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1. Introduction 

It has been long recognized that tumors are composed of a heterogenous population of cells 
with various levels of cellular differentiation and morphologic features. Previous 
explanations for this phenomenon have centered around the concept of clonal evoluation, 
with the gradual acquisition of mutations leading to distinct tumor cell populations. While 
this model has validity, more recent evidence suggests that distinct tumor cell populations 
likely also arise from differentiation of cancer cells with stem-like properties. Termed the 
cancer stem cell (CSC) theory, this model posits that tumors are composed of a small 
population of cells possessing the characteristics of self-renewal and pluripotency, and thus 
the ability to initiate or support tumor growth, as well as their differentiated progeny which 
lose these abilities with increasing differentiation (Figure 1). 
Much in the way a normal organ is supported by endogenous stem cells, the CSC theory 
holds that similarly-functioning cells with stem-like abilities are the driving force behind 
tumor initiation, progression and metastatic spread. Since they were first identified in acute 
myelogenous leukemia (AML) (Lapidot et al., 1994), CSCs have been indentified in a wide 
variety and number of malignancies, including colorectal, head and neck, pancreatic, 
prostate, central nervous system (CNS), lung and breast cancer. 
The CSC theory has garnered a great deal of attention, in part, because it proposes a 
fundamental shift in the way we think about and treat cancer. Similarly to how normal 
tissue stem cells are resistant to traditional cytotoxic cancer therapies, CSCs have 
increasingly been demonstrated to be preferentially spared by such treatment. It is thought 
that standard chemotherapy and radiation targets the differentiated tumor cell bulk, leaving 
the resistance CSC behind, which can lead to recurrence even years later (Figure 2). 
Along with the identification and an increasing focus on characterization of CSCs has been 
the search for therapies that effectively target this resistant subpopulation. While the search 
is still in its infancy, a number of intriguing treatment strategies have been proposed. In 
many cases these strategies target known resistance mechanisms employed by CSCs. 
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Although efficacy for these strategies has yet to be determined in phase II or III clinical 
trials, early preliminary evidence is encouraging. In this chapter we will discuss 
mechanisms of CSC treatment resistance as well as the exciting possibility of current 
therapeutic approaches that seek to specifically target the CSC population. 
 

 

Fig. 1. Comparison of two models of tumor development and progression, (A) Traditional 
stochastic model of tumor progression. Each tumor cell is capable of giving rise to new 
tumors. Tumor heterogeneity develops from the stochastic accumulation of mutations.  
(B) Cancer stem cell theory. Tumor cell hierarchy with a CSC population at the hierarchical 
apex. Heterogeneity develops from differentiation of CSC progeny. Tumorigenic capability 
is lost with increasing differentiation 

2. Cancer stem cells and treatment resistance 

2.1 Resistance to standard cytotoxic therapy  
An unfortunate number of advanced cancers recur despite an initial response to treatment. 
The CSC theory proposes that this phenomenon is likely due to the inability of current anti-
cancer therapy to specifically target and eradicate the cells capable of “seeding” tumor 
growth, i.e. the CSC population. Studies in blood, brain, breast, and colon cancer have 
shown that identified tissue specific CSC populations exhibit decreased cell death after 
chemotherapy and radiation as compared to the more differentiated cancer cells (Woodward 
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et al., 2007). This leads to the selection of an enriched population of treatment-resistant CSCs 
that are capable of initiating new tumor growth (recurrence) and spread to distant organs 
(metastasis).  
 

