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1. Introduction 

Over the past few decades the phenomenon of urbanization resulted in severe problems. 

The quality of human life has been deteriorated in the megacities around the world. This 

chapter deal with the Artificial Networks (ANNs) forecasting ability in predicting the air 

quality as well as the bioclimatic conditions in an urban environment. 

For this purpose, different ANNs are demonstrated in this chapter. These ANNs have been 

developed in order to predict the air quality as well as the bioclimatic conditions within the 

Greater Athens Area (GAA), Greece. The prognosis for both air quality and bioclimatic 

conditions within GAA concerns the next three days (24 to 72 hours prediction).For the 

proper ANNs training for both air quality and bioclimatic conditions, hourly values of 

specific meteorological parameters such as air temperature, relative humidity, wind speed, 

wind direction, air pressure, sunshine and solar radiation, as well as hourly values of air 

pollutants concentrations have been used. These hourly data have been recorded in many 

different sites within GAA from the network of the Greek Ministry of Environment Energy 

and Climatic Change (GMEECC) during the period 2001-2005. Hourly values of barometric 

pressure and total solar irradiance for the same time period were acquired from the 

National Observatory of Athens (NOA). 

This chapter is divided into nine sections. The first section is brief introduction concerning 
ANNs. The second section presents air quality indices that have been used in this work in 
order to describe the air quality within GAA. The third section presents bioclimatic indices, 
which describe the human thermal comfort-discomfort due to meteorological conditions. 
The fourth section presents statistical performance indices that have been used in order to 
investigate the predictive ability and reliability of the developed ANNs models. The fifth 
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section demonstrates the examined sites within the GAA and the data/methodology used  
in this study. 
The sixth section presents the ANNs that were developed in order to predict the maximum 
daily value of the air pollution indices as well as the persistence of the phenomenon, namely 
the number of consecutive hours within the day with high/strong air pollution. The seventh 
section presents the ANNs that were developed in order to predict the daily values of the 
bioclimatic indices as well as the number of consecutive hours within the day with 
dangerous bioclimatic conditions for humans’ health. The eighth section includes the spatial 
variation for both air quality levels and human comfort/discomfort levels within GAA. The 
ninth is the last section summarizing briefly the extracted results by the performed analysis 
and how these results can contribute positively to the economy, energy, environment and 
quality of human life in general.  
Finally the results of this work have shown that the ANNs could give an adequate forecast 
for both air quality and bioclimatic conditions within the urban environment of the GAA for 
the next three days at a statistical significant level of p<0.01. 

2. Artificial Neural Networks 

Artificial Neural Networks (ANNs) are a branch of artificial intelligence developed in the 
1950s aiming at imitating the biological brain architecture. They are an approach to the 
description of functioning of human nervous system through mathematical functions. 
Typical ANNs use very simple models of neurons. These artificial neurons models retain 
only very rough characteristics of biological neurons of the human brain (McCulloh & Pitts, 
1943). ANNs are parallel-distributed systems made of many interconnected non-linear 
processing elements (PEs), called neurons (Hecht-Nielsen, 1990). A renewal of scientific 
interest has grown exponentially since the last decade, mainly due to the availability of 
appropriate hardware that has made them convenient for fast data analysis and information 
processing (Viotti et al., 2002). 
Figure 2.1 presents the structure of a biological neuron (upper graph) as well as the 
structure of an artificial neural (lower graph). 
ANNs have been applied in time series prediction (Lapedes & Farber, 1987; Werbos, 1988). 
Although their behaviour has been related to non-linear statistical regression (Bishop, 1995), 
the big difference is that ANNs seem naturally suited for problems that show a large 
dimensionality of data, such as the task of identification for systems with great number of 
state variables. Over the last years, black box approaches have been recognized to constitute 
a viable alternative to conceptual models for input-output simulation and forecasting and 
also to allow shortening the time required for the model development. In particular, ANNs 
concentrated a general consensus in predicting different pollutants time series, as shown by 
the review of Gardner & Dorling (1998a, 1998b).  
Many ANNs were developed for very different environmental purposes. Heymans & Baird 
(2000) have used network analysis to evaluate the carbon flow model built for the northern 
Benguela upwelling ecosystem in Namibia. Antonic et al. (2001) have estimated the forest 
survival after building the hydroelectric power plant on the Drava River, Croatia by means 
of GIS constructed database and a neural network. Karul et al. (2000) used a three-layer 
Levenberg-Marquardt feedforward neural network to model the eutrophication process in 
three water bodies in Turkey. Besides, Moustris et al. (2011) used ANNs for long term 
precipitation forecast, using long-term monthly precipitation time series of four 
meteorological stations in Greece.  
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Fig. 2.1. Biological (upper graph) and artificial (lower graph) neuron structure.  

Viotti et al. (2002) used ANNs to forecast short and middle long-term concentration levels 
for some of the well-known pollutants at the urban area of Perugia, Italy. The ANNs 
approach proved to be viable also for O3, PM10, NO2, NOx forecasting, outperforming 
alternative techniques in different case studies (Nunnari et al., 1998; Prybutok et al., 2000; 
Kolehmainen et al., 2001; Balaguer Ballester et al., 2002; Schlink et al., 2003; Corani, 2005; 
Slini et al., 2006; Dutot et al., 2007; Papanastasiou et al., 2007). 

2.1 Multi-Layer Perceptron and feed-forward ANNs 
The Multi-Layer Perceptron (MLP) is the most commonly used type of ANNs. Its structure 
consists of Processing Elements (PEs) and connections (Hecht-Nielsen, 1991). PEs, which are 
called neurons, are arranged in layers. The first layer is the input layer, one or more hidden 
layers follow and the final layer is the output layer. An input layer serves as buffer that 
distributes input signals to the next layer, which is a hidden layer. Each neuron of the 
hidden layer communicates with all the neurons of the next hidden layer, if any, having in 
each connection a typical weight factor. So, each unit-artificial neuron in the hidden layer 
sums its input, processes it with a transfer function and distributes the result to the output 
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layer. It is also possible that there are several hidden layers connected in the same fashion. 
The units-artificial neurons in the output layer compute their output in a similar manner. 
Finally, the signal reaches the output layer, where the output value from the ANN is 
compared to the target value and an error is estimated. Thus, the values of weight factors 
are amended appropriately and the training cycle repeats until the error is acceptable, 
depending on the application. 
Since data flow within the artificial neural network from a layer to the next one without any 
return path, such kind of ANNs are defined as feed-forward ANNs. The structure of a feed-
forward Multi-Layer Perceptron artificial neural network can be represented as in Figure 2.1.1. 
 

Fig. 2.1.1. Typical MLP feed-forward Artificial Neural Network Structure (Caudill & Butler, 
1992). 

