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1. Introduction

According to the Center for Disease Control and Prevention (CDC) (Center for Disease Control
and Prevention (CDC), 2007) and American Cancer Society (ACS) (American Cancer Society
(ACS), 2007), breast cancer is the most prevalent type of cancer among women only after
skin cancer and the number two cause of cancer death in women. Among every 8 women
in U.S. one has breast cancer. In addition, about 2.5 million survivors of breast cancer are
living in the United States and it is estimated that 40,170 lives perished due to this mortal
disease in 2009. Many risk factors have been associated with breast cancer including, but
not limited to, gender, age, family history, race and lifestyle (American Cancer Society (ACS),
2007). Some of these risk factors could not be controlled such as age or family history. In
contrast, factors such as life style could be changed to prevent or reduce the chance of breast
cancer. Various techniques are practiced today for treating breast cancer. Nevertheless, in all
treatment methods early detection is a crucial factor. Detecting breast cancer in early stages
can lead to more efficient treatment and comfort for the patient. Hence, an accurate diagnosis
modality for breast cancer detection can save many lives annually.
Currently, X-Ray mammography is the gold standard method in detecting breast cancer and
is used widely due to relatively easy access to the equipment. In this method, a low dose
of X-Ray is used to obtain a mapping of the distribution of the tissue density inside the
compressed breast. Mammography can be used for both screening and diagnosis of breast
cancer. In screening mammography, X-Ray imaging of the breast is used in women with no
signs of the breast cancer for the purpose of investigation of the breast tissue changes and
examining the lesions inside the breast. As a diagnostic tool, X-Ray mammography could
be used to assess the malignancy of the lesions that has already been found in the breast. It
has been shown that mammography can reduce the mortality rate due to breast cancer (J.
Elwood and B. Cox and A. Richardson, 1993) because detecting breast cancer in the early
stages can lead to a more efficient treatment. Although X-Ray mammography has benefits
such as ease of use, availability and being reasonably accurate, it is not a perfect method for
screening and diagnosing breast cancer. A major drawback of X-Ray mammography is the
danger of exposing the patient to a low dose of ionizing radiation which can increase the risk
of cancer. This makes X-ray mammography a less suitable tool for screening and more suitable
for diagnosis. In addition, to avoid a blurred image and preserve the uniformity of the tissue,
the breast is compressed before X-Ray imaging which can be uncomfortable for the patients
(Fear et al., 2002).
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Another modality based on Ultra-Wide Band (UWB) pulse confocal imaging radar for
screening and possibly diagnosis of breast cancer has been suggested and investigated in
recent years (Li & Hagness, 2001). UWB imaging of the breast employs malignant tissue’s
significant dielectric contrast to detect the location of the tumor relative to an antenna array. To
obtain a 2-D or 3-D (depending on the application) map of dielectric contrast inside the breast
medium, an array of antenna around the breast transmit a UWB pulse sequentially and record
the backscattered signal. In the next step, the backscattered signals are synthetically focused at
a synthetic focal point. To focus the beam at the synthetic focal point, the travel time between
the antenna and the synthetic focal point is calculated and the energy received from that point
in all channels in the antenna array are added together. Existence of a strong scattering point
(high contrast in dielectric value) at the synthetic focal point results in a coherent summation
of pulse energy and hence a high total energy value assigned to that point. On the other
hand, if no scattering point is present at the synthetic focal point, energy values will add
incoherently and the total energy value assigned to that location won’t be so high. To produce
a 2D or 3D image of the breast region, the synthetic focal point is scanned through all the
breast region and the summation of the acquired energy values are mapped as the pixel value
at that location.
In contrast to the X-ray mammography, UWB confocal imaging does not expose the patient to
any ionizing radiation. This means that it can be used frequently as an screening tool specially
for younger women. In addition, the uncomfortable breast compression is eliminated is this
modality.
Although it has been shown that the cancerous tumors can be located by UWB breast imaging,
there are still issues that must be addressed. One of these issues is the problem of the surface
skin backscatter. Human breast skin has a high dielectric contrast with both air and skin tissue.
This will produce a strong backscatter from the skin surface in the received signal. Although
skin backscatter has its major components in the early time of the received signal, it continues
to affect parts of the late time response. The problem is that the late time effects of the skin
backscatter are still strong enough to mask the weak tumor reflection completely. Hence, the
skin effects should be removed from the response prior to the imaging process. A simple
method to remove the skin artifact is to mask out the early time part of the signal. However,
as mentioned before, skin artifact continues its effect to the late time response and masking out
the early time part of the signal would not remove the late time effects. Another problem of
the simple masking method is that prior to the imaging process the location of the tumor is not
known. Hence, masking the early time part of the signal might remove the tumor reflection.
A more practical method has been suggested by researchers based on averaging. In averaging
method, the backscattered signal is averaged over all signals from different antennas in the
array. The average is then subtracted from the individual signals. The idea is that the skin
reflection would appear in the average because it is similar in all channels and will add
coherently, but the tumor response has different locations in different channels and would
not add up coherently and hence would not appear in the average. Although averaging can
significantly suppress the early time portion of the skin reflection, it is not able to remove
the late time parts of the artifact. In addition, averaging removes parts of the reflection from
the tumor especially in cases where the tumor is equidistant from different antennas. As an
improvement over averaging, an averaging based filtering process is proposed in literature
to remove the skin artifact. Although filtering greatly improves the skin backscatter removal,
it still deteriorates the tumor response. Furthermore, the same as averaging method, it will
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remove the tumor reflection together with the skin artifact when the tumor is equidistant to
several antennas in the array.
This chapter introduces a frequency domain approach to the skin artifact removal problem
in UWB breast cancer detection. In this approach, the received signal is first converted into
the frequency domain. Then, the skin related information is identified and removed from the
frequency domain response. The signal is then converted back to the time domain and used
for the imaging process. This approach does not affect the tumor response as it processes
each signal individually and does not incorporate any subtraction or addition to the signals.
Besides, the skin reflection is eliminated from both early time and late time responses. In
addition, it is shown that the frequency domain approach can preserve the tumor response
when the tumor is located equidistant to all antennas in the array, such as central axis of
the array. Using computer simulations, the frequency domain approach is compared with the
existing averaging based methods in different scenarios and is shown to be able to outperform
the current existing methods.
This chapter is organized as follows. The next section provides a brief overview of the confocal
imaging method in UWB breast cancer detection. In Section 3, the skin artifact problem and
existing methods to overcome this problem are described. Section 4 introduces the frequency
domain approach to remove the skin artifact. In Section 5, performance of the frequency
domain approach is compared with the existing methods through computer simulations in
different cases and each case is discussed in detail. Finally, Section 6 will conclude this chapter.