 

Fig. 2. Treatment Implications of CSC Theory. (A) Traditional cytotoxic therapy targets the 
differentiated tumor bulk, sparing the relatively more resistant CSC subpopulation (light 
blue cells) which can lead to tumor recurrence, (B) CSC-directed therapy kills CSC 
subpopulation, leading to eventual tumor eradication 

These findings are supported by a number of studies using both in vitro methods as well as 
in vivo xenograft models. One such study by Dylla et al demonstrated that a subpopulation 
of highly tumorigenic colorectal cancer cells expressing the cell surface antigens 
ESA+CD44+CD166+ increased by 2.2-fold following treatment with cyclophosphamide and 
irinotecan (Dylla et al., 2008). Serial transplantion of these chemoresistant cells gave rise to 
heterogeneous tumors identical to the parent tumor, demonstrating that the chemotherapy 
selected for a resistant population of cells able to maintain their original tumorigenic 
capacity. A similar effect has been described in CD44+ pancreatic cancer cells following 
high-dose gemcitabine treatment. Interestingly, as the proportion of CD44+ cells decreased 
in culture, tumor colonies became re-sensitized to gemcitabine treatment (Hong et al., 2009), 
suggesting that the progeny of the CSC do not have the drug resistant behavior. 
Additionally, using primary lung tumors, Bertolini et al demonstrated that a population of 
tumor-initiating cells expressing CD133 were enriched after treatment with platinum-based 
chemotherapy both in vitro and in vivo. And furthermore, on retrospective analysis of 
formalin-fixed tissue biopsies, tumors with increased expression of CD133 by 
immunohistochemistry demonstrated a shorter time to recurrence following chemotherapy 
than CD133- tumors (Bertolini et al., 2009), indicating that CSC enriched tumors possess a 
more aggressive behavior. 
Similar selection of treatment-resistant CSC populations has been observed following 
radiotherapy in other tumor types. Glioblastomas are a uniformly lethal malignancy with a 
median survival of less than 12 months (Bao et al., 2006). Radiation is currently the most 
effective treatment for glioblastomas and can lead to significant treatment responses, 
although the tumor invariably recurs. Studies have shown that glioblastoma surviving 
radiation are enriched for CD133+ cells and, as described previously, are just as efficient in 
recapitulating tumors in xenograft models as non-radiated CD133+ cell populations (Bao et 
al., 2006; Eyler et al., 2008).  
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2.2 Mechanisms of treatment resistance in CSCs  
While a comprehensive understanding of the mechanisms of CSC resistance to chemotherapy 
and radiation are lacking, a number of genetic and cellular adaptations that confer resistance 
have been observed. These include slow cell cycling kinetics, efficient DNA repair 
mechanisms, increased expression of multidrug-resistance transporters, protection from a 
specialized microenvironment and apoptotic resistance (Figure 3).  
 

 

Fig. 3. Mechanisms of CSC Treatment Resistance. CSCs exhibit multiple behaviors that have 
been cited reasons for their resistance to current cytotoxic-based therapies. These include 
active drug pumps such as members of the ATP-binding cassette transporters (ABC-

transporter), efficient DNA repair mechanisms, apoptotic resistance, relative dormancy due 
to a slowly cycling state, and protection from a specialized microenvironment (niche) 

2.2.1 Slow cell cycle kinetics  
Both radiation and chemotherapy target cells that are rapidly replicating and dividing. CSCs 
are inherently resistant to these cell cycle-dependent therapies because of their low 
proliferation rate. Similar to a normal stem cell, a CSC cycles significantly less often than 
more differentiated transit-amplifying cells. In head and neck cancer, CSCs identified by 
high CD44 expression displayed increased clonogenicity and spent extended time in G2, 
which was protective against apoptosis. Targeting G2 checkpoint proteins released the G2 
blockade from these cells and made them more prone to apoptosis (Harper et al., 2010). The 
relative dormancy of a CSC also provides it with the opportunity to accumulate multiple 
mutations over time. These mutations may be passed along to the cell's progeny, creating 
another avenue to acquired therapeutic resistance.  
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2.2.2 Efficient DNA repair mechanisms 
Like normal stem cells, CSCs possess a well-fortified defense system that protects against 
DNA damage and mutation. In a study by Eyler et al, radiation was shown to cause equal 
levels of damage to all cells within a tumor, but CSCs were able to repair the damage more 
rapidly (Eyler et al., 2008). Several mechanisms exist for detection of DNA damage as well 
as rapid repair. Cell cycle checkpoints, including ataxia telangiectasia mutated and checkpoint 
kinases (Chk1 and Chk2), are activated in response to genomic stress, halting further 
replication and division until the DNA damage is repaired. Chk 1/2 have been found to 
have higher basal and inducible activity in CSCs than in non-stem cells (Eyler et al., 2008; 
Morrison et al.). Inhibition of the Chk 1/2 kinases partially reverses the radioresistance of 
glioblastoma cells, suggesting that these checkpoints are critical to the radioresistance seen 
in glioblastoma (Bao et al., 2006). 
The presence of certain DNA repair proteins can give cells a survival advantage as well. One 
specific DNA repair protein, O6-methylguanine-DNA-methyltransferase (MGMT), has been 
implicated in conferring resistance to the chemotherapeutic agent temozolomide (Beier et 
al., 2008). Temozolomide impairs DNA replication by methylating the O6 position of guanine, 
which can then be reversed by the function of MGMT. Consequently, temozolomide has 
little effect in tumor expressing active MGMT.  

