5 0 0.5 1
-4

-3

-2

-1

0

1

2

3

4

V
source

=0.5V

k
x
a/ π

Right Electrode

-

+

+
-
+

-
+
-

(b)

Fig. 2. transmission (right panel) and band structure of right (center panel) and left (left
panel) electrodes for ZGNR with 6 unit cells in length and 4 zigzag chains. Applied bias is
considered to be a) Vsd = 0 and b) Vsd = 1.0V. Gate voltage is Vg = 0.5V. Here, △ and γ are
the energy separation of upper/lower group of bands from the central bands at the Dirac
point (kx = ±2π/3a) and kx = 0, respectively. Moreover, δ is the half-width of the central
bands at kx = 0.

As a consequence of Eqs.(1,3), in even ZGNRs, we have [P, H] = 0. Therefore, parity
is conserved during coherent transport. Parity conservation in even ZGNRs results in the
blocked transition of the incoming wave function with positive parity into the outgoing wave
function with negative parity of the central subbands.
Electronic transition is controlled by two selection rules. First, the parity is conserved in
tunneling of electron through even-ZGNRs. Therefore, at zero source-drain voltage, one can
expect full transmission which is shown in Fig.(2.a). In this case, all bands with the same
parity are energetically aligned and there is no gap in the transmission curve. In Fig.(2.a),
the energy of transmission curve is shifted by the gate voltage (0.5V). Parity of each band is
indicated by plus/minus signs. In the range of 2∆, there is one conducting channel which
results in unit transmission coefficient.
Fig.(2.b) represents band structures of electrodes which are shifted with respect to each other
due to the source-drain voltage Vsd = 1.0V. The gap in the transmission curve of Fig.(2.b),
AB region, indicates that transport between bands of opposite parity is blocked. In the
energy regions in which back scattering of electrons increases due to the selection rules, it
is established that the transmission decays exponentially with the length as e−γL.
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The second selection rule which governs electron transport through ZGNRs, is that, electron
transition is allowed between connected bands. Figs.(2.a,b) show the band structure classified
in three different groups; namely, central, upper and lower bands which are indicated by solid,
dashed and dashed-dot-dot lines, respectively. The common feature of bands in each group is
that, they are connected at the zone boundary, while distinct groups are disconnected. When
one considers the electron transport, the longitudinal momentum kx, of electrons changes as
a result of applied Vsd. The precise form of this variation in kx, crucially depends on profile of
the superimposed longitudinal potential. These groups are disconnected from each other from
the point of longitudinal momentum. Variation of momentum of electron kx depends on the
shape of superimposed longitudinal potential. The transport properties for smoothly varying
Vsd, are significantly different from Vsd profiles with sharp spatial variations. The electronic
transition between an eigenstate (m1, k) in the right electrode and an eigenstate (m2, q) in the
left electrode is proportional to Fourier transform of longitudinal voltage and structure factor
Cresti et al.-a (2008); Cresti et al.-b (2008),

〈ψm1 (k) | Vsd(x) | ψm2 (q)〉 = SṼsd(k − q), (3)

where structure factor of S is equal to [1 + (−1)Pm1
+Pm2 ] for even ZGNRs and parity of

