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1. Introduction  

Cognitive radio (CR) improves spectrum efficiency to satisfy increasing demands on 

wireless transmission by dynamic spectrum access without interfering with legacy 

networks. In 2004, IEEE 802.22 Working Group was formed to develop a standard for 

wireless regional area networks (WRANs) based on CR technology (Hu et al et al., 2007). It 

is expected to obtain a broadband access to data networks on the vacant TV channels while 

avoiding harmful interference to licensed TV broadcasting in rural areas within a typical 

radius of 17km to 30km (Stevenson et al., 2006). 

Ultra wideband radio (UWB), a promising technology, has found a myriad of exciting 

applications as well as generating a great deal of controversy, for its extremely broad 

bandwidth transmission as well as its revolutionary way of overlaying coexistent RF 

systems could cause interference on them (Lansford, 2004; Parr et al., 2003). Over the years, 

the co-existence problem of UWB has been all along a hot topic in the academy, industry, 

and regulatory bodies. After years of public debates, arguments, and comments, two 

important solutions to the co-existence problem are made—the policy-based power 

emission mask (FCC, 2002) and the device-centric cognitive radio (Lansford, 2004; Walko, 

2005; Haykin, 2005). So far, several cognitive UWB schemes have been proposed, among 

which are soft-spectrum (Zhang & Kohno, 2003) scheme and detection-and-avoidance 

(DAA) scheme (Kohno & Takizawa, 2006). 

Reliably detecting of weak primary signals is an essential functionality for a DAA UWB system 

as soon as a primary user (PU) comes back into operation on the operating channels. Two types 

of primary users are defined in a WRAN which are TV services and wireless microphones 

(WMs). Compared with TV services, it is tougher to detect WM signals for the following two 

reasons. Firstly, wireless microphones are low power devices and occupy a narrow bandwidth. 

The transmission power of a WM is as low as 50mW in a 200kHz bandwidth. When the sensor 

is several hundred meters away from this WM signal, the received signal-to-noise ratio (SNR) 

may be below -20dB (Zeng & Liang, 2007). Another, they utilize arbitrary unused TV bands and 

are deployed for a short time such that it is difficult for CR users to obtain much information on 

WM signals (De & Liang, 2007; Dhillon & Brown, 2008).  

This chapter will concern two questions. Firstly, how to detect the weak primary signals. 
Secondly, how to avoid such interference from the primary user and how to coexist with it. 
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To address the first problem, we consider detecting multiple WM signals in a WRAN when 
UWB users want to use this spectrum and propose a singular value decomposition (SVD) 
based algorithm. To verify the better performance by using the suggested approach, 
simulation results by comparing to the traditional methods will be shown. For the second 
concern, a pulse-shaping scheme under the limit of a power spectrum density algorithm will 
be proposed. In a cognitive environment, the re-design of pulses should be agile enough and 
easily reconfigurable. Furthermore, to avoid interfering with the primary system, the 
transmission power o f UWB should be considered.  

2. Detection of weak primary signals in a cognitive radio network 

2.1 Basic assumptions and problem formulation 
Several methods have been suggested to detect WM signals. In (Mossa & Jeoti, 2009), a 
cyclostationary filter is proposed to grasp the existence of WM signals and to estimate their 
frequency locations. Obviously, such database dependent methods can not adapt to the 
dynamic signal detecion. (Lei & Chin, 2008; Wu et al., 2009) proposed beacon based methods 
for wireless microphones but these put the onus on many already-deployed incumbent 
wireless microphones. (Zeng & Liang, 2009; Unnikrishnan & Shellhammer, 2007) investigate 
the method based on eigenvalues of received data matrix when a WM signal is present but 
can not solve the multiple WM signals detection in a wideband cognitive network. To the 
best of our knowledge, the literature of wideband spectrum sensing for multiple WM 
signals is very limited. Actually, it is inevitable that multiple wireless microphones 
appeared simultaneously. Furthermore, performing wideband spectrum sensing can 
improve detection efficiency and maximize the opportunistic throughput (Quan et al., 2008).  
(Kalke, 2005) estimated that about 25,000 licensed wireless microphones are utilized by 
recording studios of TV broadcasters, organizers and performers in concerts and theatres, 
commentators in sports events, film production crews and government agencies. To avoid 
interfering to each other, these WM signals must operate in different center frequencies with 
enough guard bandwidth. To detect multiple WM signals in a wide bandwidth, (Lim et al., 
2007) suggested to use a cyclostationary filter with a filterbank to detect every sub-channel 
which is divided from the wide sensing spectrum in advance. If a conventional energy 
detector is used, the sensing process has to include two steps: coarse sensing and fine 
sensing. The former step determines the presence of WM signals and the latter step is 
required to decide which channel is occupied (IEEE 802.22 working Group for WRAN, 
2006). Obviously, the system complexity and sensing periods will be greatly increased by 
using traditional methods to sense WM signals in a wideband spectrum. 
In our work, we propose a singular value decomposition based algorithm to detect multiple 
WM signals in a CR network which can sense a wideband channel consisting of multiple 
narrowband channels. After performing SVD on the received data matrix of a wideband 
spectrum, the presence of WM signals is detected by comparing the singular values with a 
prefixed threshold and the number of WM signals can be determined at the same time. 
Then, the WM signals are approximated and the center frequencies of these WM signals are 
estimated. Consequently, guard bandwidths will be set on the two sides of the primary WM 
signals and CR users can still work on the other spectra within the sensing bandwith 
without interfering with the primary wireless microphone users. The detection threshold 
and probability of false alarm are derived and simulation results confirm that our method is 
very effective and robust to detect and estimate multiple WM signals in a wideband 
spectrum. 
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Consider a CR network with N samples utilized to perform spectrum sensing at the ith CR 
user. Then the received signals at this CR user have two hypotheses as 