2. Confocal Microwave Imaging (CMI) in UWB breast imaging

To obtain the tumor signature, breast is illuminated by a UWB microwave pulse from a
number of antennas arranged in a planar configuration over the breast or in a circular
configuration around the breast (Fear et al., 2002). Due to the contrast between dielectric
properties of the tumor and the normal breast tissue, malignant tumors have a significant
scattering cross section compared to the normal tissue and benign tumor types (Hagness et al.,
1998). To obtain a high resolution in the imaging process, the pulse bandwidth has to be as
high as possible. However, frequencies higher than 10 GHz will face a dramatic attenuation
inside the human body and the breast medium. Hence, the upper limit for frequency content
of the signal is about 10 GHz. This limit ensures enough penetration for human breast imaging
(Fear & Stuchly, 2000).
To obtain enough penetration for the UWB imaging of the breast, the antenna is excited by a
differentiated Gaussian pulse (Fear et al., 2002):

V(t) = (t − t0)e
−(

t−t0
τ )2

(1)

where t0 = 4τ and τ = 0.0625ns. The resulting signal has temporal duration (full-width
half-maximum) of 0.17 ns and approximately 6 GHz bandwidth with maximum power near to
4GHz. Figure 1 shows the temporal pulse shape and its frequency spectrum (Fear et al., 2002).
The heterogeneous nature of the breast medium produces clutter in the UWB signature of the
tumor which makes detecting the tumor difficult or in some cases impossible. To overcome
this problem, a modified version of UWB Ground Penetrating Radar (GPR) is suggested for
breast medium to amplify the tumor signature and eliminate the clutter (Hagness et al., 1998).
In this method, clutter suppression is carried out by coherent addition of the tumor responses
from all channels. To spatially focus the signal at the candidate location, the backscattered
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(a) Differentiated Gaussian Pulse (b) Frequency Spectrum of Differentiated Gaussian
Pulse

Fig. 1. Pulse Waveform

Fig. 2. A time window is applied on different channel responses in Confocal Imaging Process

signal is time shifted and summed based on the pulse travel time to the synthetic focal point.
The energy value of the windowed portion of the signals from all the channels are calculated
and summed up to form a pixel value for the image of the breast. The synthetic focal point
is then scanned through the entire breast medium by appropriately changing the time shifts
and windowing to achieve a 2D or 3D image of the breast. As mentioned before, existence
of a strong scatterer at the synthetic focal point would produce a replica of the pulse at the
corresponding time instance in the backscattered signal in all channels. Hence, summation
of this portion of the response from all channels yields a high energy value which points to
the existence of a scatterer. However, if only clutter and noise are the dominant components
at the focal point, the energy levels do not add coherently and the clutter will be suppressed
(Fear & Stuchly, 2000). Figure 2 depicts the windowing and summation process. The window
length is chosen equal to the temporal duration of the original pulse to include the whole
backscattered energy.
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3. Skin backscatter removal

The signal received by the antenna contains contributions from lesions in the breast, clutter
due to heterogeneity of the tissue and skin backscatter. The skin backscatter artifact is in
the orders of magnitude larger than the other parts of the signal and can swamp the tumor
response. Thus, to detect the tumor, skin response should be removed from the signal. This
section describes and reviews the existing skin artifact removal algorithms.