band m is equal to Pm = (−1)(m+1). Parity selection rule in even ZGNRs originates from
this structure factor. This parity selection rule is mesoscopic analogue of chirality factors
governing transport of Dirac electrons in planar graphene Ulloa& Kirczenow (1987).
If a constant gate voltage is applied on the whole system, since there is no longitudinal
potential variation, momentum of electron remains unaffected against the gate voltage.
However, linear variation of the applied source-drain bias (with the slope Vsd/L) changes
the electron momentum. So, smooth variation of the potential in longer ribbons results
in a small momentum variation of electron. Consequently, transition of electron between
disconnected bands is forbidden when the length of ribbon is so large that one can assume
Ṽsd(k − q) → δ(k − q). Therefore, a smooth potential in the longitudinal direction can just
scatter the electron among the class of states belonging to the same group of connected energy
bands.
Now let us focus on the two transport gap regions: AB and CD in Fig.(2.b). The AB gap
is a consequence of parity selection rules, while the CD gap is due to blockage of transition
between disconnected groups. As can be seen in Fig.(2.b), the AB gap is proportional to the
source-drain voltage, Vsd. Moreover, this gap is independent of the ribbon width. Of course,
in the wide ribbons, the upper and the lower band groups approach to the central group,
especially at the point kx = 0, where γ in Fig.(2.a) tends to zero as log-normal.
When the ribbon width is increased, the separation γ between the upper/lower and central
groups of bands, is reduced, which tends to loosen the second selection rule based on
band groups; hence filling in the gaps. However when we increase the ribbon length, our
classification of bands into connected groups is recovered. Therefore the AB gap is essentially
governed by the aspect ratio of ZGNR.
The CD gap is equal to ∆ − δ + Vsd, where ∆ and δ are the energy separation of upper/lower
group from the central bands at the Dirac point, and the half width of the central bands at

kx = 0, respectively. The dependence of ∆ on width N is: ∆ ∝ (2.13 ± 0.02)N−(0.864±0.003),
while δ has a Log-Normal behavior which asymptotically approaches to the constant value
of 0.9738 ± 0.0002 as N goes up to 10. The conducting region BC in Fig.(2.b) can exist only,
when δ − ∆ < Vsd < δ. From the dependence of ∆ and δ on N, the CD gap exists if N is
less than 30. Hence, NDR is estimated to be observable for ribbon width ≤ 7nm. The lowest
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Fig. 3. Even asymmetric zigzag graphene nanoribbon considered as a central region attached
to two electrodes. Transverse zigzag carbon chains and unit cells inside the central region are
labeled by N and M. Darker edge atoms are absorbed atoms which make ribbon asymmetric
in respect to the X-axis.

achieved ribbon width is sub-10nm-wide (∼ 2± 0.5nm) Li et al. (2008); Wang et al. (2008) with
the length ∼ 236nm. Such long ribbons with small width provide fascinating experimental
manifestation of the selection rules in transport properties.
One of the experimental requirements of the nanoribbon fabrication is the presence of some
absorbed edge impurities. So, reflection symmetry could be simply failed during designing of
electronic devices based on ZGNRs. Operation of an electronic device should not be affected
by small asymmetry. Recently Wang et al. (2008), based on even ZGNR substrate and also
the parity selection rule, an N-P diode junction was designed. This diode shows an NDR in
positive polarity of its I-V curve. According to the previous discussions, this device is strongly
sensitive to any asymmetry. Electronic devices designed by the transition rule arising from
disconnecting band groups is much reliable than those which are based on the symmetry. In
the next section, we introduce a nanoswitch which its operation is not so sensitive to the
asymmetry. Fig.(3) shows asymmetric zigzag graphene nanoribbon with even number of
zigzag chains in width (N).

2.2 Transition selection rules in asymmetric ZGNR

Those selection rules controlling the electron transition through even ZGNRs will be modified
when impurity absorption changes onsite energies of atoms located in one edge of the ribbon.
Application of the edge asymmetry influences the selection rules as the following:
1) Transition between those subbands which have been already forbidden based on the parity
conservation, would be now allowed.
2) As shown in Fig.(4.b), in the spectrum of central bands of even ZGNRs, an energy gap is
induced by the edge impurity. The opening of the gap depends directly on the onsite energy
attributed to the edge impurity. As a result, in this case, the first conduction and the last
valance bands detach from each other so that they do not belong to the same band group.
Therefore, transition between these subbands is not allowed now.
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Fig. 4. Energy spectrum of the left and right electrodes of graphene ribbons with 4 zigzag
chains (M, N) = (12, 4) under 0.5V applied bias a) without b) with the presence of the edge
impurity. In figure (b), it is supposed that the doping impurities adsorbed by one of the
ribbon edges can induce additional onsite energy on the edge atoms as εα = 0.1. To
investigate the selection rules, transmission also is plotted. Bands with solid and dashed
lines have positive and negative parity, respectively.