 0 : ( ) ( )

: ( ) ( ) ( )i i

r n

r n h u n


  

i i

1 i i

H u n
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Here H0 and H1 respectively mean the primary user is inactive and the licensed user is 

operating. hi is the channel gain between the PU and the ith secondary user. si represents the 

received PU signals by the ith SU and ui is AWGN with zero mean and variance 2
u , 

respectively.  The test statistic for an energy detector is given by 
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Under the hypothesis H0, it shows a Gaussian random distribution when N is large with 

mean 2
u  and variance 42

u
N
  . Hence, for a given probability of false alarm Pf, the threshold 

 of an energy detector can be derived as 
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where 
2 /2( ) (1 / 2 ) t

x
Q x e dt

     is the normal Q-function.  

In (Unnikrishnan & Shellhammer), it is pointed out that most wireless microphones use analog 
frequency modulation (FM) and a WM signal occupies only 200kHz. Specifically, most energy 
of a WM signal is contained in an only 40kHz bandwidth (Notor, 2006). However, IEEE 802.22 
draft requires the sensing spectrum is at least one channel (6, 7 or 8MHz), and hence the 
proportion which a WM signal occupies is below 3%. Based on the above analysis, s(t) can be 
modeled as a summation of multiple single-tone cosinoidal signals as 

 
1

( ) cos(2 )
P

k k kk
s t A f t     (4) 

where Ak, fk and k respectively denote the amplitude, center frequency and phase of the kth 

WM signal and P is the number of WM signals in the sensing spectrum. k can be modeled 

as a uniform random variable over [0, 2). Without loss of generality, we assume si and ui 

are independent of each other and 
22

WM

u

P
SNR 


 denotes the SNR of the primary WM 

signals received by the ith CR user where PWM is the total power of P WM signals. 
In this chapter, we consider that there are multiple WM signals in several sensing channels 
and each channel is a TV channel with 6MHz bandwidth. Under this assumption, we focus 
the detection of multiple WM signals on a wideband spectrum. 

2.2 SVD based approach to detect and estimate multiple WM signals 

In this section, we will present the SVD based method to detect the presence of WM signals 
and to estimate the number and center frequencies of these detected WM signals. 
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2.2.1 Technology to detect multiple WM signals 

SVD plays an important role in signal processing and statistics, particularly in the area of 

linear systems. For a time series r(n) with 1,2, ,n N  , commonly, we can construct a 

Hankel matrix with M = N – L + 1 rows and L columns illustrated as follows:  

 

(1) (2) ( )

(2) (3) ( 1)

( 1) ( 2) ( )

r r r L

r r r L

r N L r N L r N

 
  
 
 

     

R




  


 (5) 

then R is an ML matrix. Its elements can be found by substitution of r(n)  

 ( 1), 1,2, ,ml r m l m M   R   and 1,2,l L  . (6) 

Using the SVD, R can be factorized as  

 HR UΣV  (7) 

where U and V are an MM and an LL unitary matrix, respectively. The columns of  U and 

V are called left and right singular vectors, respectively. 1 2( , , , )mdiag   Σ   is a diagonal 

matrix whose nonnegative entries are the square roots of the positive eigenvalues of HR R  

or HRR . These nonnegative entries are called the singular values of R and they are 

arranged in a decreasing order with the largest one in the upper left-hand corner. [ ]H 

denotes the complex transpose of a matrix. 
When no any primary WM signal is present, the received signal r(n) includes only AWGN 
contribution such that its singular values are similar and close to zero. When WM signals 
are active whose power is higher than a threshold, there will exist several dominant singular 
values to represent these WM signals. As a result, the WM signals can be detected by 
examining the presence of dominant singular values.  
It is critical to determine the number of WM signals P and we will present such method in 
the following part. To simplify our analysis, we assume that the power values of all WM 
signals received in the detected spectrum are approximately same, that is to say A1  A2   
 AP. Since the SNR of primary WM signals received by the secondary detectors is usually 
very weak, we think this assumption is feasible. Several methods can be utilized to 
determine if the dominant singular values are present. It is pointed out in (Teh et al, 1995) 
that the relationship between the number of dominant singular values K and the number of 
single-tone cosinoidal signals P has the form as K = 2P, therefore, threshold  can be adopted 
which is the ratio between the first singular value and the (2X+1)th singular value. That is to 
say, if the following equation is true, P WM signals can be declared to be present as 

 1

2 1
If , then 

X
P X



     (8) 

and the expression of  will be derived in Section 2.3. 

2.2.2 Technology to estimate the center frequencies of multiple WM signals 

Once WM signals are detected to be active in the sensing channels, the center frequencies of 
these primary WM signals need to be estimated such that a guard bandwidth can be 
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retained and CR users utilize the other spectra to improve spectrum efficiency. Next, we will 
present the frequency estimation technique by using SVD. 
After P WM signals are detected to be active, the data matrix R in (5) is the superposition of 
the WM signal space and AWGN space and R can be partitioned into two subspaces as 
follows 

 
   0

0

HSH
S U S U

U

H H
S S S U U U S U

 
   

 

   

Σ
R UΣV U U V V

Σ

U Σ V U Σ V R R

 (9) 

where  

 1 2 2( , , , ),S Pdiag   Σ   (10) 

and 

 2 1 2 2( , , , )U P P mdiag     Σ   (11) 

with 1 2 2 2 1 2 2P P P m                corresponding to the singular values in 

the WM signal subspace and the noise subspace, respectively. 1, 2,, 2P are 2P dominant 

singular values which correspond to the P WM signals. H
S S S SR U Σ V  and 

H
U U U UR U Σ V are the WM signals subspace and the noise subspace, respectively. By 

rearranging RS into a time serial, we can get the estimated data vector of WM signals 

1 2[ , , , ]TNy y y y which includes P WM signals. Next, we will present the algorithm to 

estimate P center frequencies corresponding to P WM signals. 