3.1 Time window

The simplest way to get rid of the skin artifact is to mask out the early time part of the
response. This method could be considered as multiplying a time window which is a step
function of zero amplitude when the skin response exists and amplitude one in the rest of
the time interval (Zhi & Chin, 2006). However, this method could not be used in practice.
The problem is that there is no clear border between early time and late time parts of the
backscattered signal. In addition, skin reflection can be present in the late time response and
mask the tumor backscatter. Hence masking the early time part of the signal may remove
the tumor response as well. This is because the location of the tumor reflection is not a priori
information.

3.2 Averaging

A more practical method to remove the skin reflection from the backscattered signal is to use
the average of all channels to reconstruct and remove the skin reflection (Li & Hagness, 2001).
In this method, the average of the backscattered responses from several antenna elements
is subtracted from the response of each element. The idea in averaging method is that the
skin response is similar in different channels. This is because the skin structure is assumed
symmetric in the view of all elements of the antenna array. To compensate for the variations
in each element’s distance from skin surface, all responses are aligned to the local maximum
of the early time response (which corresponds to the skin backscatter). When the signals
in different channels are averaged, the similar parts such as skin backscatter will add up
coherently and hence appear in the averaged signal. However, other reflections such as tumor
and clutter backscatters differ in amplitude and location from channel to channel. The tumor
reflection is at different time instants in different channels. This is because of the difference
in the relative distance of the tumor to each antenna element. Hence the tumor signature
will add incoherently in the averaging process and is suppressed in the average signal. Thus,
removing the average from the signal removes mostly the skin artifact.
Averaging best works when the skin reflection is similar in all channels. In such case, it can
totally remove skin artifact from the data. Nevertheless, skin structure is not the same all
over the breast and this affects the similarity of the skin reflections at different receivers. One
of the factors that changes the skin response in different locations is the variation in skin
thickness in different parts of the breast (Ulger et al., 2003). Another contributing factor is the
heterogeneity of the breast tissue under the skin surface which can cause variations in the skin
backscatter.
As mentioned above, skin response does vary from channel to channel and this variation
affects the ability of the averaging in removing the skin artifact thoroughly. Another inherent
problem of the averaging method is the distortion to the possible tumor reflection. This is
because during the averaging process the tumor and clutter responses from all channels are
added and averaged incoherently. This average is then subtracted from each channel and
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consequently an unwanted averaged version of the clutter and tumor response is added to
each channel which deteriorates the tumor signature and is undesirable.

3.3 Weighted average (Space-Time filter)

An improvement over averaging method is the Space-Time filter proposed in (Bond et al.,
2003). In this method, a weighted average algorithm makes use of the similarity of the early
time responses in antenna elements to estimate and remove the artifacts in this portion of
the received signal. To do this, a coefficient is assigned to each channel response and then
averaging is performed through all the channels using the filter coefficients. The filter weights
assigned to each channel is chosen to minimize the mean-square error over the early time
response, where only the skin reflection exists. The following paragraphs discuss this method
in detail (Bond et al., 2003).
To remove the skin artifact from the first channel out of N channel responses, the filter weights
could be derived as follows. Suppose that the skin artifact at nth sample of the first channel
is to be removed. A window of length 2J + 1 is used to select part of each channel response
(except for the first channel) centered at the sample number n. Define bi[n], a (2J + 1) × 1
vector of these samples from the ith channel as

bi(n) = [bi(n − J), · · · , bi(n), · · · , bi(n + J)]T , 2 ≤ i ≤ N (2)

Vector b2N [n] is formed by concatenation of bi vectors of channels 2 through N as

b2N(n) = [bT
2 (n), · · · , bT

N(n)]T (3)

Let qi be the filter coefficients in the ith channel; similar to (3), q is formed as

q = [qT
2 , · · · , qT

N ]T (4)

The error function for this filter is:

e =
n0+m−1

∑
n=n0

|b1(n)− qTb2N(n)|2 (5)

In (5) the time interval n0 ≤ n ≤ (n0 + m − 1) is part of the signal that contains no backscatter
from lesions. The solution to these filter coefficient values are chosen to minimize the error
function defined in the (5) which is (Haykin, 1996):

q = R−1p (6)

where,

R =
1

m

n0+m−1

∑
n=n0

b2N(n)b2N(n)T (7)

and,

p =
1

m

n0+m−1

∑
n=n0

b2N(n)b1(n). (8)

High degree of similarity in early time response among the channels, results in an
ill-conditioned R matrix. To prevent error in calculation of R−1 in (6), R is approximated
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by reduced rank Rp (Bond et al., 2003)