These two selection rules have two opposite operations so that depending on the system
length and edge impurity, they compete with each other. One of them increases transmission
and the other one decreases it. Fig.(4.b) shows the energy spectrum and transmission
through a ZGNR (with N = 4) at the applied bias of 0.5V. It is supposed that the edge
impurity changes onsite energy of the edge atoms as the value of εα = 0.1. The energy gap
induced by the edge impurities also keeps its trace in the transmission curve. Due to the
asymmetry-induced gap, transmission in the energy ranges of AB and also CD shown in
Fig.(4.b) is zero. However, one conducting channel is allowed in the energy range of DE. The
only allowed transition in this energy range is the transition from the first conduction band of
the right electrode to the same band of the left electrode. The same as symmetric case, at the
energy points corresponding to E and G, the flow of the current is blocked due to the transition
between two different band groups. By application of the edge impurity, it is interesting to
note that in the energy range of BC, one conducting channel is opened and contributes into the
transport. According to the parity selection rule, in this energy range, the electronic transition
even ZGNRs must be blocked. However, parity is not conserved in asymmetric even ZGNRs
and the transition is permissive. On the other hand, because of the asymmetry-induced
energy gap, from the viewpoint of longitudinal momentum, the upper band of central group
belonging to the left electrode is detached from the lower band of the central group belonging
to the right electrode. So, the electronic transition between detached bands is forbidden. As
it was explained in the previous section, if the ribbon length is long enough, the electron
transition between these two detached subbands is effectively blocked. However, if the system
length is considered to be very short (e.g. M=1), the transition between disconnecting bands
is permissive. In the ribbons shorter than a critical length, application of the asymmetric edge
impurity can not effectively destroy the parity conservation. As shown in Fig.(5.a), the parity
conservation however gradually fails when the ribbon length approaches the critical length.
Therefore, in the energy range of B − C, transmission increases with the ribbon length. On the
other hand, in a ribbon longer than the critical length (here Mcr. = 12), transition of electrons
between the separated central bands belonging to the different electrodes is gradually blocked
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Fig. 5. Transmission through graphene ribbon with 4 zigzag chains in width for different
ribbon lengths: a) M ≤ 12 b) M ≥ 12. Applied bias is considered to be 0.5V. Edge impurity
changes onsite energy of the edge atoms as εα = 0.1t.

and so transmission in Fig.(5.b) decreases with the length. Based on this competition between
two selection rules, one can explain non-linear transport through asymmetric even ZGNRs.

3. Hamiltonian and formalism

Fig.(1) shows schematic side view of graphene nanoribbon. In presence of source-drain
applied potential, ribbon is divided into three regions; left, right electrodes and also central
interacting region. Gate voltage is applied by means of substrate on the graphene plate. The
interacting Hamiltonian is written in the tight-binding approximation. This Hamiltonian is a
functional of charge density:

H{n} = ∑i(εi + [(xi − x0)/L − 0.5]Vsd + ∑j Uijδnj])c
†
i ci

+∑<ij> t(c†
i cj + cic

†
j ),

(4)

εi shows onsite energy of ith carbon atom and t represents the hopping integral between
nearest neighbor atoms. One π orbital is considered per each site for graphene system.
Without losing any generality, we set onsite energies (εi) of all sites equal to zero. All energies
are in units of tC−C = 2.5eV. Application of a gate voltage is achieved by shifting atomic
onsite energies in all three regions. The applied source-drain potential, Vsd, and the gate
voltage, Vg, preserve transverse symmetry with respect to the ribbon axis (X direction in
Fig.(1)). Linear variation of the source-drain voltage along the ribbon is the solution of the
Laplace equation with Dirichlete boundary condition on the contacts. Uij is the electrostatic

Green’s function and δni = ni − n0
i is the change in the self-consistent charge ni from its initial

equilibrium zero-bias value. This third term is the direct Coulomb interaction created by the
bias-induced charges at a mean field level which is the solution of Poisson equation. The
electrostatic Green’s function for a distribution of charges between two parallel conducting
planes located at x = 0, L which are held at zero potential Jackson (1975), has the following
form:
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U(−→r ,−→r
′
) = 2