2.2 Feed-forward ANNs training and the Back-propagation training algorithm 
The training-learning process of ANNs can be far from the ensemble optimum in some 
cases, and the problem can be solved only with a very good database, a best choice of the 
input configuration for training, or using most powerful learning algorithms (Viotti et al., 
2002). 
The back-propagation learning algorithm consists of two steps of computation: a forward 
pass and a backward pass. In the forward pass, an input pattern vector is applied to the 
sensory nodes of the network, i.e. to the units in the input layer. The signals from the input 
layer are propagated to the units in the first layer and each unit produces an output. The 
outputs of these units are propagated to the units in the subsequent layers and this process 
continues until, finally, the signals reach the output layer, where the actual response of the 
network to the input vector is obtained (Figure 2.1.1). 
During the forward pass, the synaptic weights of the network are fixed. During the 
backward pass, on the other hand, the synaptic weights are all adjusted in accordance with 
an error signal, which is propagated backward through the network against the direction of 
synaptic connections. 
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The mathematical analysis of the algorithm is as follows (Viotti et al., 2002). In the forward 
pass, given an input pattern vector y(p), each hidden node-neuron j receives a net input: 

( ) ( )p p
jkj k

k

x w y=∑  

where wjk represents the weight between the hidden neuron j and the input neuron k. Thus, 
the hidden neuron j produces an output: 

( )( ) ( ) ( )p p p
jkj j k

k

y f x f w y
⎡ ⎤

= = ⎢ ⎥
⎣ ⎦
∑  

where f(x) is the activation faction of the hidden layer. Different kinds of activation 
functions are referenced in the literature, such as linear, sigmoid, hyperbolic tangent, 
logistic, etc. (Norgaard et al., 2000). In the following, we consider a hyperbolic tangent 
activation function for the neurons in the hidden layer, hence, the value returned by the 
activation function of neuron j of the hidden layer is: 

2 1
( )

2 1

j

j
j

xe
f x

xe

−
=

+
 

Each output neuron receives the input from the preceding hidden layer by the forecasted 
value, so that the entry to the output neuron can be written as: 

( ) ( )( ) p pp
j j jkj k

j j k

x w y w f w y
⎡ ⎤

= = ⎢ ⎥
⎣ ⎦

∑ ∑ ∑  

where wj represents the weight between the output neuron and the hidden neuron j. It 
therefore produces the final output: 

( ) ( ) ( )( ) ( ) p pp p
j j jkj k

j j k

y f x f w y f w f w y
⎛ ⎞ ⎡ ⎤⎛ ⎞
⎜ ⎟= = = ⎢ ⎥⎜ ⎟⎜ ⎟ ⎢ ⎥⎝ ⎠⎝ ⎠ ⎣ ⎦
∑ ∑ ∑  

The presentation of all the patterns is usually called epoch. Many epochs are generally 
needed before the error becomes acceptably small. In the batch neuron the error signal is 
calculated for each input pattern but the weights are modified only when the input patterns 
have been presented. The error function is calculated referring to the Mean Square Error 
(MSE) and the weights are modified accordingly: 

2

21 1
( )

2 2
j jk k

j k

E d y d f w f w y
⎧ ⎫⎡ ⎤⎛ ⎞⎪ ⎪= − = − ⎢ ⎥⎜ ⎟⎨ ⎬

⎢ ⎥⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭
∑ ∑  

where d is the desired or real output (monitored variable value) and y is the ANN output or 
the forecasted value. In the batch mode, E is equal to the sum of all MSEs on all the patterns 
of the training set. E is obviously a differentiable function of all weights (and thresholds) 
and therefore we can apply the gradient descent method. For the hidden to output 
connections the gradient descent rule gives: 
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j
j

E
w

w
η ∂

Δ = −
∂

 

where η is a number called learning rate. The learning rate is a parameter that determines the 
size of the weights adjustment each time the weights are changed during the training 
process. Small values for the learning rate cause small weight changes and large values 
cause large changes (Attoh-Okine, 1999). The best learning rate is not obvious. If the 
learning rate is 0.0, the network will never learn.  
Refenes et al. (1994) reported that one and tow layered network with a learning rate of η=0.2 
and a momentum rate of 0.3<α<0.5 yield the best combination of convergence. The 
momentum term is a factor used to speed network training. It adds a proportion of the 
previous weight changes to the current weight changes. 
Using the chain rule it can be written as: 

( ) ( )
( ) ( )

( )( ) ( ) ( )
( ) ( )

p p
pp p p

jp p
j j p

yE E x
d y f x y

w wy x

∂∂ ∂ ∂
= = − −

∂ ∂∂ ∂
∑  

Thus, the hidden to output connections are updated according to the following equation: 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )p pp p p p
j j j

p p

w d y f x y yη η δΔ = − =∑ ∑  

where ( ) ( )( ) ( ) ( ) ( )p p p pd y f xδ = −  

For the input to hidden layer connections the gradient descent rule is: 

jk
jk

E
w

w
η ∂

Δ = −
∂

 

Then using the chain rule, we obtain: 

( )
( ) ( )

( ) ( )

( ) ( ) ( )

p p
j j p p

j kp p p
jk jkj j j

y xE E E
f x y

w wy x y

∂ ∂∂ ∂ ∂
= =

∂ ∂∂ ∂ ∂
 

Particularly, with reference to
( )p
j

E

y

∂
∂

, it can be written as: 

( ) ( )( )

( ) ( )
( ) ( )

p

p p

p p
pj j

f xE
d y

y y

⎡ ⎤∂∂ ⎣ ⎦= − −
∂ ∂

∑  

and after simple passages, we obtain: 

( ) ( )( ) ( ) ( )
( )

p p p
jp

pj

E
d y f x w

y

∂
= − −

∂
∑  

Therefore, with reference to
jk

E

w

∂
∂

, it can be written as: 
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( ) ( ) ( )( ) ( )( ) ( ) ( ) p pp p p
j j k

jk p

E
d y f x w f x y

w

∂
= − −

∂ ∑  

from which the input to hidden connections updating is obtained as: 

( ) ( ) ( )( ) ( )( ) ( ) ( ) p pp p p
jk j j k

p

w d y f x w f x yηΔ = −∑  

and finally we get: 

( ) ( ) ( ) ( )( ) ( ) p p pp p
jk j jk k

p p

w w f x y yη δ η δΔ = =∑ ∑  

with ( )( ) ( ) ( )p p p
jj w f xδ δ=  

It is worthwhile noting that, a network architecture having just one hidden layer, and 
activation functions arranged as described above, constitutes a universal predictor and it can 
theoretically approximate any continuous function to any degree of accuracy. In practice, 
such degree of flexibility is not achievable because parameters must be estimated from 
sample data, which are both finite and noisy (Barazzetta & Corani, 2004). 
The ANNs work on a matrix containing more patterns. Particularly, the patterns represent 
the rows while the variables are the columns. This data set is a sample. To be more precise, 
giving the ANN three different subsets of the available sample we can get the forecasting 
model; the three subsets concern the training, the validation and the test subsets. These 
subsets are briefly described: 

• Training subset, the group of data with which we train-educate the network according to 
the gradient descent for the error function algorithm, in order to reach the best fitting of 
the nonlinear function representing the phenomenon. 

• Validation subset, the group of data, given to the network still in the learning phase, by 
which the error evaluation is verified, in order to update the best thresholds and 
weights effectively. 

• Test subset, one or more sets of new and unknown data for the ANN, which are used to 
evaluate ANN generalization, i.e. to evaluate whether the model has effectively 
approximated the general function representative of the phenomenon, instead of 
learning the parameters uniquely. 