Rp =
p

∑
i=1

λiuiu
T
i (9)

where λi is the ith of the first p significant eigenvalues of R and ui is the corresponding
eigenvector. R−1

p is determined by

R−1
p =

p

∑
i=1

1

λi
uiu

T
i . (10)

Substituting (10) in (6) yields the filter coefficients. These coefficients could later be used
to remove skin response in channel 1 by subtracting the weighted average of N − 1 other
channels as follows

b(n)1 = ∑
n
|b1(n)− qTb2N(n)|2 (11)

The same concept can be used for the other channels.
This algorithm improves the former averaging method in removing the skin response
effectively (Zhi & Chin, 2006). Although weighted average can remove the skin artifact more
effectively than the simple averaging, it still adds unwanted averaged data from clutter and
tumor responses from all signals to each channel response and hence deteriorates the tumor
signature (Bond et al., 2003). Another major drawback of this method is the need for a criterion
to decide on the moment when the early time response ends. This is because the tumor
response should not be included in the MSE minimization used to define filter coefficients
otherwise it will be removed from the output. However, the tumor response location is
determined in the detection process which is performed after skin removal step and is not
a priori knowledge.

4. Frequency domain approach for skin backscatter removal

4.1 Introduction

According to the Geometrical Theory of Diffraction (GTD) (Keller, 1958; Naishadham & Piou,
2004), backscattered signal from a number of scattering points has a pattern in frequency
domain. As described in (Cuomo et al., 1999) each scatterer in the view of the antenna
will create a harmonic term (pole) in frequency domain response of a UWB pulse radar.
This means that the frequency response of the backscattered signal is a combination of some
complex harmonic terms with different attenuation coefficient and frequencies. As predicted
by GTD, the attenuation coefficient is a function of the shape of the object and its frequency
is determined by the distance between the scatterer and the receiver. This representation
has interesting applications in UWB microwave radars. Fitting an appropriate model to this
pattern helps to reconstruct the signal beyond the bandwidth of the system which leads to a
higher image resolution without additional hardware cost. Cumo et. al (Cuomo et al., 1999)
have used this bandwidth extrapolation method to estimate the frequency response of the
backscattered signal in the gap between two different incoherent subbands.
In this section, we exploit this frequency domain representation to identify and remove the
harmonic terms produced by the skin, based on the backscattered energy of the object. After
removing the skin related information, the frequency response is reconstructed using the
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mathematical model and subsequently the time domain response is reproduced by the inverse
Fourier transform. The reconstructed time domain signal is then used to construct an image
of the breast medium.

4.2 Model parameters estimation

As stated before, the frequency response of the signal reflected from a number of scattering
points could be represented as the sum of a number of complex sinusoids. The number of
these terms equals to the number of the scattering points in the view of the antenna and the
multiple scattering effect (Moore et al., 1997). Mathematical model of the frequency domain
signal is (Piou, 2005),

y( f ) =
N

∑
i=1

Ai( f )e(j 4π
c Ri) f (12)

where, f is the frequency, c is the speed of light, N is the number of scattering points
and Ri is the range of the ith scattering point. Ai( f ) is the frequency dependence function
corresponding to the ith scattering point. This frequency dependence function is of the form
f α and the exponent α is known for some common scattering mechanisms. For example, a
flat plate has α = 1 or a sphere will have α = 0 (Moore et al., 1997). As stated by Cumo
et. al (Cuomo et al., 1999), f α scattering behavior can accurately be estimated by exponential
functions over a finite bandwidth interval. Hence, the following discrete model can represent
the frequency behavior of the reflected signal given in (12) above.

y(k) =
N

∑
i=1

aie
−(αi+j 4π

c Ri)k∆ f (13)

where ai are constant coefficients of the sinusoids, αi and Ri refer to the frequency
decay/growth factor and the range of the ith scatterer, respectively, and ∆ f is the sampling
frequency. In the rest of this section we provide the formulation to estimate model parameters
in (13). More details and derivations are available at (Piou, 2005).

4.3 State - space representation of the signal

From the system theory we know that the following state-space equations hold for
input-output relation in a linear system.

x(k + 1) = Ax(k) + Bw(k)

(14)

y(k) = Cx(k) + w(k)

where x(k) is the state vector, w(k) is the input vector and y(k) is the output of the system.
A, B and C are matrices characterizing the system and define its state-space behavior. The
transfer function of the system described in (14) is given in (15).