2.2.3 Multidrug transporters 
CSCs exhibit a large number of drug efflux pumps that work to preserve DNA integrity by 
selectively removing cytotoxic chemicals, including chemotherapeutics, from the cell. 
Members of the ATP-binding cassette (ABC) superfamily are known to be involved in the 
multidrug-resistant phenotype of CSCs from many different cancers, including melanoma, 
lung, breast and pancreas (Bertolini et al., 2009). Of these, the ABCG2 (BCRP1) transporter 
appears to be exclusively expressed in stem cells and has been shown to be upregulated in 
multidrug resistant stem cell lines (Hong et al., 2009). ABCB1 (MDR1) has been shown to 
remove vinblastine and paclitaxel from stem cells, whereas ABCG2 prevents accumulation 
of imatinib mesylate, topotecan and methotrexate (Eyler et al., 2008). Antibodies to these 
protein transporters can effectively block tumor growth and increase chemosensitivity as 
seen in melanoma xenografts (Schatton et al., 2008). Similarly, lung cancer cells co-
expressing CD133 and ABCG2 are enriched following chemotherapy, further implicating 
the role of ABC transporters in conferring chemoresistance and increased survival to CSCs 
(Bertolini et al., 2009).  
In addition to an increased capacity for drug efflux, CSCs also express molecular mediators, 
like Aldehyde Dehyrogenase (ALDH), that are able to degrade metabolically-active 
byproducts of chemotherapeutic agents and render them inactive. By these means, ALDH1, 
3 and 5 confer resistance to cyclophosphamide in several blood, breast and colon cancer cell 
lines (Dylla et al., 2008). Additionally, knockdown of ALDH1 expression in resistant 
colorectal CSCs has been shown to increase cell sensitivity to cyclophophamide in vivo 
(Dylla et al., 2008).  

2.2.4 Wnt signaling 
Expression of ┚-catenin, an essential component of the Wnt signaling pathway, has been 
shown in multiple studies to be linked to CSC survival and tumorigenesis (Taipale et al., 
2001; Chen, M. S. et al., 2007; Woodward et al., 2007; Morrison et al.). Woodward et al 

showed that the Wnt/β-catenin pathway is also involved in CSC resistance to radiation in 
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mammary progenitor cells and breast cancer cell lines (Woodward et al., 2007). Irradiation 
of a murine mammary epithelial cell culture resulted in high levels of activated ┚-catenin in 

cells expressing stem cell antigen (Sca), while accumulation of β-catenin was not present in 
Sca-negative cells. Increased levels of ┚-catenin in irradiatiated Sca-positive cells correlated 
to enhanced self-renewal in mammospheres as well as upregulation of the anti-apoptotic 
protein Survivin. Upregulation of Survivin has also been reported in colon cancer cell lines 
where it seems to assist cancer cells in escaping senescene by enhanced telomerase activity 
(Endoh et al., 2005). 