We define 1 2[ , , , ]TNY Y Y FFT( )Y = y  as the N-point Fast Fourier Transform (FFT) 

operation so we can use the theory of the Rife and Boorstyn (Rife & Boorstyn, 1974) as the 

frequency estimation of the WM signal which has the maximum power 

 1
1_ max max [ ] , 1k k k N     Y  (12) 

 1_ max
1

ˆ
s

k
f f

N
  (13) 

where |.| is the absolute value operator, max(.) operator means k1_max is the k1th sampling 
point where |Y[k]| obtains its maximum and fs is the sampling frequency.  
By applying equation (12) and (13), the center frequency of the WM signal which has the 
maximum power can be acquired. Following the similar step, we can obtain the 
approximate center frequency for the jth WM signal as 

 _ max max [ ] , 1j
jk k k N     Y  (14) 

and 

 
_maxˆ j

j s

k
f f

N
  (15) 
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where kj_max presents the kjth sampling point corresponding to jth peak magnitude.  
From the above analysis it can be concluded that this estimation algorithm is easy to 

implement since only FFT is required. By using FFT, the efficiency of frequency estimation 

can be improved greatly. Another, the inaccurate knowledge of P will not affect frequency 

estimation. If P is under or over estimated, then fewer or more frequencies will be estimated 

than the true number. 

Rife and Boorstyn pointed out that when SNR is high enough, the true frequency has a high 

probability lies in the range (Rife & Boorstyn, 1974) 

 ˆ ˆ[ ( / 2 ), ( /2 )]s sf f f N f f N   . (16) 

In summary, the SVD based detection and estimation algorithm consists of the following steps: 

Step 1. Pick a number L so that k < L < N  k (Tufts & Kumaresan, 1982), where N is the 
number of sampling points and k is the number of dominant singular values.  In 
our work, k = 2P. 

Step 2. Arrange the received signal vector r to form a Hankel data matrix R as (5). Then 
compute the SVD of R and obtain all singular values of R. 

Step 3. Calculate the threshold  = 1/2X+1 (X = 1,2,…) and compare the ratio 1/2X+1 with 

the predefined threshold . If 1/2X+1  , the WM signals are determined to be 
present and the number of WM signals can be derived by P = X. Otherwise, no WM 

signal is declared to be active. The derivation of   will be explained in Section 2.3. 
Step 4. If P WM signals are declared to be present, compute RS then arrange it into a data 

vector y.  Apply FFT on y and consecutively find the number of the point kj_max at 
which the kjth peak amplitude of the FFT is approached. 

Step 5. Obtain the estimated center frequency of jth WM signal by using (12 15). 

2.3 Theoretical analysis and determination of threshold 

In this section, we will derive the threshold  and probability of false alarm Pf. 

We denote RS (ML) and RU (ML) as the Hankel matrix of WM signals and an AWGN 

signal, respectively, such that RU ~ Np (0, ) where p is the dimension of RU and  is the 

covariance matrix. Since the power of WM signals is usually very low, the distribution of RS 

+RU can be approximated as Np (0, ). According to (Zeng & Liang, 2009; Johnstone, 2001), 

we have the following three theorems: 

Theorem 1. Assume M/L  1 and N is large enough, the largest singular value can be 

approximated as 

  
2 2

1
u N ML

N


   . (17) 

Theorem 2. Assume M/L  1 and N is large enough, the largest singular value follows the 
following distribution 

 
2
1

1
ML

ML

F
  


  (18) 

where  and  are called a center constant and a scaling constant and they are defined as 
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  21ML M L     (19) 

and 

  
1

31 1
1

1
ML M L

M L

       
. (20) 

F1 is the distribution function of Tracy-Widom distribution of order 1 which has the form 
as 

 
2

1
1

( ) exp ( ) ( ) ( ) ,
2 s

F s q x x s q x dx s
      

    (21) 

and q solves the Painlevé II differential function (Johnstone, 2001). 
Theorem 3. The distribution of rth largest singular value (r < L) has the approximate 
distribution as 

    2 2
1 1 ,, , , ,r L r M LM L M L r I c          (22) 

where cM,L is an empirical constant. 
Based on the above three theorems, as a result, Pf can be presented as 
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 (23) 

Hence, for a pre-determined Pf, the required threshold  can be represented as 

 
 
 1

, 2 1 , , 21

u

M L X M L f M L X

N ML

N F c p
 

 
 

      

. (24) 
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2.4 Simulation results 
2.4.1 Simulation parameters 

Since it is difficult to derive the accurate closed form expression of  and Pf, we need to 
resort to simulations for evaluating the performance of our approach. 
We consider the spectrum of interest is three consecutive channels which means the sensing 
bandwidth is 18MHz. We assume that three WM signals are distributed on this 18MHz 
bandwidth and their SNRs are same. The signals are firstly down-converted into baseband 
and filtered by a baseband filter with bandwidth 18MHz. And then, these WM signals have 
the center frequency of 2.4MHz, 8MHz and 14.2MHz, respectively. The selected sampling 
frequency fs must be larger than the Nyquist frequency of the WM signal which has the 
highest center frequency and in our simulation fs should be larger than 28.4MHz. To find the 

threshold , we require the probability of false alarm is Pf = 0.1. To evaluate the performance 
of frequency estimation, we define the mean estimation precision for the frequency 
estimation as 