T(z) =
Y(z)

X(z)
= C(zI − A)−1B + 1 (15)

The impulse response of such system in general comprises a number of complex sinusoids
or poles of the system which are the roots of the denominator or as seen in (15) are the
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eigenvalues of A, the open-loop matrix of the system. Hence, the output signal of the system
y(k) can be written as

y(k) =
M

∑
i=1

aie
−(αi+jβi)k∆t (16)

In (16) M is the number of the poles of the system or the eigenvalues of A, ai are the constant
coefficients of each complex sinusoid and αi and βi are the damping factor and frequency of
the ith harmonic, respectively. ∆t is the sampling time interval.
Comparing (16) and (13) reveals that the frequency response of the backscattered signal and
the impulse response of a linear system have a similar mathematical structure. Thus, we can
use the mathematics of linear system identification to estimate the parameters of the frequency
model for the backscattered data. In the rest of this section the formulation to obtain model
parameters is presented.
Suppose that the frequency response of the backscattered signal is the impulse response of
a hypothetical linear system. Here we try to extract the system matrices and consequently
a model for the impulse response based on the eigenvalues or poles of this hypothetical
system. As mentioned before, we can derive the desired frequency model parameters from
this impulse response model.
The process of finding the hypothetical system matrices involves forming forward prediction
or Hankel matrix from the sample data of the frequency response of the backscattered signal
and deriving A through singular value decomposition of H, the Hankel matrix which is
defined as follows,

H =

⎛

⎜

⎝

y(1) · · · y(L)
...

. . .
...

y(N − L + 1) · · · y(N)

⎞

⎟

⎠
(17)

where, y(i) are the samples of frequency domain response of the backscattered data, N is the
number of data samples and L is chosen as N/3 (Naishadham & Piou, 2004). By singular
value decomposition, H is decomposed into three matrices,

H = UΣV∗ (18)

In which U is the left unitary matrix, V∗ is the right unitary matrix, and Σ is a diagonal matrix
containing singular values of H in a descending order. (∗) denotes the complex conjugate and
transpose.
Singular values of H could be separated into two subspaces, the signal plus noise subspace
and the only noise subspace. If the SNR value is high enough there would be a sharp transition
between singular values of the signal and those of noise. The criterion for separating the two
parts is described in (Naishadham & Piou, 2005). Hence, U, Σ, V∗ could be divided into two
different subspaces as follows,

H =
[

Usn Un

]

[

Σsn 0
0 Σn

] [

V∗
sn

V∗
n

]

(19)

which in (19) the subscripts ’sn’ and ’n’ refer to the signal-noise and noise subspaces
respectively. Removing the noise part, H̃ can be formed as follows,

H̃ = UsnΣsnV∗
sn (20)
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Using the balanced coordinate method (Piou, 2005), H̃ could further be factorized as

H̃ = ΩΓ (21)

where
Ω = UsnΣsn

1/2 and Γ = Σsn
1/2V∗

sn (22)

where Ω and Γ are the observability and controllability matrices respectively. A could be
derived from both the observability or the controllability matrices, here Ω is used to derive A.

A = (Ω∗
−rlΩ−rl)

−1(Ω−rlΩ−rf) (23)

where Ω−rl and Ω−rf are obtained by removing the last and first rows of Ω, respectively.
Now αi and Ri are related to the eigenvalues of A by:

αi =
−log|λi|

∆ f
and Ri = −c

Φi

4π∆ f
(24)

where Ri is the range and αi is the damping factor of the sinusoid related to the ith scattering
point. Φi is the phase of λi, the ith eigenvalue of A. To find the constant coefficients ai we use
the following equation,

ai =
(Cmi)(viB)

λ
f1/∆ f
i

(25)

where mi are eigenvectors of A, and vi are defined as

V = [m1 · · ·mp]
−1 =

⎡

⎢

⎣

v1

...
vp

⎤

⎥


(26)

In (25), C is the first row of Ω, f1 is the carrier frequency of the pulse and the kth element of
frequency vector is related to carrier frequency by

fk = f1 + (k − 1)∆ f (27)

To derive B, ΩN is defined,

ΩN =

⎡

⎢

⎢

⎢

⎣

C

CA
...

CAN−1

⎤

⎥

⎥

⎥



(28)

and B is obtained by,
B = (Ω∗

NΩN)−1(Ω∗
NyT) (29)

where y is the vector of the frequency samples of the backscattered data. Now ai could be
derived from (25). Now that all the parameters of the model in (13) are derived the frequency
response of the system could be reconstructed.
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Fig. 3. Antenna array and tumor configuration

5. Evaluation of the performance of the frequency domain skin removal in

comparison with other methods

The present section applies the frequency domain skin removal method described in section 4
in different scenarios and compares its performance with other methods. The focus in the first
part is more on details of applying the formulation provided in Section 4 on a simplified breast
model. The second part will apply the method in a more realistic scenario and compares the
results with the other methods.