3. Air quality indices 

Urban air pollution is a growing problem in big cities with large urbanization, where 
adverse health effects have been established. Bad city design combined with specific 
topographical and meteorological conditions allowing poor circulation, are associated with 
frequent episodes of critically high atmospheric pollution, enforcing in some cases extreme 
actions by the authorities, such as restriction of motor vehicles circulation within large area 
of the city.  
For a better and more effective monitoring and analysis of air quality in big cities, air pollution 
indices are often used. Most of them have resulted after a series of epidemiological studies, 
which investigated the impact of air pollution on public health. In this work, two air pollution 
indices are presented and applied in order to forecast the air quality within GAA using ANNs. 
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3.1 Description of the European Regional Pollution Index (ERPI) 
The European Regional Pollution Index (ERPI) has been proposed and developed by 

Moustris (2009). This air quality index is based on the air pollution index that is known as 

Regional Pollution Index (RPI). The New South Wales government in Sydney, Australia 

used RPI since the mid 1990s (NSW-EPA 1998, 2006).  

The calculation of ERPI was performed using the thresholds prescribed by the European 

Community (EC) based on the framework directive 1996/62/EC and the three affiliated 

directives 1999/30/EC, 2000/69/EC, and 2002/3/EC (Table 3.1.1). Due to the way of 

calculation of ERPI, based on EC air pollution thresholds, the Australian RPI was renamed 

as European Regional Pollution Index (ERPI). 

In this work, ERPI was calculated for five main air pollutants. Concretely, the air pollutants 

concern nitrogen dioxide (NO2), sulfur dioxide (SO2), carbon monoxide (CO), ozone (O3) 

and particulate matter with aerodynamic diameter less than or equal to 10 μm (PM10). For 

any observed concentration Ci, the value of the sub-index Ii is given by: 

50i
i

i

C
I

Limit
= ×  

 

Air Pollutant Limit values 

ΝΟ2 Hourly value: 200 μg/m3 

SO2 Hourly value: 350 μg/m3 

CO Maximum daily mean value for 8 hours: 10 mg/m3 

O3 Maximum daily mean value for 8 hours: 120 μg/m3 

PM10 Mean daily value: 50 μg/m3 

Table 3.1.1. Limit concentration values of ambient air pollutants according to EC directives. 

Once a sub-index Ii is obtained for each air pollutant (Table 3.1.1), the overall ERPI is simply 
taken as the maximum of all the Ii values according the formula: 

{ }1 2 3 4 5max , , , ,ERPI I I I I I=  

where I1, I2, I3, I4, and I5 are the sub-indices whose values are defined by the NO2, SO2, CO, 

O3 and PM10, respectively. If ERPI ≥ 50 this means that at least one of the pollutants is over 

its limit value (Table 3.1.1). Table 3.1.2 presents the classification of air quality according to 

ERPI values (Moustris, 2009; Moustris et al., 2010). 

 

ERPI ERPI Class Classification 

0 – 2 1 Very Good 

2 – 21 2 Good 

21 – 40 3 Satisfactory 

40 – 60 4 Sufficient 

60 – 79 5 Poor 

≥79 6 Very Poor 

Table 3.1.2. Air quality classification according to ERPI values. 
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3.2 Description of Daily Air Quality Index (DAQx) 
A new impact-related air quality index obtained on a daily basis and abbreviated as DAQx 
(Daily Air Quality Index) has been recently developed and tested by the Meteorological 
Institute of Freiburg, Germany, and the Research and Advisory Institute for Hazardous 
Substances, Freiburg, Germany (Mayer et al., 2002a, 2002b; Makra et al., 2003). DAQx 
considers the air Pollutants SO2, CO, NO2, O3 and PM10. To enable a linear interpolation 
between index classes, DAQx is calculated for each pollutant by: 

( )up low
inst low low

up low

DAQx DAQx
DAQx C C DAQx

C C

⎡ ⎤⎛ ⎞−
⎢ ⎥⎜ ⎟= × − +
⎜ ⎟−⎢ ⎥⎝ ⎠⎣ ⎦

 

with Cinst: highest daily 1 hour concentration of SO2, NO2, and O3, highest daily running 8 
hours concentration of CO, and mean daily concentration of PM10. Cup is the upper 
threshold of specific air pollutant concentration range; Clow is the lower threshold of specific 
air pollutant concentration range; DAQxup is the value of DAQx according to Cup; DAQxlow 

is the value of DAQx according to Clow (Table 3.2.1). 
The daily value of DAQx is considered the highest value extracted by the calculated values 
for each pollutant. 
 

SO2 
(μg/m3) 

CO 
(mg/m3) 

NO2 

(μg/m3)
O3 

(μg/m3) 
PM10 

(μg/m3) 
DAQx 
value 

DAQx
Class 

Classification 

0-24 0.0-0.9 0-24 0-32 0.0-9.9 0.5-1.4 1 Very Good 
25-49 1.0-1.9 25-49 33-64 10.0-19.9 1.5-2.4 2 Good 
50-119 2.0-3.9 50-99 65-119 20.0-34.9 2.5-3.4 3 Satisfactory 

120-349 4.0-9.9 100-199 120-179 35.0-49.9 3.5-4.4 4 Sufficient 
350-999 10.0-29.9 200-499 180-239 50.0-99.9 4.5-5.4 5 Poor 
≥1000 ≥30.0 ≥500 ≥240 ≥100 ≥5.5 6 Very Poor 

Table 3.2.1. Upper and lower limits for air pollutant concentrations and DAQx values, 
DAQx classes and classification according to Mayer et al. (2002a, 2002b). 

4. Bioclimatic indices 

The growth of the city of Athens during the last decades and the phenomenon of 
urbanization (Philandras et al., 1999) have established the well known Urban Heat Island 
(UHI) at a great areal extent of the city, resulting in explicit effects on human thermal 
comfort-discomfort. Thermal comfort is defined as the condition of mind, which expresses 
satisfaction with the thermal environment, absence of thermal discomfort, or conditions in 
which 80% or 90% of humans do not express dissatisfaction (Givoni, 1998). 
Several indices, which describe the human thermal comfort-discomfort, have been 

developed worldwide. In this chapter three bioclimatic indices will be presented. The 

Discomfort Index (DI), the Cooling Power index (CP) and the Physiologically Equivalent 

Temperature (PET). In the process, these indices are briefly described. 

4.1 Discomfort Index (DI) 
The Discomfort Index (DI) was originally developed by Thom (Thom, 1959) and was 
supported by later works (Clarke & Bach, 1971; Giles et al., 1990). This index describes the 
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degree of thermal load under various meteorological conditions, suitable for both outdoor 
and indoor environments. It is useful to evaluate how current temperature and relative 
humidity can affect the sultriness or discomfort sensation and cause health danger in the 
population.  
 

DI (oC) Classification of human comfort-discomfort sensation 

DI<21 No discomfort feeling 
21≤DI<24 Less than 50% of the total population feels discomfort 
24≤DI<27 More than 50% of the total population feels discomfort 
27≤DI<29 Most of the population feels discomfort 
29≤DI<32 The discomfort is very strong and dangerous 

DI≥32 State of medical emergency 

Table 4.1.1. Classification of human comfort-discomfort sensation for DI. 

Several formulas of the index have been proposed for use along with tables of boundary 
values that indicate degrees of comfort-discomfort. In the present work we used the 
following formula of DI, calculated as a combination of air temperature T (ºC) and relative 
humidity RH (Giles et al., 1990): 

(0.55 0.0055 ) ( 14.5)DI T RH T= − × × × − ,     (oC) 

The classification of the DI values with the equivalent feeling of thermal comfort– 
discomfort is given in Table 4.1.1 (Giles et al., 1990). 