∫ ∞

0 dkJ0(αk) sinh(kz<) sinh(k(L−z>))
sinh(kL)

,

α =
√

(x − x
′ )2 + (y − y

′ )2 + U−2
H ,

(5)

where UH is the Hubbard parameter whose semi-empirical value for carbon Esfarjani&
Kawazoe (1998) is about 4tC−C. This parameter determines the strength of electron-electron
interaction. This electrostatic Green’s function is appropriate for the kernel of
Ohno-Klopmann model Ohno& Klopman (1964).
For self-containing, we present a very brief review of the NEGF formalism. Charge density in
non-equilibrium situation is calculated by [−iG<] as the occupation number in the presence
of the two electrodes with an applied source-drain bias Taylor et al. (2001).

ni =
−1

π

∫ EF−
V
2

−∞
Im[Gr(E)]iidE + n

non−eq
i (6)

where non-equilibrium part of charge can be calculated by the following integral,

n
non−eq
i =

1

2π

∫ EF+
V
2

EF−
V
2

[−iG<(E)]iidE (7)

where within a one-particle theory ,

− iG< = Gr(ΓL fL + ΓR fR)G
a (8)

Here fL/R is the Fermi-Dirac distribution function of electrodes and Gr/a is the
retarded/advanced Green’s function defining as the following:

Gr/a = [(E ± η)I − H{n} − Σr/a
L − Σra

R ]−1 (9)

and Γ is the escaping rate of electrons to the electrodes which is related to the self-energies as
Γp = i[Σr

p − Σa
p] with p = L/R Munoz (1998); Datta (1995); Taylor et al. (2001). Here η →

0+. Solving equations 6 and 9 self-consistently results in a self consistent charge and Green’s
functions. Finally, the current passing through the molecule is calculated by the Landauer
formula for zero temperature Datta (1995) which is valid for coherent transport.

I(V) =
2e

h

∫ EF+V/2

EF−V/2
dE T(E, V) (10)

where T(E, V) are the bias dependent transmission coefficient.

T = Tr[GrΓRGaΓL] (11)

4. Negative differential resistance

In this section, we will present our results about nonlinear transport properties which emerges
in current-voltage characteristic curves.
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Fig. 6. Current-voltage characteristic curve for different gate voltages when the ribbon size is
as (N, M) = (4, 6). The effect of different parameters such as size effect, electrostatic
potential and also gate voltage is investigated on I-V curve. Hubbard parameter (UH) is on
site Coulomb repulsive.

Fig. 7. Contour plot of transmission with respect to the energy and Vsd for the system size
(N,M)=(4,6) and the applied gate voltage Vg = 0.5V . Darked Oblique lines shows the current
integration window. Points marked by A, B, C, D correspond to the horizontal lines with the
same name in Fig.(2). Lines of α, β are the trace of points with similar names in Fig.(6). Fermi
energy was fixed at zero EF = 0.
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which was shown in Figs(6,7).

