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1. Introduction 

Assessment of public health risk from the exposure of ambient pollutants has been heavily 

based upon the analyses of the associations between the pollutant exposure and its potential 

consequence, e.g. disease occurrences (Abbey et al., 1995; AckermannLiebrich et al., 1997; 

Beeson et al., 1998; Jerrett et al., 2005; Pope et al., 2002).  In many air pollution epidemiologic 

investigations, individual health datasets at nationwide or regional scales are available to 

assess the subtle risks of pollution exposure. Among them, the understanding of the spatial 

or spatiotemporal distribution of ambient pollutants is essential due to their prevalent 

heterogeneity across space and/or time. In these cases, governmental agencies has 

established ambient air-quality monitoring networks, such as the Air Quality System (AQS) 

operated by the U.S. Environmental Protection Agency (EPA), regularly recording 

important and useful environmental data sources concerning the acute and chronic effects of 

ambient pollutants (TWEPA, 2006; USEPA, 1992). Based upon these databases, an ideal 

exposure assessment is performed by applying techniques of spatial or/and spatiotemporal 

analysis for the estimation of the pollutant level at the locations of individuals in health 

dataset. However, due to the raising concerns of privacy and confidentiality of personal 

information, the sensitive personal information, such as residential addresses, of health 

dataset is usually not allowed to be accessed. As a result, individual information of health 

dataset obtained from institutes or governmental agencies is often removed or degraded. 

Among them, the spatial locations of individuals of health dataset are usually aggregated 

into a larger spatial unit, e.g. higher administrative level, in which no personal identities can 
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be identified. These aggregations raise challenges for environmental epidemiologists to 

assess the exposure levels and to investigate the potential health risks.  

Spatial interpolation techniques have been increasingly used by environmental 

epidemiologists to estimate the spatiotemporal distribution of air quality levels. Among 

them, the deterministic approaches such as nearest-neighbor method (NN) and inverse 

distance weighted method (IDW) are the most widely used methods (Hendryx et al., 2010; 

Hoek et al., 2001; Michelozzi et al., 2002; Sohel et al., 2010), in which the estimation results 

are derived from certain assumed functional relationship of geographical distances between 

the observation and estimation locations without considering the stochastic associations 

among the air quality measurements. The stochastic techniques, in particular kriging 

method, have been applied with increasing frequency in exposure assessment studies to 

address the spatial heterogeneity among the air quality data as well as the estimation 

uncertainty of predictions (Brauer et al., 2003; Brimicombe, 2000; Buzzelli and Jerrett, 2004; 

Hoek et al., 2001). Most spatial interpolators are originally developed for the estimations 

with geographical support of estimation and observation locations at point scale. As a result, 

most studies of exposure assessment apply spatial techniques for point estimation at the 

centroid of the geographical unit of interest to characterize its average air pollution level 

(Chen and Schwartz, 2008; Chen and Schwartz, 2009; Lertxundi-Manterola and Saez, 2009; 

Maheswaran and Elliott, 2003; Miller et al., 2007). The inconsistency of geographical support 

between the exposure estimations and aggregated health dataset can potentially distort the 

results of their associated epidemiological studies (Young et al., 2009; Young et al., 2008).  

This study investigates and compares the estimation results of areal-averaged air quality 

level by several popular spatial mapping techniques, i.e. NN, IDW, ordinary kriging (OK) 

and block kriging method (BK). Among them, BK is a kriging-based upscaling method 

which can perform spatiotemporal estimation with the consideration of the stochastic 

dependence among the locations with irregular sizes and shapes. This comparison is 

performed on the spatiotemporal PM10 estimation of the townships over Taipei area 

(Taiwan) during 2004-2006 on the basis of data during 1997-2007. 

2. Materials and methods 

2.1 Study area 
Taipei is the largest metropolitan area in Taiwan including Taipei city and Taipei county 

with the vehicle density as high as over 6000 vehicles per km2. Except for traffic emissions, 

the three incineration plants are the major stationary emission sources in the area (Chang 

and Lee, 2007). The Taipei area is bounded by mountains, i.e. Yangming mountains to the 

north, Linkou mesa to the west, and ridge of Snow mountains to the southeast which forms 

the second largest basin of the island (see Figure 1). Because of the significant variation of 

the basin topography, the air convection and circulation are generally degraded in this area. 