4.2 Cooling Power index (CP) 
The Cooling Power Index (CP) was developed by Siple & Passel (1945) and describes the 

loss of energy, per unit of time and body surface, which a human organism can tolerate. The 

CP index, in contrast to the DI index, takes into consideration the wind speed instead of 

relative humidity. It describes the heat flux per surface unit of the human body towards the 

environment and the vice versa. For the calculation of the CP index hourly values of air 

temperature (T, oC) and wind speed (V, m/sec) were used. The calculation of CP is based on 

the following formula (Tzenkova et al., 2003): 

0.51.163 (10.45 10 ) (33 )CP V V T= × + × − × − ,                      (W/m2) 

The classification of the CP index values modified by Besancenot et al. (1978), with the 
equivalent feeling of thermal comfort–discomfort is given in Table 4.2.1. 
 

CP (W/m2) Classification of human comfort 

CP<0 Endothermal - very hot discomfort 

0<CP≤174 Atonic – hot discomfort 

175≤CP≤349 Hypotonic – hot sub comfort 

350≤CP≤699 Neutral - comfort 

700≤CP≤1049 Tonic – cold sub comfort 

CP≥1050 Cold discomfort 

Table 4.2.1. Classification of human comfort-discomfort sensation for CP. 
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4.3 Physiologically Equivalent Temperature (PET) 
The thermal index Physiologically Equivalent Temperature (PET) is based on the total 
energy balance of the human body. PET values were evaluated (Mayer & Höppe, 1987; 
Höppe, 1999), in order to interpret the grade of the thermophysiological stress (Table 4.3.1). 
It describes the effect of the thermal environment as a temperature value (oC) and can be 
quantified easier for non specialists in this topic. For night time situation, air temperature 
corresponds very close to the PET value. It has been applied in heat waves and climatic 
variability studies (Nastos & Matzarakis 2008, Matzarakis & Nastos 2010) and weather 
impacts on health (Nastos & Matzarakis, 2006). 
The PET analysis was performed by the use of the radiation and bioclimate model, RayMan, 
which is well-suited to calculate radiation fluxes and human biometeorological indices 
(Matzarakis et al., 1999, 2010) and was chosen for all our calculations of mean radiant 
temperature and PET. The RayMan model, developed according to the Guideline 3787 of the 
German Engineering Society (VDI, 1998) calculates the radiation flux in easy and complex 
environments on the basis of various parameters, such as air temperature, air humidity, 
degree of cloud cover, time of day and year, albedo of the surrounding surfaces and their 
solid-angle proportions (Matzarakis et al., 2010). 
 

PET (°C) Thermal sensation Physiological stress level 

< 4 
 
8 
 

13 
 

18 
 

23 
 

29 
 

35 
 

41 
 

> 41 

very cold 
…………… 

cold 
…………… 

cool 
…………… 
slightly cool 
……………. 
comfortable 
……………. 

slightly warm 
……………. 

warm 
……………. 

hot 
……………. 

very hot 

extreme cold stress 
……………… 

strong cold stress 
……………… 

moderate cold stress 
………………. 

slight cold stress 
………………. 

no thermal stress 
……………….. 

slight heat stress 
……………….. 

moderate heat stress 
……………….. 

strong heat stress 
……………….. 

extreme heat stress 

Table 4.3.1. Physiologically Equivalent Temperature (PET) for different grades of thermal 
sensation and physiological stress on human beings (during standard conditions: heat 
transfer resistance of clothing: 0.9 clo, internal heat production: 80 W) (Matzarakis & Mayer, 
1996) 

5. Statistical performance indices 

The quality and reliability of the developed ANNs, concerning their ability to forecast both 
air quality and bioclimatic conditions within GAA, were tested using several statistics 

www.intechopen.com



 
Advanced Air Pollution 

 

568 

indices that have already been applied in similar studies (Moustris et al., 2010). The 
statistical performance indices that used in this work are presented and described briefly:  

Mean Bias Error: ( )
1

1 N

i i
i

MBE P O
N =

= −∑  

where N is the number of the data points, Oi is the observed data and Pi is the predicted 
data. The MBE represents the degree of correspondence between the mean forecast (Pi) and 
the mean observation (Oi). MBE is used to describe how much the model underestimates or 
overestimates the observed data. Positive/negative values indicate over estimated/under 
estimated prediction.    

Root Mean Square Error: ( )
2

1

1 N

i i
i

RMSE P O
N =

= −∑  

RMSE provides a measure of how well future outcomes are likely to be predicted by the 

model.  

The coefficient of determination (R2) indicates how much of the observed variability is 

accounted by the estimated model (Kolehmainen et al., 2001). The coefficient of 

determination is a number between 0 and +1 and measures the degree of association 

between two variables. The coefficient of determination is calculated according to the 

equation (Comrie, 1997): 

( )
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2 1
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where Oiave is the average of the observed data. 
A relative measure of error, called the index of agreement (IA), is also discussed in Willmott 

et al. (1985). Index of agreement is calculated according to the formula: 

( )
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2
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i i
i
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P O
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=

=

−
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− + −

∑

∑
 

where Oiave is the average of the observed data. This is a dimensionless measure that is 

limited to the range of 0-1. If IA=0, that means no agreement between prediction and 

observation and if IA=1, that means perfect agreement between prediction and observation. 

6. Data and methodology 

For the calculation of the bioclimatic indices as well as the air quality indices, appropriate 
meteorological data in hourly basis were used. More specifically, hourly values of air 
temperature (oC), relative humidity (%) and wind speed (m/s were used for DI and CP 

www.intechopen.com



Air Quality and Bioclimatic Conditions within the Greater Athens Area, Greece  
- Development and Applications of Artificial Neural Networks 

 

569 

calculation. In addition to the aforementioned meteorological parameters, total cloudiness 
cover (octas) was taken into consideration for PET calculation, using the RayMan model 
(Matzarakis et al., 1999, 2010). The appropriate meteorological parameters used as inputs in 
the RayMan model were acquired from the National Observatory of Athens, for the period 
2001-2004. Besides, hourly values of air pollutants concentrations (NO2, SO2, CO, O3 and 
PM10) were used in order to estimate the two air quality indices ERPI and DAQx. All the 
above datasets have been recorded by the network of the GMEECC covering the period 
2001- 2005 and concern nine (9) different regions within the GAA, namely the regions: Agia 
Paraskevi, Thrakomakedones, Lykovrissi, Maroussi, Liossia, Galatsi, Patission, Aristotelous, 
and Geoponiki (Fig. 6.1). For a better surveillance, the examined regions-stations listed 
below with the following abbreviations: Agia Paraskevi (APA), Galatsi (GAL), Liossia (LIO), 
Maroussi (MAR), Patission (PAT), Aristotelous (ARI), Thrakomakedones (THR), Lykovrissi 
(LYK). The hourly values of air barometric pressure and total solar irradiance for the same 
time period were obtained from the National Observatory of Athens. 
To describe the air quality within the GAA the values of the air quality indices ERPI and 
DAQx were calculated on an hourly basis in seven different regions-stations (APA, THR, 
LYK, MAR, LIO, GAL and PAT) with respect to the pollutants NO2, SO2, CO, and O3 and in 
five different regions-stations (APA, THR, LYK, MAR and ARI) with respect to the 
particulate matter PM10. The maximum value of the 24 hourly values was considered as the 
daily value for each one of the two air quality indices. Thus, for each one station-region two 
daily values for each one of the two examined air quality indices were calculated. The first 
daily value concerns the air pollutants NO2, SO2, CO, and O3 and the second concerns the 
particulate matter PM10. This happened because the daily concentrations of particulate 
matter PM10 as well as the daily concentrations of ozone are both high enough. If only one 
daily value for each of the two air quality indices was calculated, then, we will not be able to 
know if that value is due to ozone or PM10. Thereafter, an appropriate number of ANN 
models were developed and trained in order to predict for the next three days the daily 
value for each one of the two air quality indices as well as the number of consecutive hours 
during the day where the value of the index is greater than a threshold value.  
 