5.1 Simplified Breast Model

As discussed in Section 4, the backscattered signal of a UWB pulse is the summation of some
harmonic terms. The number of these terms depend on the number of scattering points and
the multiple scattering effect. Each harmonic term consists of a complex exponential and a
coefficient. The argument of this complex exponential is the pole of the hypothetical system
mentioned in Section 4. By removing the poles corresponding to the skin reflection from the
frequency domain signal, all the skin related information will be removed from time domain.
The process is as follows.
The received signals are first converted into frequency domain using Fast Fourier Transform
(FFT) algorithm. The frequency domain signals are then processed to extract the model
parameters stated in the previous section. Among these parameters, ais are directly related
to the amplitudes of each of the backscattered pulses. This can be explained as follows. In
Equation (13), ai is a complex coefficient which can be written as |ai|e

jθi where θi is the phase
of ai. Taking the inverse Fourier transform of Equation (13) yields

x(t) =
N

∑
i=1

|ai|
2αicos(θi)

α2
i + (t − 4πRi/c)2

(30)

As seen in Equation (30), |ai| is proportional to the amplitude of the pulse in the time domain.
However, the amplitude of the pulse backscattered from the tumor is much smaller than the
skin backscatter. Hence, a threshold could be defined to remove poles with dominant ai values
from the frequency response of the signal. Removing the poles over the stated threshold
ensures that only the poles corresponding to the skin will be removed from the signal. This
will remove the skin effect both in the early time and the late time responses as the elimination
in frequency domain will affect the whole time domain signal. Hence, the tumor reflection will
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be preserved without the skin late time response interference in the signal. After removing
the skin related poles, the frequency domain signal is reconstructed using the mathematical
model (13) and then converted back into the time domain using the inverse-FFT algorithm.
Hence, the reconstructed signal will only contain contributions from the tumor and clutter.
Clutter will be rejected later using confocal imaging algorithm described in Section 1. We will

Ant. No. x y z Ant. No. x y z

1 35.71 0 35 13 -35.71 0 35
2 34.50 10.24 35 14 -34.50 -10.24 35
3 30.93 17.86 35 15 -30.93 -17.86 35
4 25.26 26.26 35 16 -25.26 -26.26 35
5 17.86 30.93 35 17 -17.86 -30.93 35
6 9.24 35.50 35 18 -9.24 -35.50 35
7 0 35.71 35 19 0 -35.71 35
8 -9.24 35.50 35 20 9.24 -35.50 35
9 -17.86 30.93 35 21 17.86 -30.93 35
10 -25.50 26.26 35 22 25.26 -26.26 35
11 -30.93 17.86 35 23 30.93 -17.86 35
12 -34.50 10.24 35 24 34.50 -10.24 35

Table 1. Antenna Arrangement

first describe the idea in detail using a simplified simulated breast model using SEMCAD X
(version 13) software package for an antenna array with 24 elements in a circular configuration
around the breast in order to show the ability of the method to remove the skin reflection from
the backscattered signal. The breast medium is modeled by a hemisphere with a radius of
50mm and thickness of 2mm as the skin layer. A spherical tumor with a radius of 2mm is
placed on the central axis of the hemisphere and at a height of 35mm from the center of the
hemisphere (x = 0mm, y = 0mm, z = 35mm). The model and the antenna locations are shown
in Figure 3 and Table 1 respectively. The relative permittivities of the skin and breast tissues
are set to the values given by (Fear et al., 2002) (ǫr(skin) = 36, ǫr(tissue) = 9). The dielectric
value assigned to the tumor is the measured dielectric value of the malignant tumor ǫr = 50
(Fear et al., 2002). Figure 4 shows the signal received in channel 1 and its spectrum. As the
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Fig. 4. Signal received in channel 1 and its frequency response
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skin reflects the largest energy among the reflectors in the breast medium, the high energy
dominant poles in the frequency domain will correspond to the skin backscatter. Hence a
threshold may be used to remove these dominant poles. The threshold is defined based on
the ratio of the backscattered energies of the skin to the tumor and is obtained as follows.
We fix the threshold value a little higher than the ratio of the largest possible peak tumor to
the skin response times the maximum reflection coefficient value ai. The maximum reflection
coefficient corresponds to the largest scatterer which is the skin surface. Hence, by removing
all the poles with ai values larger than this threshold from early time response we make sure
that only reflections larger than the tumor reflection is removed from the signal. Many factors
can affect the skin to tumor response ratio and more study is needed to consider all the factors
affecting this ratio and obtain an optimized threshold value. Here, to show the basic idea of
the current method, we consider three factors, tumor size, skin thickness and tumor location
to determine the highest possible ratio. To experimentally estimate the highest possible skin to
tumor response ratio, the tumor reflection is isolated from the other reflections by performing
two different simulations. One simulation is done without the tumor and the second one
is with the tumor. Subtracting the results of these simulations yields the tumor signature.
According to (Ulger et al., 2003) breast skin thickness varies in the range of 0.5-3.1mm; hence
two extreme cases (0.5 and 3.1mm) are simulated in the experiments. The tumor size is set
2mm and 5mm which is well within the range of the early breast cancer. Then the tumor
location is varied on the line connecting the center to the antenna location from the center of
the breast hemisphere to 5mm below the inner layer of the skin as the tumors so close to the
skin can be detected by examining the surface of the breast.
Tables 2 and 3 show the tumor to skin peak response ratio for the skin thickness of 0.5mm and
3.1mm respectively.