4.1 NDR in gated-EVEN zigzag graphene nanoribbon

Fig.(6) shows current-voltage characteristic curve of a ZGNR with 4 zigzag chains and 6
unit cells in length. In the case of zero gate voltage, flow of current is blocked due to the
parity selection rule, while at a given Vsd, gate bias turns the current on. After a range of
Vsd in which the current remains unchanged, current begins to reduce with increasing Vsd.
NDR threshold voltage Von decreases with gate voltage for Vg < 0.6V. Dependence of NDR
threshold voltage on the gate voltage can also be seen in Fig.(8). This NDR also symmetrically
appears in the negative polarity of Vsd. The NDR threshold voltage and Ion remain unchanged
in the presence of the electron-electron interaction (with a given Hubbard term U = 4tC−C).
However, reduction of the current in off state, Ioff, is intensified when one takes electrostatic
potential into account.
To understand the origin of NDR, it is helpful to look at the 3D contour-plot of transmission
in plane of energy and Vsd which is presented in Fig.(7). Blocked energy intervals AB and CD,
which are indicated in Fig.(7), correspond to those intervals shown in Fig.(2). For voltages
lower than the vertical line α (V < Vα), transmission is a nonzero constant for the whole region
of the conduction window represented in Eq.(10). As a result, current increases proportionally
to Vsd. In the voltage interval [Vα, Vβ], the blocked region AB, originating from the parity
selection rule, contributes to the current integration window of Eq.(10). However, nonzero
range of transmission remains unchanged along with Vsd resulting in the fixed current in
the voltage range [Vα, Vβ]. So, current remains unchanged in this range. For voltages V ≥
Vβ, the CD gap contributes in the current integration window, and consequently the NDR
phenomenon emerges.
Regarding the importance of gate voltage in the current flow, let us investigate the effect of
the gate voltage on I − Vsd curve by contour plotting of the current with respect to Vsd and
Vg in Fig.(7). For gate voltages |Vg| < 0.1V, shift of transmission is not remarkable enough
to contribute to conducting channels in the current integration. So, current is blocked by the
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Fig. 9. a) On-off ratio of the current increases as a power law with the ribbon length for
N = 4 and Vg = 0.5V. b) On-off ratio of the current decreases with the ribbon width (circle
and triangular points) while it is disappeared for edge impurity (diamond points) stronger
than 0.3tC−C (inset figure).

parity selection rule. In the range 0.1V < |Vg| < 0.6V, contribution of conducting region
BC in transport is accompanied with the blockage arising from AB and CD gaps in voltages
V > Von. As a consequence, current reduces after a threshold voltage. In this range, on/off
ratio of the current increases and Von reduces with increasing the gate voltage.
As can be seen in I-V curves of Fig.(6), off current reduces for longer ribbons which
enables us to achieve high performance switches by increasing aspect ratio of the ribbon
length/width. The reason is connected to smooth variation of the applied potential along the
ribbon such that during transport, electrons are scattered among those states which belong to
continuous bands. As a consequence, blockage originating from electronic transition between
disconnected bands is intensified by increasing the ribbon length. In fact, when the length of
ribbon increases, transmission in the AB and CD gaps decreases exponentially.
Since off current is induced by contribution of the gaps in the current integration, Ioff

efficiently decreases with increasing the ribbon length (M). Fig.(9.a) shows that Ion/Ioff

displays a power law behavior as a function of the ribbon length for large M: Ion/Ioff ∝ Mη

where η = 7.5061 ± 0.03505. As an example, for M = 50, on/off ratio goes up to 106

which suggests experimental fabrication of high performance switches based on the GNR
nanoelectronics.
Experimentally, it was observed in Ref.[ Li et al. (2008); Wang et al. (2008)] that the room-temperature
on/off ratio induced by the gate voltage increases exponentially as the GNR width decreases.
They observed that Ion/Ioff is equal to 1, 5, 100 and > 105 for W = 50nm, 20nm, 10nm and
sub-10nm, respectively. Similarly, as shown in Fig.(9.b), on/off ratio calculated for the set
up considered in this paper, also decreases with the ribbon width, while reduction of on/off
ratio can be compensated by considering longer ribbons. However, NDR phenomenon is
disappeared for the ribbons wider than 7nm.

130 Graphene Simulation

www.intechopen.com



Nonlinear Transport Through Ultra Narrow Zigzag Graphene Naoribbons 13

-3 -2 -1 0 1 2 3

Voltage(V)

-0.1

-0.05

0

0.05

0.1

0.15

C
u
rr
e
n
t(
m
A
)

(M,N)=(5,5),U=0

(5,5),U=4

(10,5),U=0

(10,5),U=0

Fig. 10. Current-voltage characteristic curve of an odd zigzag graphene nanoribbon with
N = 5 (zigzag chains). I-V curves are compared for two ribbon lengths; M = 5 and 10. For
the case of (M, N) = (5, 5) and for comparison purpose, I-V curve is also plotted in the
presence of electron-electron interaction (U). NDR phenomena is preserved when one of the
ribbon edges is doped by slight impurity (as εα).