 

Fig. 6.1 Map of Greece (left graph) and spatial distribution of the GMEECC network’s 
stations within GAA (right graph). 

The bioclimatic conditions within the GAA are interpreted by the use of the bioclimatic 

indices DI and CP, which were calculated on hourly basis for eight different regions-stations 

(APA, THR, LYK, MAR, LIO, GAL, GEO and PAT). In the process, the daily value for each 
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index in each region-station was calculated. The calculation was carried out only during the 

warm period of the year (May-September) in order to describe the human discomfort due to 

heat stress weather conditions. Then, an appropriate number of ANNs were developed and 

trained in order to predict for the next three days the daily value for each one of the two 

bioclimatic indices as well as the number of consecutive hours during the day, where the 

value of the index is greater than a threshold value (DI ≥ 24 oC) or less than a threshold 

value (CP ≤ 174 W/m2). Furthermore, the mean daily values of PET index were estimated 

only for the National Observatory of Athens, because of the availability of the total 

parameters needed as inputs in RayMan model. Thereafter, the developed ANN was 

evaluated in forecasting PET for the next three days. 

7. Air quality forecasting using ANNs 

7.1 ANNs description 
Six different ANNs were developed in order to forecast the air quality levels within the 

GAA. The first one (ANN#1) was trained in order to forecast the daily value of ERPI (for the 

pollutants CO, NO2, SO2 and O3) for the next day at seven different areas of GAA (APA, 

THR, LYK, MAR, LIO, GAL and PAT). The second one (ANN#2) was trained in order to 

forecast the daily value of DAQx (for the pollutants CO, NO2, SO2 and O3) for the next day 

at the above seven different areas within the GAA. The third one (ANN#3) was trained in 

order to forecast the daily number of the consecutive hours for the next day, with at least 

one of the pollutants concentrations (CO, NO2, SO2 and O3) above a threshold according to 

directives of European Community, for each one of the seven examined stations within the 

GAA. The fourth (ANN#4) was trained in order to forecast the daily value of ERPI (with 

respect to PM10) for the next day, at five different areas of GAA (APA, THR, LYK, MAR, and 

ARI). The fifth (ANN#5) was trained in order to forecast the daily value of DAQx (with 

respect to PM10) for the next day, at the mentioned five different areas within the  

GAA. Finally the sixth (ANN#6) was trained in order to forecast the daily number  

of the consecutive hours for the next day with the PM10 concentrations above a  

threshold according to EC directives, for each one of the five examined stations within the 

GAA. 

In each case, the group of data defined as “the training set”, used for ANNs training, 

concerns the time period 2001-2004. The group of data defined as “the validation set”, given 

to the network still in the learning phase, accounts 20% of ‘the training set” for each one of 

the developed ANN models. Finally “the test set” refers to the year 2005. The year 2005 is 

absolutely unknown to the models, in order to reveal the models forecasting ability. Table 

6.1 presents the input and output data for the six developed ANN models. 

The combination of selected data for the appropriate ANN models training was done after a 

series of several tests (trial and error method). At the end, the combination that gave the best 

forecasting result in each case was selected (Table 7.1.1). 

In this point, we have to mention that for all the constructed ANN models we have used as 

input data, in addition to other parameters, the maximum and minimum air temperature, 

the maximum and minimum wind speed for the next day as well as the mean daily air 

barometric pressure and the mode daily wind direction for the next day. This may produce 

a limitation in the forecasting attempt, but it is easy to have access to these forecasted values 

through the network of the Hellenic National Meteorological Service (HNMS). 
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INPUT DATA (input layer) ANN#1 ANN#2 ANN#3 ANN#4 ANN#5 ANN#6 

Stations’ number (1,2,3,4,5,6,7) √ √ √ √ √ √ 
Month (1,2,3,…,12) √ √ √ √ √ √ 
Mean daily air pressure (mbar) for 
the six previous days 

√ √ √ √ √ √ 

Daily sum of the global solar irradiance 
for the six previous days (W/m2) 

√ √ √ √ √ √ 

Maximum (Tmax) and minimum 
(Tmin) daily temperature (0C) for the 
six previous days 

√ √ √ √ √ √ 

Maximum (WSmax) and minimum 
(WSmin) daily wind speed  (m/sec) 
for the six previous days 

√ √ √ √ √ √ 

Maximum (RH%max) and minimum 
(RH%min) daily relative humidity for 
the six previous days 

 √   √  

Cosine and sine of the mode daily 
wind direction for the six previous 
days 

√ √ √ √ √ √ 

ERPI daily value for the six previous 
days 

√  √ √  √ 

DAQx daily value for the six 
previous days 

 √   √  

The number of consecutive hours 
during the day with ERPI≥50 for the 
six previous days 

  √   √ 

Mean daily air pressure (hPa) one 
day ahead 

√ √ √ √ √ √ 

Maximum (Tmax) and minimum 
(Tmin) daily temperature (0C) one 
day ahead 

√ √ √ √ √ √ 

Maximum (RH%max) and minimum 
(RH%min) daily relative humidity 
one day ahead 

 √   √  

Maximum (WSmax) and minimum 
(WSmin) daily wind speed  (m/sec) 
one day ahead  

√ √ √ √ √ √ 

Cosine and sine of the mode daily 
wind direction one day ahead 

√ √ √ √ √ √ 

OUTPUT DATA (output layer)       

ERPI daily value for the next day √   √   
DAQx daily value for the next day  √   √  
The number of consecutive hours 
with ERPI≥50 for the next day 

  √   √ 

Table 7.1.1. Input and output data for the appropriate training of the six developed ANN 
models. 
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7.2 Forecasting of daily ERPI and DAQx values for the next day 
The global fit agreement statistical indices as well as the excess statistical indices for the 

observed and predicted ERPI and DAQx values were calculated and demonstrated for the 

eight examined stations respectively. More specifically, Oave, Pave, MBE, RMSE, IA and R2 

values for ERPI index are presented in Table 7.2.1. 