In addition, the alluvial plains at basin floor materialized the highly urbanization area of 

Taipei. As a result, the ambient pollutant concentration across the basin floor is generally 

higher than that over its surrounding mountain areas. Taiwan Environmental Protection 

Agency (TWEPA) has established the air quality monitoring network which regularly 

records the ambient pollutants, including PM10 and other criteria pollutants (TWEPA, 

2006), and meteorological covariates throughout the island since September, 1993. Figure 2 

www.intechopen.com



Assessment of Areal Average Air Quality Level over Irregular Areas:  
a Case Study of PM10 Exposure Estimation in Taipei (Taiwan) 

 

69 

shows the eighteen TWEPA monitoring stations in Taipei area. As it can be noticed, the 

distribution of monitoring locations is spatially imbalanced that most of the stations in 

Taipei are located at the high urbanized area. In this study, all the PM10 observations from 

these stations are aggregated into monthly data following the procedure suggested by 

USEPA (USEPA, 2004). The areal concentration estimations are performed at each of the 

townships shown in Figure 2 by various spatial interpolation techniques. 

 
 
 
 
 

 
 
 

 

Fig. 1. The highways, rivers and topography in Taipei metropolitan area 
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Fig. 2. Spatial distribution of PM10 monitoring stations operated by TWEPA 

2.2 Methods 
This study investigates several common used spatial interpolation methods for ambient 
pollutant exposure estimation. Among them, the nearest neighbor method (NN), also called 
polygon method and Theissen method, is the simplest method for spatial estimation. It 
assumes the air quality level at an ungauged location is completely determined by its closest 
observations so that spatial distribution of pollutants is composed of a set of polygon across 
space. The inverse distance weighted method (IDW) is a weighted average of neighboring 
observation values. The weights given to each observation is a function of distances between 
observation and estimation locations (Waller and Gotway, 2004) as below 
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where kid  is the space-time distance between the estimation location ( , )k ks t  to the 

observation locations ( , )i iz s t . p  is the modeler-specified degree. The increase of p  can 

decreases the weights of distant observations. The space-time distance is assumed to be the 

function of the geographical distance and time interval (Christakos, 2000; Christakos et al., 

2000). It can be expressed into the form of ki k i st k id s s m t t= − + − , where stm  is the space-

time metric to account for the relationship between spatial and temporal metric (Christakos 

et al., 2002). Both NN and IDW methods are deterministic methods which provide the 

estimations without the information of estimation uncertainty.  
Stochastic techniques, on the other hand, can account for the uncertainty of the space-time 
data under the framework of random field theory which forms a multivariate joint 
distribution among the space-time attribute of interest. Among them, kriging method is the 
most popular technique in space-time mapping which is so-called best linear unbiased 
estimator (BLUE) in the sense of providing the minimum estimation uncertainty (Olea, 
1999). Various types of kriging method have been developed in terms of different 
assumptions and analytical goals. Among them, ordinary kriging (OK) is the most widely 
used one which assumes the unknown mean among the space-time dependent data. The 
basic equations of ordinary kriging are shown below (Goovaerts, 1997) 
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where , ki pλ  are the OK weights for the observation at ( ),i i ip s t= ;  ( ),i jC p p  denotes the 

covariance of the attribute between ip  and jp , ( )kn p   is the number of observations used 

for the kriging estimation at kp , and , kOK pμ  is the Lagrange multiplier. The OK estimation 

at kp  can be the linear combination of observations expressed as form of 
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=

= ∑ . Block kriging (BK) inherits the framework of kriging method and 

considers the geographical support of observation and estimation locations, i.e. their size 
and shape. The average value of attribute of concern over a block V  can be represented as 

( )
ˆ ( ) ( )

k
V k V p

z p du z u V′ ′= ∫ , where V  is the areal size of block V  and u′  is the point 

locations within the block V . The block kriging system is very similar to Eq. (2) with the 

covariance ( ),k jC p p  replaced by the covariance between point observations and estimation 

block ( )( ),k jC V p p (Goovaerts, 1997), where ( )
( )

, ( , )
k

k j jV p
C p p du C u p V′ ′= ∫ .  

This study compares the township-based estimations of PM10 level by the methods above, 
i.e. NN, IDW, OK and BK. Among them, three different spatial resolutions are used in BK 
method, i.e. dividing the irregular areas into 5x5, 10x10 and 40x40 grids. The estimations are 
performed at all townships in Taipei during 2006 with the support of space-time PM10 
observations during 1997-2007. Among them, the township-level PM10 estimations by NN, 
IDW and OK methods follow the conventional approach that uses the estimations at 
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geographical centroid to characterize the areal average level of pollutant concentration 
(Chen and Schwartz, 2009; Lertxundi-Manterola and Saez, 2009; Maheswaran and Elliott, 
2003). In addition, to assure the comparison is performed at the same basis, the 
nonstationarity of PM10 process in space and time is removed by locally weighted 
smoothing regression method (LOESS) (Cleveland, 1979; Cleveland and Devlin, 1988) in 
advance to the applications of the spatial-time interpolation techniques.  