2.2.5 Specialized microenvironment (niche) 
The CSC microenvironment undoubtedly influences CSC behavior. Surroundling stromal 
cells likely modulate CSC susceptibility to cytotoxic stress, such as radiation. Radiation-
induced apoptosis depends on an oxygen-rich environment to generate free radicals capable 
of damaging DNA. Traditionally, CSCs were believed to preferentially reside in hypoxic 
microenvironments as a means of resisting radiation-induced cell death. However, CSCs are 
more often found next to blood vessels where they are well-oxygenated (Calabrese et al., 
2007; Krishnamurthy et al.), further evidence that they require or co-opt the microenvironment 
for propagation and survival. Interestingly, CSCs seem to contribute to tumor angiogenesis, 
producing higher levels of VEGF in both normoxic and hypoxic conditions than non-CSC 
populations (Eyler et al., 2008). CSCs also rely upon factors secreted by the vasculature, such 
as leukemia inhibitory factor, brain-derived neurotrophic factor and pigment epithelial-
derived factor, for normal stem cell maintenance (Eyler et al., 2008). 
Similar to normal tissue stem cells, CSCs within breast and head and neck tumors have been 
found to exhibit increased antioxidant defenses in comparison to their non-tumorigenic 
progeny (Diehn et al., 2009). Lower ROS levels are the result of increased free radical 
scavengers that can protect the cell from radiation-induced damage and apoptosis.  
Hypoxic states appear to enrich CSC populations. This effect has been described in 
medulloblastomas as well as endothelial-derived tumors (Blazek et al., 2007; Eyler et al., 
2008). Hypoxia-induced factor (HIF)-1 may be responsible for mediating radioresistance in 
this situation as well as inducing the production of VEGF. Tumors derived from irradiated-
CSCs are often highly vascular, indicating that HIF in radio-resistant CSCs contributes to 
angiogenesis and tumor growth in an irradiated environment. Furthermore, recent clinical 
trials have shown enhanced cell killing when antiangiogenic therapy is combined with 
radiation (Lee et al., 2000; Hess et al., 2001).  

2.2.6 Resistance to apoptosis  
CSCs may also acquire resistance to apoptosis by sustained activation of cell survival 
pathways or by inhibition of apoptotic pathways. Ma et al showed that cells expressing 
CD133 in hepatocellular carcinoma demonstrated a prolonged expression of the Akt/PKB 
and Bcl-2 survival pathways in response to treatment with fluorouracil and doxorubicin (Ma 
et al., 2008). Treatment with an Akt1-inhibitor sensitized the cells to chemo-induced 
apoptosis. NFkB, an anti-apoptotic transcription factor downstream of Akt, has also been 
implicated in the survival and progression of several cancers and may also promote EMT 
conversion in CSCs leading to metastasis (Sarkar et al., 2008).  
Ultimately, it seems that CSCs may resist cytotoxic therapies through a combination of 
mechanisms that may differ among individual tumors. This emphasizes the need to develop 
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CSC-directed therapies to augment current anti-cancer treatments. In cancers where growth 
is dependent on CSCs, complete eradication of this sub-population may achieve long-term 
cure.  

3. Therapeutic targeting of cancers cells 

The frequent failure of standard cytotoxic therapies to provide a lasting cancer-free survival 

may be explained, in part, by the resistance of CSCs to standard chemotherapy and 

radiation. While traditional therapies can lead to early and often dramatic clinical responses, 

by failing to eradicate the tumorigenic CSC population, disease relapse can be expected. 

Clearly strategies that incorporate our increasing understanding of tumor cell heterogeneity 

with regards to treatment response are needed. 