 
 ANN#1 ANN#2 ANN#3 

 Oave Pave MBE RMSE IA R2 Oave Pave MBE RMSE IA R2 Oave Pave
MBE 

(hours)
RMSE 
(hours) 

IA R2 

APA 44.0 42.5 -1.460 6.629 0.925 0.752 3.4 3.4 0.013 0.396 0.853 0.557 2.8 3.2 0.374 3.015 0.877 0.605 

GAL 35.6 35.7 0.118 0.644 0.903 0.697 3.3 3.3 0.060 0.471 0.751 0.378 0.5 0.7 0.199 1.415 0.657 0.231 

LIO 37.7 37.8 0.114 6.081 0.919 0.726 3.3 3.3 0.032 0.463 0.746 0.358 0.7 0.9 0.168 1.761 0.671 0.238 

MAR 38.3 37.1 -1.272 5.852 0.920 0.738 3.3 3.3 0.000 0.428 0.795 0.446 0.8 0.8 -0.008 1.825 0.708 0.292 

PAT 33.1 32.2 -0.944 9.233 0.717 0.381 3.7 3.7 -0.024 0.343 0.791 0.442 0.3 0.3 0.042 1.365 0.299 0.017 

THR 42.4 40.6 -1.810 7.290 0.922 0.760 3.3 3.3 -0.002 0.450 0.876 0.637 3.9 3.7 -0.208 4.924 0.829 0.516 

LYK 38.9 38.6 -0.317 7.317 0.937 0.826 3.3 3.3 0.021 0.431 0.889 0.686 2.0 1.4 -0.590 3.092 0.742 0.401 

 ANN#4 ANN#5 ANN#6 

 Oave Pave MBE RMSE IA R2 Oave Pave MBE RMSE IA R2 Oave Pave
MBE

(hours)
RMSE 
(hours) 

IA R2 

APA 40.0 40.0 0.356 18.718 0.674 0.266 3.7 3.6 -0.006 0.639 0.911 0.673 6.0 6.0 -0.310 4.259 0.764 0.377 

MAR 46.0 46.0 -0.225 19.441 0.699 0.306 3.9 3.9 0.000 0.646 0.930 0.629 8.0 7.0 -0.141 4.908 0.791 0.425 

THR 29.0 31.0 2.026 13.285 0.792 0.487 3.0 3.1 0.076 0.636 0.895 0.689 2.0 3.0 0.485 4.002 0.690 0.361 

LYK 53.0 53.0 -0.195 19.927 0.729 0.381 4.2 4.2 -0.066 0.634 0.965 0.611 10.0 10.0 -0.303 5.594 0.816 0.492 

ARI 53.0 53.0 0.292 18.352 0.721 0.295 4.3 4.3 0.023 0.528 0.779 0.578 10.0 9.0 -1.084 5.845 0.785 0.430 

Table 7.2.1. Global fit agreement indices for ERPI predicted values for the next day. 

Concerning the pollutants CO, NO2, SO2 and O3, the R2 values show a very satisfactory 

prediction for ERPI-ANN#1 (0.381 ≤ R2 ≤ 0.826) as well as for the DAQx-ANN#2 (0.378 ≤ R2 

≤ 0.686) during the test year 2005. Besides, IA values show also a very good prediction for 

ERPI-ANN#1 (0.717≤IA≤0.937) and the DAQx-ANN#2 (0.746 ≤ IA≤ 0.889). In all cases, it 

seems that the prediction for the pollutants CO, NO2, SO2 and O3 is much more successful 

using the ERPI, which is according to the European Community directives, instead of the 

DAQx. But using both predictions we can have a better and safe “picture” about air quality 

one day ahead within the GAA. As far as the air pollution persistence (for the pollutants 

CO, NO2, SO2 and O3) is concerned, it seems that ANN#3 gives an adequate prediction. The 

R2 values range between 0.017 and 0.605 while IA range between 0.299 and 0.877.  

Finally, the worst prediction with respect to the air quality index ERPI appears for the 

region-station PAT (city centre) against the region-station LIO (urban area) concerning the 

air quality index DAQx. Generally, it seems that the prediction for the stations, which are 

closer to the GAA’s downtown, is not so good compared to the prediction of the peripheral 

regions-stations. This is likely due to the traffic load and the bad air circulation within the 
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city’s centre, meaning that, more relevant data, associated with the above mentioned factors, 

are needed for a better ANNs training.  

Figure 7.2.1 presents the best prediction (LYK) and the worst prediction (PAT) for ERPI 

concerning the pollutants CO, NO2, SO2 and O3, while the best prediction (LYK) and the 

worst prediction (LIO) for DAQx concerning the same pollutants are depicted in Figure 7.2.2 

Accordingly, Figure 7.2.3 presents the best prediction (THR) and the worst prediction (APA) 

for ERPI concerning the pollutant PM10, and Figure 7.2.4 shows the best prediction (LYK) 

and the worst prediction (ARI) for DAQx with respect to the pollutant PM10. During the 

warm period of the year (May-September) the values of ERPI (Figure 7.2.1) are greater than 

50, meaning that at least one pollutant’s concentration is above its threshold according to the 

EC directives. In most cases (more than 90%) the corresponding pollutant for these high 

values of ERPI is the ozone. The same results revealed from Figure 7.2.2 regarding DAQx, 

where during the warm period of the year the daily values of DAQx are greater than 3.5, 

meaning that a bad air quality exist in most cases. As far as the PM10 concentrations are 

concerned (Figures 7.2.3 and 7.2.4), it is shown that, for almost half of the days throughout 

the year are above the threshold concentration value, indicating bad air quality in the most 

of the examined stations-regions. 
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Fig. 7.2.1. Predicted vs. observed ERPI values for the CO, NO2, SO2 and O3, pollutants  
during the test year 2005. 
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Fig. 7.2.2. Predicted vs. observed DAQx values for the CO, NO2, SO2 and O3, pollutants 
during the test year 2005. 
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Fig. 7.2.3. Predicted vs. observed ERPI values for the PM10, pollutant during the test year 2005. 
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Fig. 7.2.4. Predicted vs. observed DAQx values for the PM10, pollutant during the test year 
2005 

8. Bioclimatic conditions forecasting using ANNs 

8.1 ANNs description for DI and CP forecasting 
Four different ANN models were developed in order to forecast the bioclimatic conditions 
within the GAA during the warm period of the year (May-September). The first one (ANN#7) 
was trained in order to forecast the daily value of Thom’s DI index for the next day at eight 
different areas of GAA (APA, THR, LYK, MAR, LIO, GAL, GEO and PAT). The second one 
(ANN#8) was trained in order to forecast the daily value of CP index for the next day at the 
above mentioned eight different areas within the GAA. The third one (ANN#9) was trained in 
order to forecast the daily number of the consecutive hours with DI ≥ 24 oC for the next day at 
each one of the eight examined stations within the GAA. Finally, the fourth (ANN#10) was 
trained in order to forecast the daily number of the consecutive hours with CP ≤ 174 W/m2 for 
the next day at each one of the eight examined stations within the GAA. 
In each case the group of data named as “the training set” used for ANNs training concerns 
the time period 2001-2004. The group of data named as “the validation set” given to the 
network still in the learning phase accounts 20% of the training set for each one of the above 
ANNs. Finally “the test set” refers to the year 2005, which is absolutely unknown to the 
models in order to reveal the models forecasting ability. Table 8.1.1 presents the input and 
output data for the four developed ANNs. The combination of selected data for the 
appropriate ANN models training was done after a series of several tests (trial and error 
method). At the end, the combination that gave the best forecasting result in each case was 
selected (Table 8.1.1). 
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INPUT DATA (input layer) ANN#7 ANN#8 ANN#9 ANN#10 

Stations’ number (1,2,3,4,5,6,7) √ √ √ √ 
Month (5,6,7,8,9) √ √ √ √ 
The maximum (Tmax) daily temperature for 
the six previous days. 