Location \ Tumor size 2mm 5mm

Center 9.04E-05 1.81E-04

Under The Skin 3.80E-03 5.20E-03

Table 2. Skin to Tumor Ratio (Skin Thickness: 0.5mm)

Location \ Tumor size 2mm 5mm

Center 7.72E-05 1.69E-04

Under The Skin 2.10E-03 4.00E-03

Table 3. Skin to Tumor Ratio (Skin Thickness: 3.1mm)

As expected, the tumor to skin response ratio increases as the tumor size increases. As seen
in the tables, the maximum ratio is obtained when the tumor radius is 5mm and is located
5mm below the skin, the highest tumor to skin response ratio is 0.0021, i.e. the skin reflection
is about 476 times stronger than the largest tumor reflection. Hence, by setting the threshold a
little larger than 0.21% of the largest reflection coefficient (amax) and removing all the poles
with ai values larger than this threshold from early time response we ensure that all the
reflections larger than the tumor reflection is removed from the signal. This would be true
in all other cases as we chose the largest possible tumor response to define the threshold.
Here, we chose 0.0025 × the largest reflection coefficient as the threshold value. The poles
extracted from the signal in channel 1 are shown in Table 4; Eliminated poles are indicated by
a ’∗’.
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Fig. 5. Confocal imaging of the breast after removing the skin reflection

Figure 6 shows the backscattered signal after removing the skin reflection. In the figure, solid
line represents the reconstructed signal super-imposed with the original signal represented by
the dotted line. As seen in the figure the skin backscatter is removed from the signal. Figure 7
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Fig. 6. The dotted line shows the original signal and the solid line is the signal after skin
backscatter removal.

shows a larger view of the late time part of the response. As shown in the figure, the late time
part of the signal, where the tumor response exists, has not been affected significantly.

5.2 Comparison with the Averaging and Weighted Average Methods

In this section, the performance of the frequency domain method is compared with the
averaging (Li & Hagness, 2001) and weighted average filter (Bond et al., 2003). To make the
breast model more realistic, the mapping of the dielectric values inside the breast medium is
obtained from an MRI image of a real breast as shown in Figure 8. The clutter produced due
to the heterogeneity of the breast tissue has significant effect on the effectiveness of the skin
subtraction methods. In the averaging based methods, the averaged clutter from all other

350 Novel Applications of the UWB Technologies

www.intechopen.com



Frequency Domain Skin Artifact Removal Method for Ultra-Wideband Breast Cancer Detection 15

1.5 1.55 1.6 1.65 1.7 1.75 1.8 1.85 1.9 1.95 2

x 10
−9

−4

−3

−2

−1

0

1

2

3

4
x 10

−4

Time(ns)

V
o
lt
a
g
e
(v

)

Fig. 7. The late time response of the reconstructed signal (line with dots) vs. the original
signal (solid)

Pole No. Reflection Coefficient Pole No. Reflection Coefficient

1 0.006030024 16 0.000576253
2 *0.330168871 17 0.000817322
3 *2.769236715 18 0.001800899
4 *8.978906551 19 0.003023339
5 *17.21322261 (MAX) 20 0.002570893
6 *16.81465757 21 0.000965909
7 *7.610199166 22 0.00044818
8 *1.504612836 23 0.000653675
9 *0.255119890 24 0.001118491
10 *0.052006092 25 0.000111348
11 0.005144400 26 0.00232989
12 0.005526546 27 0.000489255
13 0.004168027 28 0.010678232
14 0.001581127 29 0.022283477
15 0.001108609 30 0.022266937

Table 4. Reflection Coefficients(Eliminated poles are identified by *)

channels is added to each channel and makes the tumor detection even more difficult. As
seen in Figure 8, different dielectric constants of the breast internal regions appear as varying
intensities in the gray scale image. The scale for this mapping is given beneath the image.
Here, the regions with different dielectric values are approximated by spheres. The radius
of the sphere is chosen as the circumference of the region divided by 2π. The center of the
spheres are located at the same height and distance as the center of the corresponding region
from the center of the breast. Assume that the vertical axis in Figure 8 is z and the horizontal
axis is x in the Cartesian coordinates. In this configuration, y would have an inward direction
perpendicular to the xz plane. To make the model 3D, the angle φi (between the position
vectors of ith sphere center and x axis) are chosen randomly in the interval [−π, π]. In this
experiment, the tumor coordinates are x=0, y=0, z=35 (mm). Figure 9 shows the model
obtained. The locations of the sphere centers are given in Table 5.
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Fig. 8. 2D mapping of the dielectric values of the different regions of the breast
tissue(source:(Kosmas & Rappaport, 2005))

Fig. 9. 3D Model Constructed based on MRI image, shaded region shows the scanning area