 

3

1

3

j j

jj

f f

f



 


. (25) 

where jf  and fj are the estimated jth center frequency and the jth (j  3) true center 

frequency, respectively. To investigate our proposal, we compare our simulation results 

with a conventional energy detector whose threshold has been given in (3). 
It has been shown in (Tufts & Kumaresan, 1982) that when the column number L in a 

Hankel matrix satisfies the inequality 2P < L < N  2P, we can obtain the correct or 
approximately correct estimation result. However, to the best of our knowledge, it has not 
been seen that the optimal L theoretically, moreover, the optimal L is different in different 

cases. In our work, the simulation results show that satisfying 2P < L < N  2P, different L 
has no significant impact on the system performance and frequency estimation.  
In our work, without specific explanation, the sampling frequency is selected as fs = 36MHz 
and we select L = N/5 as the column number in our following simulations. 

2.4.2 Simulation results and analysis 

Fig. 1 shows simulation results of the probability of detection (Pd) vs. SNR when the proposed 
SVD based method and a classical energy detector are used. To investigate the effect for 
different WM signals, we show simulation results for the single WM signal with a center 
frequency of 2.4MHz and multiple WM signals, respectively. From this figure we can conclude 
that the detection performance can be improved greatly by using our method, especially for 
the single WM signal. For example, for the target Pd of 90%, a 4dB improvement can be 
obtained than an conventional energy detector by using the proposed approach for a single 
WM signal. For the multiple WM signals, an improvement of 2dB can be attained compared 
with the conventional energy detector. To evaluate the performance of the detector, the 
receiver operating characteristic (ROC) curves are illustrated in Fig. 2 when SNR is -12dB for 
the single WM signal and SNR = -10dB for three primary WM signals. We plot the Pd under H1 
against Pf under H0 when Pf changes from 0.001 to the desired 0.1. We can observe that the 
ROC curve of our algorithm is much higher than that of the energy detector for both the single 
WM signal and multiple WM signals which verifies the better performance of our detector.  
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Fig. 1. Comparison of Pd between the proposed SVD-based method and a energy detector 
when PU is a single WM signal and three WM signals. 
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Fig. 2. Comparison of ROC curve between the SVD-based method and an energy detector 

when PU is a single WM signal and three WM signals. 

To study the robustness of our algorithm, we first compare the Pd of our SVD based detection 
method under different column number L when three primary WM users operate 
simultaneously. Fig. 3 depicts the simulation results when L = 3N/4, N/2, N/3 and N/5, 
respectively. From this figure we can observe that although different L is taken, a good 
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detection probability can be achieved with very slight difference. Then, we compare the Pd of 
the proposed approach under different sampling frequency fs. The used sampling frequencies 
are 24MHz, 30MHz, 36MHz and 48MHz, respectively. Among these frequencies, 24MHz is 
lower than the Nyquist frequency of the WM signal whose center frequency is 14.2MHz. From 
Fig. 4 we can conclude that with the changing of fs, the probability of detection shows very 
slight difference. Even for the fs = 24MHz which is lower than the Nyquist frequency, a good 
Pd can be obtained which proves that our method is robust for different sampling frequency. 
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Fig. 3. Pd vs. SNR with different column number L for three WM signals. 

 

-18 -17 -16 -15 -14 -13 -12 -11 -10 -9 -8
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SNR

P
d

fs=24MHz:Proposed SVD Method

fs=30MHz:Proposed SVD Method

fs=36MHz:Proposed SVD Method

fs=48MHz:Proposed SVD Method

 

Fig. 4. Pd vs. SNR with different fs for three WM signals. 
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To investigate the estimation performance of the WM’s center frequency, we plot the mean 

estimation precision   in Fig. 5 and 6 when L and fs change. From these two figures we can 
see that the proposed frequency estimation method is very effective. For example, for the fs 
of 36MHz and SNR = -10dB, the absolute error of the worst estimation is within 10kHz. 
Whereas, a nearly perfect frequency estimation can be obtained for fs = 36 and 48MHz when 

SNR = -10dB. In Fig. 5, an obvious result can be found that  gets better with the increase of 
fs. This is feasible since it is more possible to find the jth magnitude when the sampling rate 
is larger. However, higher fs means a higher requirement for the system complexity. As a 

result, a tradeoff is needed to consider between system complexity and a satisfying . Figure 
5 also proves that the estimation precision can be degraded severely if a  fs lower than the 

Nyquist frequency is used. Fig. 6 presents the mean estimation precision  when fs = 36MHz 
and L = 3N/4, N/2, N/3 and N/5, respectively. From Fig. 6 we can conclude that the 

difference of L has no significant impact on , especially when SNR is higher than -12dB. 
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Fig. 5. Mean estimation precision of center frequency vs. SNR with different sampling 
frequency fs for three WM signals. 
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Fig. 6. Mean estimation precision of center frequency vs. SNR with different column number 
L for three WM signals. 

2.5 Conclusions 

In this part, we proposed a SVD based approach to detect and estimate multiple WM signals 
in a WRAN when a UWB system wants to use this spectrum. After perforimg SVD on the 
received data matrix, the presence and number of these WM signals can be detected and 
their center frequencies can be estimated. Consequently, guard bandwidths are retained to 
protect these primary users and the other detected spectra are available for the CR users. 
Simulation results prove that our method is simple and robust and it is especially suitable 
for detection and estimation of WM signals in a wideband spectrum sensing. 