√ √ √  

The maximum (RHmax) daily relative 
humidity for the six previous days. 

√  √  

The maximum (DImax) daily value of DI for 
the six previous days. 

√  √  

The daily number of consecutive hours with 
DI≥24 0C for the six previous days. 

√  √  

The maximum (Vmax) daily wind speed for 
the six previous days. 

 √   

The minimum (CPmin) daily value of CP for 
the six previous days. 

 √   

The daily number of consecutive hours with 
CP≤174 W/m2 for the six previous days. 

 √  √ 

The maximum (Tmax) and minimum (Tmin) 
daily temperature for the six previous days.  

   √ 

The maximum (Vmax) and minimum (Vmin) 
daily wind speed for the six previous days.  

   √ 

The maximum (CPmax) and minimum (CPmin) 
daily value of CP for the six previous days.  

   √ 

OUTPUT DATA (output layer)     

The maximum (DImax) daily value of DI for 
the next day. 

√    

The minimum (CPmin) daily value of CP for 
the next day. 

 √   

The daily number of consecutive hours with 
DI≥24 0C for the next day. 

  √  

The daily number of consecutive hours with 
CP≤174 W/m2 for the next day. 

   √ 

Table 8.1.1. Input and output data for the appropriate training of the four developed ANNs. 

8.2 DI and CP daily value forecasting for the next day 
The global fit agreement statistical indices as well as the excess statistical indices for the 
observed and predicted values were calculated and demonstrated for the eight examined 
stations respectively. More specifically, Oave, Pave, MBE, RMSE, IA and R2 values for DI are 
presented in Table 8.2.1. 
The R2 values show a very satisfactory prediction for DI-ANN#7 (0.676 ≤ R2 ≤ 0.841) during 
the test year 2005 as well as for the CP-ANN#8 (0.591 ≤ R2 ≤ 0.814). Concerning the IA 
values, a very satisfactory prediction for DI-ANN#7 (0.849 ≤ IA ≤ 0.956) as well as for the 
CP-ANN#8 (0.813 ≤ IA ≤ 0.948) appears. Taking into consideration the persistence of the 
phenomenon with respect to the daily number of consecutive hours with high discomfort 
conditions, due to strong heat stress, it seems that ANN#9 and ANN#10 give an adequate 
prediction. Additionally, the R2 values show a very satisfactory prediction for ANN#9 (0.140  
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 ANN#7 ANN#8 

 Oave Pave
MBE 
(oC) 

RMSE
(oC) 

IA R2 Oave Pave
MBE 

(W/m2)
RMSE
(W/m2)

IA R2 

APA 23.2 23.3 0.082 0.972 0.942 0.794 141 135 -6.196 49.754 0.920 0.731 
GAL 24.1 24.0 -0.057 0.889 0.952 0.824 98 97 -1.137 39.863 0.948 0.814 
GEO 23.2 23.3 0.111 0.831 0.956 0.841 143 130 -12.739 44.964 0.942 0.806 
LIO 23.5 23.4 -0.069 0.929 0.944 0.801 126 126 0.145 48.369 0.930 0.764 

MAR 24.0 23.9 -0.145 1.046 0.934 0.773 115 113 -2.154 48.893 0.926 0.743 
PAT 25.0 25.1 0.090 0.889 0.953 0.832 82 78 -4.338 46.999 0.936 0.792 
THR 19.9 20.7 0.779 1.584 0.849 0.676 292 246 -45.137 80.978 0.813 0.591 
LYK 22.5 22.7 0.247 1.051 0.929 0.771 167 160 -6.791 55.554 0.878 0.664 

 ANN#9 ANN#10 

 Oave Pave
MBE 

(hours)
RMSE
(hours)

IA R2 Oave Pave
MBE 

(hours)
RMSE
(hours)

IA R2 

APA 3.6 4.2 0.654 2.610 0.930 0.760 7.0 8.0 1.333 4.372 0.907 0.702 
GAL 6.6 6.4 -0.170 3.135 0.951 0.832 12.0 12.0 0.255 4.158 0.946 0.812 
GEO 4.0 4.3 0.301 2.526 0.946 0.810 8.0 9.0 0.667 4.292 0.931 0.762 
LIO 4.1 4.3 0.204 2.475 0.943 0.795 8.0 9.0 0.849 3.959 0.932 0.764 

MAR 6.1 6.0 -0.112 3.254 0.943 0.797 10.0 10.0 0.430 4.436 0.934 0.766 
PAT 10.9 11.0 0.103 3.601 0.901 0.861 13.0 14.0 0.524 4.923 0.928 0.751 
THR 0.1 0.6 0.541 1.126 0.368 0.104 1.0 2.0 1.281 2.716 0.750 0.443 
LYK 2.0 2.6 0.669 2.083 0.897 0.680 5.0 6.0 1.118 3.836 0.903 0.689 

Table 8.2.1. Global fit agreement indices for DI predicted values for the next day. 

≤ R2 ≤ 0.832) as well as for the CP-ANN#10 (0.443 ≤ R2 ≤ 0.812) during the test year 2005. 

Besides, the IA values, show a very satisfactory prediction regarding ANN#9 (0.368 ≤ IA ≤ 

0.951) and ANN#10 (0.750 ≤ IA ≤ 0.946). The worst prediction for the daily number of 

consecutive hours with high discomfort conditions, due to strong heat stress, refers to the 

region-station of THR (suburban region-station). This may be attributed to the fact that, in 

this suburban region (Thrakomakedones) the bioclimatic conditions are better than all the 

other examined regions within the GAA due to lower temperature values. Both discomfort 

indices, DI and CP, present daily values over their thresholds for a short period of time 

during the examined period. Thus, there is not a “memory-experience” of the persistence in 

THR, so the developed ANN models cannot have the appropriate training in order to 

forecast the number of consecutive hours with strong discomfort. 

Figure 8.2.1 reveals that within the city’s centre (PAT), the strong discomfort conditions (DI 

≥ 24 0C) appear from the end of June to the first half of September. At the suburban station 

(THR) there is not a significant discomfort, according to DI values. Just a few days during 

the warm period of the year appear to be over the threshold of DI ≥ 24 0C; namely at least 

50% of the population feels discomfort due to heat stress. 

Figure 8.2.2 illustrates that close to the city’s center (urban area of Galatsi), the hot sub 

comfort conditions according to CP values (CP ≤ 174 W/m2) appear from the middle of June 

until the first half of September. At the suburban station (THR), the discomfort due to heat 

stress conditions starts at the beginning of July until the middle of August. In all the above 

cases it seems that the prediction of bioclimatic conditions one day ahead with the use of 

ANN models is very satisfactory and realizable. 
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Fig. 8.2.1. Predicted vs. observed values of DI for the next day, concerning the best (GEO) 
and the worst (THR) prediction for DI daily maximum value, during the warm period of the 
test year 2005.   
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Fig. 8.2.2. Predicted vs. Observed values of CP for the next day, concerning the best (GAL) 
and the worst (THR) prediction for CP daily minimum value, during the warm period of the 
test year 2005. 