In ab initio calculations Son et al. (2006), by using hydrogen-termination of zigzag edges,
mirror-symmetry of ZGNRs and consequently parity conservation could be retained.
Correspondingly, by several repetition of the heat treatments and hydrogenation, it is also
possible to create well-ordered H-terminated edges in experiment Kobayashi et al. (2006).
However, the edge states with energies about −0.1 to 0.2 eV have been experimentally
observed Kobayashi et al. (2006) that emerge at hydrogen-terminated zigzag edges. To
simulate the edge states and the effect of symmetry breaking on NDR phenomenon, it is
assumed to dope one of the ZGNR edges by slight impurity. Edge impurity is considered
to apply as a change in the on-site energy of the edge atoms (εα) with respect to on-site energy
of the other atoms. In case of edge disorder, εα plays the role of the averaged on-site energy of
the edge atoms. Inset figure indicated in Fig.(9.b) shows that on/off switching reduces with
the edge impurity strength, however, NDR still emerges for εα < 0.3tC−C.

4.2 NDR in ODD zigzag graphene nanoribbon

Current-voltage characteristic curve of an odd ZGNR with 5 zigzag chains (N = 5) is shown in
Fig.(10). Lower than the external bias 1.2V, current increases linearly with the applied bias as
an Ohmic device. After a threshold voltage (1.2V), NDR occurs at both positive and negative
polarity.
The origin of NDR seen in odd ZGNRs is interpreted by analyzing their energy spectrum
accompanied to transmission curve. Fig.(11) shows energy spectrum E(n, kx) and
transmission through 5 ZGNR at V = 1.4V.
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Fig. 11. Energy spectrum of the left and right electrodes and transmission through zigzag
graphene nanoribbon with (M, N) = (10, 5) at voltage (VSD = 1.4V > VT). The band
structure is divided into three groups which are called by upper , centeral and lower band
groups. These groups are classified based on the bands which are connected in terms of kx.
The bold hollow arrows show the current integration window which based on Eq. 10, is
proportional to VSD. The Fermi level is set to be as E f = 0. The half-width of the central
bands at kx = 0 is called as δ which is equal to the threshold NDR voltage. ∆ is energy
separation of the upper bands from the central bands at the Dirac points. Transport gaps AB
and CD are equal to ∆ − δ + VSD.

In odd ZGNRs, parity has noncommutative relation with the Hamiltonian. Therefore, parity
has no conservation and consequently transmission is not blocked by the parity selection
rule, while parity conservation in even zigzag nanoribbons opens transmission gap around
Fermi level Cheraghchi& Esmailzadeh (2010). In the range of BC of Fig.(11), there exists one
conducting channel which results in the unity transmission around the Fermi level. So at low
biases, current increases linearly with bias. This single-channel transport around the Fermi
level remains unchanged even for high voltages. However, for voltages greater than the NDR
threshold voltage (V > VT), blocked regions marked by the ranges of AB and CD comes into
the current integration window. The current integration window is proportional to VSD and
is shown with the bold hollow arrows in Fig.(11). Therefore, when source-drain applied bias
increases, current begins to decrease.
Blocked regions (AB and CD) arise from a selection rule which increases back scattering in the
lengthy ribbons. According to this rule, the electronic transition between those bands which
are disconnected from the view point of longitudinal momentum, decreases exponentially
with the length.
Band structure analyzing demonstrates that the threshold voltage is equal to the half-width
of the central bands at kx = 0 as VT = δ = [E(N + 1, kx = 0)− E(N, kx = 0)]/2. As shown
in Fig.(11), ∆ is energy separation of the upper bands from the central bands at the Dirac
points. There is a Log-Normal behavior of δ versus number of zigzag chains (N) such that as
N → ∞, the NDR threshold voltage asymptotically approaches to the value of 0.9738± 0.0002.
So the NDR threshold voltage slightly decreases with the ribbon width. Analyzing transport
gaps appeared in the band structure shows that they are equal to ∆ − δ + VSD where ∆ ∝
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N−1. Since δ approaches to a constant values when N → ∞, in a given voltage, transport
gap is disappeared for N > 30 which is nearly equivalent to 10nm. The other effect which
enhances performance of this electronic switch, is the ribbon length. Fig.(10) shows an increase
of on/off ratio with the ribbon length. Moreover, NDR region (Vo f f − Von) occurs in a more
extended range of the I-V curve. Exponential decay of transmission with the length in the gap
regions develops quality of switching. In odd ZGNRs, Ion/Io f f increases exponentially with
the ribbon length.
If one of the ribbon edges is doped by small impurity such as εα = 0.1t, because of a band gap
which is induced by the edge impurity in low biases, current decreases. Fig.(10) represents
that even with the presence of edge impurity, still the region containing NDR still exists.
However, asymmetry decreases on/off ratio of the current. Furthermore, asymmetric ZGNR
behaves as a semiconductor while symmetric ZGNRs behave as an Ohmic devices Ren et al.
(2010). The effect of asymmetry on NDR competes with the ribbon length. Since asymmetry
can not be ignored in experiment, longer ribbons are in favor of keeping NDR in the I-V curve.
On the other hand, additional to edge impurity, this asymmetry can be assigned to a sublattice
symmetry breaking induced by spontaneous ferromagnetic spin ordering of the electrons
localized at the zigzag edges Son et al. (2006). In fact, the border atoms at the two opposite
zigzag edges belong to different sublattices. So spin orientation along the edges induces
different magnetic potentials at the edges. As a result, a small band gap is opened around
Fermi level which depending on the ribbon width, is about 0.15 eV. The asymmetry which we
have considered is about 0.3 eV which is stronger than the gap opened by spin-polarization
of the edges. We can conclude that spin-polarization along the zigzag edges can not affect
emerging of this NDR phenomenon Ren et al. (2010).