3. Results  

The observed PM10 levels across the stations in Taipei vary significantly as shown in Figure 
3.  The average and variance of monthly PM10 observations at the stations located in highly 

urbanized areas are generally higher than those in city’s surrounding areas. Temporal 
variation of averaged PM10 across stations is shown in Figure 4 in which the increased 
PM10 variability happens at the time of higher average PM10 value, i.e. proportional effect. 
In general, the average of observed PM10 is higher during the seasons of spring and winter. 

In this study, the spatiotemporal processes of monthly PM10 is decomposed into an 
nonstationary trend in space and time to account for the general pattern of PM10 
observations, e.g. PM10 variation resulting from the changes of seasons and distribution of 

emissions, and stationary residuals which account for the spatiotemporal dependence 
among the PM10 transport process. The spatiotemporal trend is estimated by using LOESS 
method which applies low-order polynomials to obtain the general pattern of PM10 
variation at each space-time locality (Cleveland, 1979; Cleveland and Devlin, 1988). The 

estimation of spatiotemporal trend is performed by R software package. To characterize the 
spatiotemporal dependence, a space-time seperable function is used as shown below (see 
Figure 5)  

 0

3 3
( , ) exp( )exp( )

r t

h
c h c

a a

ττ = − −  (3) 

where 0 150c =   and [ ], [2000m, 3 month]r ta a = . Eq. (3) is used in kriging methods, i.e. OK 

and BK, to account for the space-time covariance at point scale in space and time.  In 

addition, the covariance function identifies the influential ranges of PM10 data in space and 
time, and therefore characterizes the space-time metric which is used to estimate the space-
time distance for IDW and kriging methods as discussed above. 

The estimations of the areal PM10 level during the period of 2004-2006 at all townships of 

irregular sizes and shapes are compared in this study and their differences are shown in 

Figure 6 in which BK1, BK2, and BK denote the results of block kriging with spatial 

resolution of 5 by 5, 10 by 10, and 40 by 40 elements of each township. Results show that the 

spatiotemporal dependence is important to the estimations, i.e. significant differences 

between the results from deterministic methods, i.e. NN and IDW, and stochastic methods, 

OK and BK. The spatial distribution of the mean squared difference of estimations between 

the results from BK and other methods are shown in Figure 7. Figures 7 (a) and (b) shows 

the comparison between BK and the deterministic methods, i.e., NN and IDW, in which the 

mean squared differences (MSD) are generally high and increase as the estimation location 

further apart from the cluster of monitoring stations located at city central. The comparisons 

among spatial patterns of kriging results in Figures 7 (c) and (d), for OK-BK and BK1-BK 
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Fig. 3. Spatial distribution of (a) mean and (b) standard deviation of PM10 observations 
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Fig. 4. Temporal variation of averaged PM10 observations and its associated 95% confidence 
interval. 

 

Fig. 5. Spatiotemporal covariance of PM10 observations across (upper) space and (bottom) 
time. 
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Fig. 6. Boxplot of the estimation differences between the results of block kriging with highest 
resolution and other methods. 

 

Fig. 7. Spatial distribution of the mean squared differences between the methods of (a) NN-
BK, (b) IDW-BK, (c) OK-BK, and (d) BK1-BK 
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respectively, show the relatively higher MSDs are located at the boundary of study area and 
townships surrounding by multiple stations with relatively drastic variations of their 
observations. It should be noted that estimation differences between deterministic methods 
and BK are generally higher than those in the comparisons between kriging methods. 
Similar results are shown in the comparisons of over time in Figure 8 in which the 
seasonality of MSDs is shown in all the comparisons that elevated estimation variability is 
elevated in spring and winter.     
 

 

Fig. 8. Temporal distribution of mean squared differences among the methods of NN, IDW, 
OK, and BK with various spatial resolutions. 