8.3 ANNs description for PET forecasting  
Three developed ANNs were trained using back-propagation algorithm to forecast the 

mean daily PET value for the next day (ANN#11), two next days (ANN#12) and three next 

days (ANN#13). The training dataset concern the period 2001-2003, while the validation 

dataset concern the year 2004, which was absolutely unknown to the constructed model, in 

order to test the predictive ability of the model. Superposed epoch analysis on the training 

datasets indicated that three days before the incidence of strong heat/cold stress are 

adequate to forecast PET value for the next days. Thus, the input data (Table 8.3.1) which 

were taken for ANNs training concern the mean daily air temperature, relative humidity, 

wind speed and sunshine for the previous three days from the National Observatory of 

Athens. 

Table 8.3.2 presents the fit agreement indices between the observed and the predicted PET 
values, for the validation year 2004. It is remarkable the high values of IA and R2, which 
indicate that the constructed ANNs have an excellent forecasting ability of PET for the next 
three days. This gives evidence that the developed ANNs, taking into account simple 
meteorological parameters recorded in the previous three days, are capable to predict a 
bioclimatic index, which is not easily calculated (PET was estimated using the RayMan 
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model), while the most remarkable finding is that of pronounced agreement between 
observed and predicted PET values. Figure 8.3.1 depicts the predicted and observed mean 
daily PET time series for the next day (a), the next two days (b) and the next three days (c), 
along with the respective scatter plots. 
 

INPUT DATA (input layer) ANN#11 ANN#12 ANN#13 

Mean daily air temperature (0C)  for the three 
previous days 

√ √ √ 

Mean daily wind speed (m/s)  for the three 
previous days 

√ √ √ 

Mean daily relative humidity (RH%) for the 
three previous days 

√   

The sunshine duration (hours) for the three 
previous days  

√ √ √ 

OUTPUT DATA (output layer)    

Mean daily PET value for the next day √   
4Mean daily PET value for the next two days  √  
Mean daily PET value for the next three days   √ 

Table 8.3.1. Input and output data for the appropriate training of the developed ANN#11. 

 

 MBE RMSE IA R2 

Mean daily PET value for the next day (ANN#11) +0.5 2.8 0.982 0.933 
Mean daily PET value for the next two days 
(ANN#12) 

+0.5 3.8 0.966 0.874 

Mean daily PET value for the next three days 
(ANN#13) 

+0.4 4.3 0.956 0.839 

Table 8.3.2. Global fit agreement indices for PET predicted values for the next one, two and 
three days. 

9. Spatial distribution of air quality and bioclimatic conditions in the GAA 

9.1 Spatial variation of air quality within GAA 
The mean annual value for both air quality indices ERPI and DQAx was calculated at all the 

examined regions within GAA, during the time period 2001-2005. Figure 9.1.1 shows the 

spatial variation of air quality levels within GAA. As far as the air quality index ERPI is 

concerned, only the station THR appears a satisfactory air quality level in annual basis (ERPI 

< 40). The stations MAR, APA and GAL appear a tolerable air quality level (ERPI < 50). 

Moreover, the air quality levels at LYK, LIO and PAT stations are very close to the limit 

value of ERPI ≥ 50. Finally, the air quality level appears to be poor in the city centre station 

ARI. This may be attributed to the high PM10 concentration levels almost during the whole 

year. In this point, we have to mention that the station PAT is also in the centre of the city 

and very close to the ARI station, but unfortunately for this station we don’t have any PM10 

observations. Similar conclusions are extracted with respect to the air quality index DAQx. 

The only exception is the LIO station in which the air quality levels seems to be much closer 

to the stations GAL, MAR and APA. 
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Fig. 8.3.1. Mean daily PET predicted values vs. observed values, for the next day (a), next 
two days (b) and next three days (c) three days, for the test year 2004. 

9.2 Spatial variation of bioclimatic conditions within GAA 
During the period 2001-2005, the mean annual value for both bioclimatic indices DI and CP 

was calculated at all the examined regions within the GAA. Figure 9.2.1 depicts the spatial 

variation of the bioclimatic conditions within the GAA during the warm period of the year 

(May-September), where three different bioclimatic zones appear. The first zone is the north 

suburban zone (THR), which can be characterized as a comfortable zone. The second zone 

extends peripherally the city’s center (LIO, LYK, MAR and APA) and can be marginally 

characterized as a comfortable zone or warm zone. Finally, the third zone concerns the city’s 

center (GAL, PAT and GEO), which can be characterized as an uncomfortable zone or a 

strong heat stress zone.  
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Fig. 9.1.1. Spatial variation of air quality levels within GAA for the pollutants NO2, SO2, CO, 
O3 and PM10. Mean annual values of ERPI (left graph) and DAQx (right graph), during 2001-
2005. 
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Fig. 9.2.1. Spatial variation of bioclimatic conditions within the GAA. Mean annual values of 
DI (left graph) and CP (right panel), for the warm period of the year during 2001-2005.  

As far as the persistence of discomfort during the examined period 2001-2005 is concerned, 

the mean seasonal number of consecutive hours during the day with high levels of human 

discomfort appears in the station PAT; 11.3 and 13.6 consecutive hours with respect to DI 

and CP, respectively, against 1.0 and 2.7 consecutive hours at the station THR, respectively. 

All the other examined regions-stations within the GAA present a bioclimatic behavior 
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between PAT and THR. This means that for a given building within the city’s center region 

(PAT), we need 5 to 11 times more energy for cooling during the warm period of the year 

than the energy for cooling at the north suburban area (THR). 

10. Conclusions  

In this study an application, which concerns the development and the use of ANN models 
on environmental issues and generally in environmental management, is presented. A 
number of ANN models have been developed and trained in order to forecast the air quality 
levels, as well as the bioclimatic conditions in different regions within the GAA. The 
findings of this work appoint the ANN models forecasting capacity. 
The Results showed that the use of ANN models as forecasting tool is realizable and 
satisfactory at a statistically significant level of p<0.01. In particular for the air quality 
forecasting for the next day, the R2 values ranged between 0.381 and 0.826 (ERPI) and 
between 0.378 and 0.686 (DAQx). Besides, the IA index between the predicted and observed 
values ranged between 0.717and 0.937 for ERPI forecasting, while it ranged between 0.746 
and 0.889 for DAQx forecasting. It seems that in all cases, the air quality forecasting is more 
sufficient using the ERPI air quality index than the DAQx. In this point we have to mention 
that the ERPI is according to the European Community directives for the air quality levels. 
The same results are extracted regarding the forecasting of the persistence of air pollution 
episodes and especially the number of consecutive hours during the day with poor air 
quality. 
Concerning the forecasting of bioclimatic conditions for the next day, the R2 values ranged 
between 0.676 and 0.841 for DI and between 0.591 and 0.814 for CP. The IA values ranged 
between 0.849 and 0.956 for DI and between 0.813 and 0.948 for CP. Taking into account the 
persistence of the phenomenon (the number of consecutive hours during the day with high 
discomfort conditions due to strong heat stress), it seems that ANN#9 (consecutive 
discomfort hours according to DI values) and ANN#10 (consecutive discomfort hours 
according to CP values) give an adequate prediction. 
A remarkable finding of this research is that the high values of IA (0.956 – 0.982) and R2 

(0.839 – 0.933) with respect to PET forecasting for the next three days indicate that the 
constructed ANNs have an excellent forecasting ability of PET, a more complex bioclimatic 
index based on the human energy balance. This gives evidence that the developed ANNs, 
taking into account simple meteorological parameters recorded in the previous three days, 
are capable to predict a bioclimatic index, which is not easily calculated (PET was estimated 
using the RayMan model). 
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