5. Electrostatic potential and charging effect on NDR

Emerging phenomenon of negative differential resistance in I-V curve is not destroyed by the
e-e interaction and is independent of the details of electrostatic potential profile. However,
interaction reduces off-current as shown in the I-V curves of Fig.(6). In this section, we present
the reason for robustness of NDR against e-e interaction for the gated even ZGNR. The same
results can be extracted for odd ZGNRs.
To substantiate the above claim, comparison of transmission curves in the presence and
absence of the e-e interaction is useful. It is apparent from Fig.(12.a) that for voltages
less than Von, transmission in conducting channels is robust against the e-e interaction
while transmission increases in the gaps with respect to the non-interacting case. But this
enhancement is slight enough which can not affect the emergence of NDR. However, for
voltages V > Von, interaction lowers transmission coefficient in the conducting channels
(such as BC region) in which higher subbands participate in transport. Such behavior is
corroborated in Fig.(12.b) which indicates transmission at that voltage corresponding to the
off-current, Voff. Reduction in the transmission coefficient of the conducting channels results
in further reduction of the off-current. To explain the reason for such phenomenon, it is
necessary to study the potential and charge profiles. Electrostatic potential averaged on
each unit cell is represented in Fig.(13.a) in terms of the ribbon length. For voltages less
than Von, potential sharply drops only at the contact regions which connects the system to
electrodes. In such a case, external potential is strongly screened by redistributed electrons
and, electrostatic potential of the central atoms remains close to zero. Screening is performed
by discharging of electrons from the area connected to the source and their accumulation
around the drain electrode. These facts are obvious from transferred charge and electrostatic
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Fig. 12. Transmission curve of zigzag graphene nanoribbon with 4 zigzag chains in width for
voltages a) 0.75 volt b) 1.25 volt. Interacting and non-interacting curves are compared with
each other.