3. Detection and avoidance scheme based on orthonormal expansion 

As well known, UWB technology is divided into two distinctive groups. The first group, 
known as multi-band UWB (MB-UWB), divides the entire UWB band into many sub-bands, 
with each sub-band being allocated a sinusoidal carrier. The DAA scheme mentioned above 
originates from this multi-band way of using UWB spectrum—each time a sub-band is 
detected being interfered, the carrier allocated for it is turned off. The second group is 
known as direct sequence UWB (DS-UWB), which, unlike the first, typically adopts a single-
band transmission and depends entirely on varying pulse shapes to fit given spectrum 
masks; therefore, it is relatively difficult to turn on/off individual sub-band. A question is 
thus raised: Can the spectrum of the single-band DS-UWB be soft?  
To answer this question, let us first investigate the currently proposed DS-UWB pulses: 
Rayleigh monocycle, Cubic monocycle, Gaussian monocycle, Gaussian doublet (Benedetto 
et al., 2006; Benedetto et al., 2004), high-order Gaussian derivatives (Win, 2000), modified 
Hermite polynomials (Ghavami et al., 2001) and so forth. The finding is somewhat 
discouraging—all of them feature fixed spectra. Used individually, they are not soft at all. 
Then, can the combinations of them be soft? As addressed in (Benedetto et al., 2004), a group 
of Gaussian derivatives have been linearly combined to generate an aggregate pulse that 
yields maximum spectral capacity. Such a combination adopts random-search optimization 
method, in the sense that a large number of combination coefficients are randomly 
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generated and the resulting combinations are evaluated. The combination that has 
minimum distance to the targeted spectrum mask is picked up as the optimal combination. 
This optimization method demands a huge number of iterations before finding the 
optimum. The converging time varies from situation to situation, so the linear combination 
methods are something between fixed and soft.  
Moreover, cognitive UWB devices need to design and re-design the pulses on the scene of 
communication instead of having them preset or fixed in factories. In cognitive environment, 
the re-design of DS-UWB pulse must be agile enough and easily re-configurable. 
To this end, we propose a soft-spectrum-based detection-and-avoidance algorithm for the 
single-band DS-UWB systems. The algorithm adopts a co-basis expansion method, in the 
sense that the well-known Hermite-Gaussian functions (HGFs) are used to constitute a 
common basis for both the time and frequency domains. The co-basis has twofold 
advantages: First, it yields the pulses directly from expanding the given soft-spectrum 
masks in frequency domain, so the pulses can conform to arbitrary spectrum masks. Second, 
the co-basis (that is, the HGFs) can be digitalized and built into matrices, such that 
whenever a new soft-spectrum is sensed or discovered, its expansion by the co-basis is as 
simple as matrix multiplications. As a result, the algorithm is really soft, low complex, 
always convergent, and agile enough for cognitive purpose.  

3.1 The establishment of the soft-spectrum mask 

The criterion for the design of DAA pulses is the ruling of the Federal Communications 
Commission (FCC), namely, the FCC’s power emission mask (FCC, 2002), which ranges from 
3.1 to 10.6GHz with power limit Pmax=−41.3dBm/MHz. Within the allocated UWB band, other 
radio systems such as IEEE 802.11a or HiperLan has already been in operation. For cognitive 
purpose, the DS-UWB radio must be aware of the existence of such primary systems before 
transmission and automatically avoid the frequency bands in use by primary users. 
In the design of the DAA scheme for DS-UWB radio, our emphasis is placed on the side of 
avoidance. In order not to digress our focus, we leave the side of detection to reference to 
well-established spectral estimation methods in literature, for example, the multi-taper 
spectral estimator that performs fast Fourier transform (FFT) and threshold inspection 
(Haykin, 2005; Welch, 1967). Before transmission, the DS-UWB radio senses the ambient 
radio environment with a detecting unit. Upon detecting an in-use sub-band, it calculates 
the 10dB-bandwidth of the sub-band and marks the sub-band as forbidden. In a recursive 
manner, DS-UWB radio sweeps the entire UWB band and records all the forbidden sub-
bands. After the sensing process is over, the UWB radio establishes a soft-spectrum model 
that conforms not only to the FCC mask but also to the real-time radio environment. The 
soft-spectrum model so-established can be expressed as 

   max     
( )

0            
s

ss
s

P f I I
R f

f I

 
  

 (26) 

where Pmax=−41.3dBm/MHz, I=[3.1GHz, 10.6GHz], and Is represents the union of the 
forbidden sub-bands. 

3.2 The relationship between the soft-spectrum and the frequency response 

The DS-UWB radio is by nature a spread spectrum system, whose transmitted waveforms 
can be characterized as follows (Ye et al., 2004), 
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1

( ) ( )
cN

j
b c k p

k j

s t p t kT jT b c


 
     (27) 

where bk is the kth data bit with duration Tb; Tc is the chip duration; Nc is the spreading 

factor (that is, Tb=NcTc);  is the jth chip of the pseudorandom code; p(t) is the pulse 

waveform. Through substitution of variables Eq. (27) can be simplified as:  

   ( ) ( )i c
i

s t d p t iT



   (28) 

where  

   ci kN j   and ,
j

i k j p kd d c b   (29) 

The autocorrelation function of s(t) is given by (Proakis, 2003) 

   
1

( ) ( ) ( )ss dd pp c
c l

r r l r lT
T




     (30) 

where rdd(�) represents the autocorrelation function of the information sequence {di ∈{±1}}; 

rpp(�), the autocorrelation function of the pulse. Correspondingly, the PSD of s(t) is given by  