4. Discussions  

Various methods of different level of complexity have been proposed and used in 
spatiotemporal estimation of air pollution exposure. Due to the privacy issue of personal 
data access, the spatiotemporal exposure estimation is often performed on the aggregated 

dataset with various geographical supports. As a result, certain approximations or 
assumptions of common techniques of point scale are required to be applied on the 
estimation of the average level over an area of concern, e.g. administrative division. Among 

them, the most common approximation is to use the air pollution estimation at the centroid 
to represent the average pollution level of the entire area of concern (Chen and Schwartz, 
2008; Chen and Schwartz, 2009; Lertxundi-Manterola and Saez, 2009; Maheswaran and 
Elliott, 2003; Miller et al., 2007). The impact of the size and shape of geographical units to the 

estimation results is seldom considered (Goovaerts, 2008). The assumption of the similar 
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spatial resolution among observation and Estimation areas can be dubious. In addition, the 
estimation ignores the variability of pollution levels within each of the studied units. Such 
approximation can be inadequate, especially, in the exposure estimation in metropolitan 

area where, in addition to its complex topography, various emission sources spreading 
across space elevates the spatiotemporal variability of air pollution. Though it is theoretical 
defective, exposure estimation at centroids usually provides a quick and convenient way to 
assess the air quality level in the corresponding areas of interest. The impact of this 

assumption of spatial prediction is worthwhile to be examined because the potential biased 
estimation results of air quality can distort their associated environmental epidemiology 
studies (Son et al., 2010).  

As shown in Figure 6, comparing with the results of BK, the inconsistency is clearly shown 

between the estimations obtained from the two groups of methods, i.e. deterministic and 

stochastic, that the variability of the between-group differences are significantly larger than 

the within group differences. Among them, the results from NN method, i.e. a very common 

used method for ambient exposure estimation in environmental health studies (Basu et al., 

2004; Miller et al., 2007), are significantly variable compared to those from other methods, 

i.e. its standard deviation is about 20% of common level of PM10. Figure 7 (a) shows that the 

discrepancy levels of NN results can vary across space and its generally high variability can 

be reduced at the areas of the higher density of monitoring stations. The periodic feature of 

the variation in Figure 8 shows that the temporal characteristics of NN results are still 

distinct from those of the results by other methods. It may resort to the fact that NN method 

is the only method disregarding the space-time dependence among the PM10 dataset in this 

study. Despite of its deterministic assumption, IDW accounts for the spatiotemporal 

dependence by considering the space-time metric among the observation and estimation 

locations. As a result, IDW reduces the discrepancy in both space and time across Taipei 

area between its results and those by kriging methods which considering the spatiotemporal 

dependence by not only space-time metric but the similarity among the observations. The 

standard deviation of the estimation variability compared to BK is about 10% of common 

PM10 level in Taipei. In addition, the results of deterministic approach are overestimated, 

especially at the townships with scarce monitors around, due to the preferential sampling at 

the highly polluted areas of Taipei central area (see Figure 3), i.e. the observations are 

mostly sampled at high concentration areas. 

Figures 6-8 show the results from kriging methods, i.e. OK and BK with two spatial 

resolutions, are relatively similar. Among them, the standard deviation of  estimation 

variability is lower than 5% of PM10 level. The distributions of MSDs among kriging 

methods in both space and time are relatively close to each other shown in Figure 7 (c) and 

(d). Among them, the areal estimation variability is further reduced by using BK instead of 

OK that their 95% confidence ranges are 2.8 and 6.8 3/g mμ , respectively. Because of the 

short spatial influential range of local PM10 transport, i.e. 2000m (see Eq. (3)), it implies the 

high spatial variability of PM10 distribution within the townships, i.e. point estimation 

results can vary significantly from location to location within townships. As a result, the 

consideration of geographical characteristics can effectively improve the understanding of 

the areal average level of PM10 concentration. This effect can be especially obvious at the 

townships containing and surrounding by multiple stations, e.g. San-chung township (the 
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township with two stations), because the nature of kriging methods completely appreciates 

the observations and therefore result in the higher variability of estimation results among 

these townships. It should be noted that all the estimations by the present spatial 

interpolation techniques only depend upon the PM10 observations. The general 

characteristics of these methods can only provide reasonable estimations within the convex 

of data locations (Olea, 1999).  

5. Conclusions 

This study applies several popular spatial techniques to assess the average areal PM10 level 
of townships in Taipei area. The comparison shows that the importance of the inclusion of 
space-time metric among the observation and estimation locations as well as the 
consideration of spatiotemporal dependence among the observations for the estimations. 
This study shows the consideration of the shape and size of the townships is important to 
the performance of the estimations of areal average concentration. The MSDs between the 
estimations by kriging methods with and without considering the geographical 
characteristics of townships are up to 6% and 2% of the common PM10 level across space 
and time, respectively. This study provides insights for the impact of geographical support 
to the exposure estimation in Taipei for environmental epidemiological studies. 
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