potential profiles represented in Fig.14. Since U(n − n0) determines electrostatic behavior
of the potential, discharging of electrons weakens the external potential penetrated from
the source electrode. Moreover, charge accumulation around the drain electrode prevents
potential drop in the central part of the system. So in the case of strong screening, potential
drops only at the contacts. However, when the applied bias goes beyond 1 volt, screening
is being weakened and external potential can penetrate inside the central region. The reason
as to why screening is weak, can be sought in charge distribution. Figure (13.b) illustrates
that for voltages less than 0.5 volt, in and out flow of charge are balanced with each other
such that the total transferred charge remains close to zero. However, around the voltage
Von and voltages above, the charge is mainly transferred from the edges of the ribbon, so
that the source electrode does not inject further charge to middle atoms of the ribbon. As a
consequence, by increasing the applied bias and so gradient of the potential along the central
region, charge depletion is mainly enhanced in the middle bar area of ZGNR. On the other
hand, since the only way for transporting electrons is the edge atoms, significant accumulation
of charge appears along the two edge lines of ZGNR.
In summary, at voltages less than Von, electrostatic potential is only dropped at the contacts
and therefore momentum of electrons is only varying in the area where the potential drops,
while longitudinal momentum of electron remains unchanged across the central portion. In
other words, potential steeply drops in the low-area district around the contacts which results
in violation of the blockage rule which governs on transition between disconnected energy
bands. Subsequently, transmission coefficient slightly increases in the blocked energy ranges.
In other words, in this case, an increase in gradient of the potential facilitates electronic
transport in the blocked energies. Note that interaction preserves transverse symmetry, so
the parity selection rule still governs electronic transport. Therefore, the AB gap induced by
the parity conservation still survives for voltages larger than Von. For voltages V > Von,
electrostatic potential gradually penetrates into the whole system so that the potential of the
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0.75, 1.25 volts. The gate voltage is for all curves equal to Vg = 0.5 V.

central region is not flat. In addition, because the edge transport of electrons dominates, the
transverse potential is deeper in the middle of ZGNR than its edges. Therefore, the band
structure of the interacting central region differs from the band structure of electrodes. As a
consequence, for voltages V > Von, transmission of conducting channels and also off current
reduces.
Comparison of odd and even ZGNRs: There are some interesting differences between
results arising from odd ZGNRs with those results belonging to even ZGNRs Cheraghchi&
Esmailzadeh (2010) which is kind of odd-even effect. In odd ZGNRs, NDR appears in voltages
upper than 1V while in even ZGNR, NDR occurs for voltages lower than 1V. On/off ratio of
the current in gated even ZGNRs increases as a power law with the function of the ribbon
ribbon length while in odd ZGNRs, on/off increases exponentially. Screening of the external
bias by electrons of system in even ZGNRs is so stronger than screening effects in odd ZGNRs.
As a consequence, the effect of electrostatic interaction on increase of the on/off ratio in even
ZGNRs is much effective than in odd ZGNRs. Furthermore, transferred charge from/into the
central portion of graphene nanoribbon depends on odd or even zigzag chains in width.

6. Conclusion

As a conclusion, based on a model calculation and non-equilibrium Green’s function
formalism, we found that there exists a region of negative differential resistance in I-V curve
of ultra narrow (lower than 10nm) zigzag graphene nanoribbons with odd or even number of
zigzag chains in width. In this range of widths, two selection rules govern on the electronic
transition are: (i) the parity conservation, and (ii) the allowed transition between connected
bands. On/off ratio of the current increases up to 105 as a function of the ribbon length
which proposes possibility of manipulation of ZGNRs as high quality switch in nanoelectronic
based on graphene nanoribbons. Emergence of the NDR phenomenon is not sensitive to
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Fig. 14. Transferred charge and Electrostatic potential profiles for Vsd = 1.25 volt and
Vg = 0.5 volt in the weak screening case. Due to charge transfer through the ribbon edges,
screening is so weak that the external potential can penetrate inside the central portion.

details of the electrostatic potential profile. Because of strong screening in low voltages,
the major potential drop takes place at the contacts. However, in voltages larger than the
NDR threshold, due to charge transfer through the ribbon edges, screening is so weak that
the external potential can penetrate inside the central portion. As a consequence, off current
reduces in comparison to non-interacting ribbons.
In addition, e-e interaction enhances on-off ratio of the current which originates from a flat
electrostatic potential deep inside the ribbon due to screening of the external bias by electrons
close to the junctions. Furthermore, this NDR is not much sensitive to the edge asymmetry.
So emerging of this NDR is robust against spin orientation along the edges.
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