   
21

( ) ( ) ( )ss dd
c

R f R f P f
T

  (31) 

which indicates that the PSD of the transmitted waveforms depends not only on the 

frequency response of the pulse, P(f), but also on the PSD of the information sequence, Rdd(f), 

and on the chip duration Tc as well. However, since the sequence {di ∈{±1}} can be viewed as 

an uncorrelated random process with zero mean and unitary variance (Benedetto et al., 

2004; Ye et al., 2004), that is, rdd(l)=δ(l), and Rdd(f)=1, the autocorrelation function defined by 

Eq. (30) and the PSD defined by Eq. (31) can be further simplified respectively as follows,  

   *1 1
( ) ( ) ( ) ( )ss pp

c c

r r p t p t dt
T T




       (32) 

and  

   
21

( ) ( )ss
c

R f P f
T

  (33) 

By substituting Eq. (26) into Eq. (33), we obtain the frequency response P(f) of the 
transmitted DS-UWB waveforms that conforms both to the FCC mask and to the ambient RF 
environment, such P(f) we refer to as soft-spectrum mask, namely 

   
      

( ) ( )
0             

s
c ss

s

A f I I
P f T R f

f I

 
   

 (34) 
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where 

   max /10 910 10      (V/Hz)P
cA T    (35) 

3.3 The establishment of a co-basis for both the time and frequency domain 

The frequency response given by Eq. (34) is inherently an energy signal and can be uniquely 
expanded by orthonormal functions that span the signal base. But, an ordinary expansion 
does not suffice here. In the design of soft-spectrum-based DAA pulse, we need a common 
basis for both the time and frequency domains, that is, a co-basis. With this co-basis, the 
well-known orthonormal expansion method will do wonders for the design of pulses, 
yielding the waveform of the pulses (time domain) by expanding the soft-spectrum in the 
frequency domain.  
Hermite-Gaussian functions (HGFs) constitute ideally such a co-basis. 
The HGFs are combinations of Hermite polynomials with a Gaussian function, as written as 
follows (Ozaktas et al., 2000), 

   
2 1/4( ) ( 2  ) ,     2 / 2  !u l

l l l lu a H u e a l     (36) 

where Hl(�) denotes the lth order Hermite polynomial. The generation function for Eq. (36) 
is 

   
2 2 2  ( 1)

( ) ,       0,1,2...
( 2 )

l l
u ul

l l l

a d
u e e l

du

  
  


 (37) 

Note that the HGFs defined by Eqs. (36) and (37) are slightly different from those defined in 
classical mathematical textbooks—here, they are -scaled, so that they turn out to be the 

eigenfunctions of fractional Fourier transform (Ozaktas et al., 2000). In other words, because 

the HGFs are -scaled, they are shape-invariant to fractional Fourier transform (Ozaktas 

et al., 2000), that is, 

    /2{ ( )} ( )i l
l lF u e        (38) 

where denotes fractional Fourier transform (FRFT) operator; , the corresponding 

eigenvalues; , the order of the FRFT.  
The FRFT is a generalization of the ordinary Fourier transform with an order parameter . 

The -th order fractional Fourier transform is the -th power of the ordinary Fourier 

transform operation. When =−1, the corresponding FRFT operation is exactly the ordinary 

inverse Fourier transform. Under such circumstance, Eq. (38) becomes 

   1  { ( )} ( )l
l lF u i      (39) 

which indicates that the HGFs are shape-invariant to the inverse Fourier transform except 
for a phase shift. This nice property makes the HGFs constitute a common basis for both the 
frequency and time domain. To emphasize this, we introduce two normalized variables u 
and µ in place of the natural frequency f and time t. The relationship among them will be 
addressed later on.  
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3.4 The dimension of the co-basis 

Before proceeding, we need to determine the dimension of the co-basis, M, or equivalently, 

the number of HGFs involved in the expansion. Mathematically, the orthonormal expansion 

is least-mean-square approximation to the signal being expanded (Proakis, 2003), as stated 

as follows, 

   
1 1

2 2 2

0 0

[ ( ) ( )] ( )
M M

l l l
l l

Q P f c f df P f df c
  

 
 

        (40) 

where the square error Q manifests itself as in-band and out-of-band ripples in the 

expansion of the signal. In the case that the magnitude of the ripples is specified, Q can be 

computed according to the specifications and then M is obtained by solving Eq. (40). In 

other cases that the ripples are not of major concern, as in the current DAA case, M can be 

determined by rule of thumbs. For example, it has been verified by computer simulations 

that a medium M between 30 and 100 is sufficient for performing DAA functionalities that 

avoid two to four sub-bands. 

3.5 The representation of the soft-spectrum mask by the co-basis 

After determining the number of HGFs participating in the expansion, we need next to 
normalize the natural frequency argument of the soft-spectrum mask as given by Eq. (34). 
The purpose of such normalization is to let the support of the soft-spectrum mask match the 
support of the co-basis. The support of the co-basis is not compact, but its energy is mostly 
(say 90%) concentrated on a finite interval (Ozaktas et al., 2000) [ ], where  

   
( 0.5)

H
M

u
 

  
  

 (41) 

where  means rounding up to the nearest integer. uH is closely related to the dimension of 

the co-basis and is used to determine a scaling factor τ, 

   ( 0.5) / /H
H

H

u
M f

f
        (42) 

which has the dimension of time and helps to normalize the frequency and time arguments 
as follows: 

 u f   (43) 

  /t    (44) 

With the frequency and time thus-normalized, the soft-spectrum mask can be expanded by 
the co-basis as 