Region x y z ǫr Region x y z ǫr

A 0 0 17 5.3 E 16 10 4 4.8
B -25 0.9 22 5.2 F 11 -9 11 5
C -28 26 5 4.8 G -36 -25 5.5 5
D 4 27 7 4.8 H 27 4.7 22 5.2

Table 5. Dielectric region centers (mm)

In this model, the skin layer thickness is set as 2mm. The antenna placement, physical
parameters of the normal breast tissue and tumor are set as described in the previous section.
As for the clutter regions, dielectric values are obtained from the MRI image as stated above.
These values are given in Table 5.
The skin reflection is removed from the simulated backscattered signals using all three
methods: frequency domain approach, averaging and weighted average filter to compare
the performance of these methods. A 2D image of the breast is formed by applying confocal
imaging process on the processed signals. The resulting images from the three methods are
shown in Figure 10. Due to the symmetry of the tumor location to the antenna elements in the
array, the tumor response is totally eliminated from the image processed by averaging and
filtering methods. This is because, the tumor response will add coherently in the averaging
process (due to the symmetry) and hence will appear in the average signal. Hence, subtracting
the average removes the tumor backscatter as well as the skin backscatter. However, in
frequency domain approach, each signal is processed separately and no other data is added
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(b) Weighted Average Filter
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(c) Pole Removal

Fig. 10. Breast images using three skin subtraction methods: Averaging(a), Weighted
Average(b), Pole removal(c)

to or subtracted from the signal, the tumor signature remains intact. This is confirmed in
Figure 10. As seen in the figure, the tumor is detected at the central axis of the breast.
To compare the performance of the three methods in general case, the tumor is located in off
center coordinates (x = 35 , y = 0, z = 15). The other parameters of the model are the same as
the previous model.
Again, the skin reflection is removed using the three mentioned methods. The results are
shown in Figure 11.
As the figure reveals, all three methods have eliminated the skin effect and the tumor is
detected in the resulting image. To further evaluate the performance of the skin removal
methods, the peak Tumor to Clutter Ratio (TCR) for the three methods is compared in Table 6.
As seen in the table, the tumor to clutter ratio is the highest for frequency domain approach

Skin-Removal Method TCR

Pole-Removal 3.831
Weighted Average 2.082
Averaging 1.837

Table 6. Tumor to Clutter Ratio (TCR)
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(b) Weighted Average Filter
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(c) Pole Removal

Fig. 11. Tumor at: x = 35, y = 0, z = 15 (mm), Averaging(a), Weighted Average(b), Pole
removal(c)

and is the lowest for simple averaging. This is expected since pole removal method processes
each signal individually unlike the other two methods which add clutter from other signals
and degrade the tumor reflection.

6. Conclusion

The high contrast in the dielectric value of the skin relative to the normal breast tissue and
air produces a strong backscatter in UWB breast cancer detection method. Such strong
backscatter can totally mask the tumor reflection and hence has to be removed from the
signal. Currently, two methods are used in practice to remove skin reflection. Both methods
exploit the similarity of the skin reflection in the signals collected by an array of antennas to
reconstruct and remove the skin reflection. Although these methods can significantly reduce
the skin contribution in the backscattered signal, they have some shortcomings. Both methods
use averaging to estimate the skin backscatter from the signals collected in different elements
of the antenna array. As a result, if the tumor is approximately equidistant to some of the
elements of the array, its reflection will suffer a high attenuation in the processed signals.
This will make the tumor detection very difficult or even impossible. Another problem of the
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averaging based methods is that they add the averaged version of the noise and clutter from
all channels to each individual channel which makes the tumor detection even more difficult.
In addition, as the tumor reflection should not be included in the skin reflection estimation
process, these methods need to determine the early time part of the signal where only the skin
reflection exists. However, the location of the tumor in the signal is not known prior to the
detection process.
This work introduces a new approach in removing the skin reflection from the backscattered
signal in UWB breast cancer detection. In this approach, the backscattered signals are
analyzed in frequency domain to identify and remove the skin related information from
the frequency response. Based on Geometrical Theory of Diffraction (GTD), a mathematical
model is applied on the frequency response of the signal. Then, the terms corresponding to
the skin are removed from the model and the signal is reconstructed. Performance of this
method is compared with the other existing methods in Section 5. As shown in Section 5,
the frequency domain approach can detect the tumor even when it is equidistant to all the
elements of the array. Besides, no extra noise and clutter is added to the signal as each signal is
processed individually. Thus, the frequency domain approach shows higher tumor to clutter
ratio in comparison with the other two methods. However, more investigations is needed
to determine some parameters of the process such as the threshold used to remove the skin
related terms from the frequency response. To optimize parameters such as the number of the
antenna elements needed in the array, type of the antenna, pulse shape, etc. the method has
to be applied on more realistic scenarios similar to the human breast.
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