   
1

0

( ) ( )     
M

l l H H
l

P u c u u u u



      (45) 

where cl denotes the lth-order expansion coefficient given by  
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l l

l lu I u I

c u P u du

A u du A u du





 

 

   



 
 (46) 

where I  =[3.1τ, 10.6τ], representing the τ-scaled UWB band, and sI  represents the τ-
scaled union of the forbidden sub-bands. Put in matrix form, Eq. (46) means 

   ( )T THAu

N
 C HU HS  (47) 

where C={cl, 0≤l≤M−1} represents a column vector; N is an integer denoting the number of 
sample points required for numerically calculating the integration, and by rule of thumb, is 
chosen as N=2048 for general DAA functionalities; U and S are two N-sampled and unitary-
valued row vectors representing the entire UWB band and the forbidden sub-bands 
respectively; the superscript T denotes the transpose operation; H is an M by N matrix with its 
lth row denoting the (l-1)th-order HGFs, which are N-point-sampled on the interval [-uH, uH]. 
The waveform of the transmission pulse with normalized time argument is then obtained by 
applying FRFT to both sides of Eq. (45), namely, 

   
1

1

0

( ) { ( )} ( )
M

l
l l

l

p F P u i c





      (48) 

Finally, the waveform of the transmission pulse p(t) is obtained by de-normalizing the 
argument µ, that is, by substituting t/τ for μ in Eq. (48), namely 

 
1

/
0

( ) ( ) ( / )
M

l
t l l

l

p t p i c t


 


      (49) 

3.6 Implementation of the pulse by Software Defined Radio technique 
The pulse given by Eq. (49) involves linear combinations of M τ-scaled HGFs, which are 
continuous functions. The analogue generation of the pulse is very difficult, whereas the 
digital generation is much easier. Through modern SDR technique (Reed, 2002), the 
analogue p(t) can be sampled into a discrete time sequence as 

   
0

1

0
0

[ ] : ( ) ( / )
M

l
t nT l l

l

p n p t i c nT





     (50) 

where := means sampling. The period of T0 is determined as follows, 

   0
1

2 H

T
f

  (51) 

In the case of Nyquist sampling, the equality can be used, namely T0=1/(2fH); thus, Eq. (50) 
becomes 

   
1

0

[ ] ( )
2

M
l

l l
Hl

n
p n i c

u




   (52) 
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where n is defined on the interval equating to 2uH times the support of the co-basis, namely, 

   2 22 2H Hu n u    (53) 

Let . The length of the resulting sequence {p[n], -K/2≤n≤K/2} is then K or (K+1) 

depending on K being even or odd. Let us take it as K for easy discussion. Putting Eq. (52) in 

matrix form and denoting C={cl, 0≤l≤M−1} where C is given by Eq. (47), we obtain 

   ( ) THAu

N
 P U S H EΦ  (54) 

where P={p[n], −K/2≤n≤K/2} represents the pulse; E is an M by M diagonal matrix with the 

diagonal elements {ell} equating to the unitary complex values { } ; H, U and 

S have been defined previously; Ф is an M by K matrix with the l-th row representing the (l-

1)th-order scaled-and-discrete HGFs . 
We comment that the resultant P from Eq. (54) is a complex-valued sequence: Its real part is 
even, known as the inphase part; its imaginary part is odd, known as the quadrature part. In 
other words, P is a complex baseband signal, and consequently its generation needs two 
signal branches (one for the inphase and the other for the quadrature) (Reed, 2002).   

3.7 Detection and avoidance scheme 

In essence, the pulse P given by Eq. (54) is a sum of two quantities, each involving a series of 
matrix multiplications. The matrices H, E, and Φ are known a priori, keeping unchanged 
throughout the DAA operation. The row vector U represents the entire UWB band, keeping 
also unchanged. Therefore, the minuend in Eq. (54) is a constant sequence, which only needs 
to be computed once and then stored in the read-only memory (ROM), whereas the row 
vector S represents the sub-bands in use by primary users, and it may keep changing under 
a cognitive environment. Therefore, the subtrahend in Eq. (54) requires to be updated 
corresponding to the changing radio environment. Obviously, matrix multiplication is a 

dominant operation. To reduce computation burden, the product  is pre-computed 

and stored in ROM, so P only needs to be updated by computing the product of the row 

vector S (1 by N) with a matrix  (N by K). Accordingly, the DAA scheme can be 

devised as follows: 
DAA scheme (as illustrated in Fig. 7) 

Initialization: 
Input A, uH, N, H, E, Ф, and U.  

Compute product  and store it in ROM .  

Compute and store in ROM the intermediate matrix . 

Detecting: 
Sense the ambient channel and take samples during some quiet period. 
Perform FFT computation and multi-taper spectral estimation (Haykin, 2005; Welch, 
1967). 
Inspect the power emission level and make decision according to a prescribed soft 
spectrum policy. 
If a subband is in use by a primary user(s), mark it as forbidden.  
Repeat detecting until the entire UWB band is swept. 
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Avoiding: 
Build row vector S according to the following criteria: 
Let the amplitude of the forbidden sub-bands be equal to one. 
Let the amplitude of the other sub-bands be equal to zero.  
Insert smoothing curves at transitions from one to zero to prevent Gibbs phenomenon. 
Compute the instantly changing part  . 

Update  . 

Output the updated sequence P. 
Stop. 
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Fig. 7. Flowchart of the DAA Scheme 
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3.8 Computer simulations 
3.8.1 Examples 

As examples, we investigate the following two scenarios: 
1. No sub-band is in use by primary users; the entire DS-UWB band is accessable.  
2. Two sub-bands are in use by primary users: one at central frequency f1=4.5 GHz and the 

other at f2=7.5GHz. The bandwidth are both 500 MHz. 
The parameters involved are listed in Table 1. 
 

Name Notation Typical Values 

Lower frequency bound fL 3.1 GHz and Below 

Upper frequency bound fH 10.6 GHz 

Chip duration Tc 10 ns 

Amplitude limit A 2.7×10-11 V/Hz 

Nyquist sampling period T0 0.0472ns 

Dimension of the co-basis M 48 

Number of spectrum samples N 2048 

Length of the time sequence K 64 

Normalization factor τ 0.3774 ns 

Interfered central frequencies 
f1 

f2 

4.5GHz 
7.5GHz 

Bandwidth of the interfered sub-band Δf 500MHz 

Table 1. Basic Parameters involved 

For the first scenario, the PSD of the resulting pulse is illustrated in Fig. 8. As expected, the 
pulse occupies the entire regulated DS-UWB band. Raised-cosine curves have been inserted 
to smooth the transitional edges of the spectrum vector U and S, so the out-of-band ripples 
are ideally suppressed. 
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Fig. 8. PSD of the DAA Pulse Using the Entire UWB Band 
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Fig. 9. PSD of the DAA pulse avoiding two sub-bands on which primary users are 
operating 

Fig. 9 illustrates the PSD of the resulting pulse for the second scenario. As expected, the 
DAA pulse forms two 15dB deep valleys around the two sub-bands in use by the assumed 
two primary users, effectively avoid interfering the primary users. 
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Fig. 10. Waveforms of the DAA Pulse Avoiding Two Sub-bands 

The pulse waveforms for the second scenario (for simplicity, the waveforms of the first, 
which is similar to the second, is left out) is shown in Fig. 10. As seen, the pulse consists of 
two parts: The real part (on the top) is even, and the imaginary (on the bottom) is odd. 
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The autocorrelation function, as given by Eq. (32), of the DAA pulse is illustrated in Fig. 11, 
in which the narrow main-peak suggests that the DAA pulse is sensitive to time jitter, 
possibly more sensitive than an ordinary pulse, this is the price to pay for DAA.  
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Fig. 11. Autocorrelation Function of the DAA Pulses Avoiding Two sub-bands. 
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In multi-user or multi-access situations, the DAA pulse works in a similar manner as in a 
general DS-UWB spread-spectrum scheme. So the performance for multi-user or multi-
access under DAA operation is guaranteed by the performance of the pseudorandom or 
pseudo-noise (PN) sequence assigned for differentiating multi-users. Therefore, the cross-
correlation properties of the DAA pulses are out of concern here. 

3.8.2 Complexity 

The suggested DAA algorithm involves mainly matrix multiplications, for which the 
dominating operation is complex multiplication. Three factors dictate the total number of 
multiplications: first, N--the number of sampling points for performing numerical 
integration; second, M-- the dimension of the co-basis; finally, K--the length of the resulting 
sequence representing the transmission pulse.  
The unchanging part P requires roughly K(MN+M+N) complex-value multiplications and 
thus consumes most of the computer time. Given N=2048, M=48, and the resultant K=64, the 
complex-value multiplications totals 6,425,600 in the simulations. However, the P only 
needs to be calculated once, so it does not represent the real computational complexity. On 
the other hand, the changing part P´ requires to be updated frequently, but its 

computational time is reduced to NK because the intermediate matrix ( ) has 

already existed; therefore, the real computational complexity is (NK), totaling roughly 

131,072, roughly equivalent to 0.1 second if the digital signal processor embedded in the 
UWB radio operates at one million instructions per second. The amount of time does not 
vary regardless of the central frequencies and bandwidths of the sub-bands in use by 
primary users—as opposed to the changeable computational time in the linear combination 
method addressed in (Benedetto et al., 2004). Therefore, the DAA algorithm has predictable 
and managable processing delay, and is robust in real-time communications. 

3.9 Conclusion 

Detection and avoidance, as a cognitive radio scheme, has been proven effective for multi-
band UWB group. The basic idea underlying the DAA is turning off individual carrier-
tone on the interfered sub-band. However, coming to direct-sequence UWB, a competing 
technology group with the multi-band UWB, this idea of turning off tones ceases to be 
true because shutting off any sub-band would mean to re-design the pulses all over again. 
In a cognitive environment, the re-design should be agile enough and easily 
reconfigurable. To this end, we devise a DS-UWB-oriented DAA scheme by emphasizing 
the side of avoidance (that is, the re-design of the pulse) while de-emphasizing the side of 
detection by referencing the well-established spectral estimation methods in existing 
literatures. We propose a domain-less co-basis expansion method in the sense that 
Hermite-Gaussian functions are used to constitute a common basis (co-basis) for the time 
and frequency domains. One advantage of the co-basis is that the transmission pulses are 
directly obtained from the expansion of given soft-spectrum masks, so the resulting 
pulses fit into arbitrary spectrum masks. Another advantage is that the co-basis functions 
(that is, the HGFs) are discretized, built as matrices, and stored in ROM, such that 
whenever a soft spectrum is sensed or discovered, the DAA-enabled pulse is generated by 
merely matrix multiplying. The amount of computational time is thus trivial, and the re-
design of the pulse can respond quickly to a rapidly-changing soft spectrum. The 
algorithm can be implemented through software defined radio (SDR) techniques. 
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Computer simulation verifies that the DAA algorithm is low complex, easily configurable, 
robust, and agile enough to avoid the intended subbands. 
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