 

 

Fig. 4. Overview of Strategies for Targeting CSCs. Proposed strategies for selectively 

targeting CSCs include addressing their mechanisms of resistance such their efficient DNA 

repair mechanisms, critical survival pathways and/or specialized microenvironment. Other 

strategies try to take advantage of the unique cell surface phenotype that differentiates these 

cells from the remaining tumor bulk or force the CSC to differentiate into a more treatment-

sensitive target 
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Given the resistance to standard cytotoxic therapy displayed by many CSCs, therapeutic 
targeting of this tumor cell population will likely prove to be a challenging endeavor. 
Several different strategies are currently being developed to selectively target CSCs. These 
include therapies that target the unique cell surface phenotype of CSCs and critical CSC 
signaling pathways as well as strategies aimed at forcing CSCs to differentiate and thereby 
increase their therapeutic sensitivity. Alternative strategies are aimed not at the CSC itself, 
but at its microenvironment (Figure 4). Most of these approaches have shown success in 
preclinical trials, with current early clinical phase I and II studies underway in a subset. 

3.1 Targeting the cell surface phenotype 
For many malignancies, distinct cell surface phenotypes have been defined which identify 
tumor cell populations enriched in CSCs. It is not surprising, therefore, that therapies 
directed against these cell surface antigens are under development. Monoclonal antibody 
therapy, antibody-drug conjugates and dendritic cell vaccinations are under investigation as 
potential methods of selectively targeting the CSC population using their cell surface 
phenotype (Figure 5). 
 

 

Fig. 5. Targeting the CSC Phenotype. Strategies for targeting CSC antigens include antibody-
based therapy such as monoclonal antibodies and antibody-drug conjugates. Dendritic cell 
vaccines primed with CSC antigens are another possible targeting method under 
development 

A wide variety of cell-surface antigens have been identified in tumor populations enriched 
in CSCs. Although there are some antigens that appear to mark CSCs in multiple tumor 
types there is also a variety of different surface antigens used to define CSCs across tumor 
types. In many cases, multiple cell-surface antigens have been identified that can be used to 
selectively enrich for a population with stem-like properties. While little is currently known 
about the functional role of many of these proteins, early preclinical work suggests that 
targeting them may have therapeutic value.  
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3.1.1 Antibody-based therapy 
Monoclonal antibody (mAb) therapies are being used with increasing success as targeted 

agents in cancer therapy. They are believed to function through diverse mechanisms, 

including interactions with the host immune system through antibody-dependent cell 

cytotoxicity and complement activation, as well as the blockade of important tumor cell 

signaling pathways or the elimination of critical cell surface antigens (Adams et al., 2005). In 

addition, mAbs often display synergism when used in combination with traditional 

cytotoxic chemotherapy and can act as delivery vectors for more traditional cytotoxic 

therapies when conjugated to radioisotopes or chemotherapeutics. Increasingly, monoclonal 

antibodies are being shown to be a valuable addition to standard therapeutic regimens in 

multiple solid organ malignancies (Bonner et al., 2006; Vermorken et al., 2008; Tebbutt et al.; 

Ibrahim et al.).  

Antibody therapies directed against CSC antigens are a logical outgrowth of the CSC theory 

and the increasing evidence in its support. Given the important roles in tumor development 

and growth displayed by tumor cells expressing CSC antigens, targeting these same 

antigens brings with it the hope of being able to selectively target the command center of the 

tumor. In preclinical testing, antibody-based therapies directed against CSC antigens has 

demonstrated encouraging results. 

CD44: CD44 has been defined as a CSC antigen in a number of malignancies including 

breast, colorectal and head and neck cancer. CD44 is a large, heavily glycosylated 

transmembrane protein that has known functions in cell adhesion, signaling, migration and 

defense against reactive oxygen species (Ishimoto et al.). It undergoes complex alternative 

splicing resulting in functionally different isoforms with variable tissue expression. CD44 is 

known to interact with the CSC niche by binding to components of the extracellular matrix, 

most notably hyaluron as well as osteopontin, collagen and fibronectin to a lesser degree 

(Culty et al., 1990; Jalkanen et al., 1992; Weber et al., 1996). 

Even prior to its recognition as a marker of CSCs, a variant of CD44 was recognized for its 

ability to promote metastatic behavior in a rat model of pancreatic cancer (Gunthert et al., 

1991). Furthermore, blockade of CD44 with a mAb slowed growth of lymph node and lung 

metastases as well as prevented metastatic formation in this same model of pancreatic 

cancer, presumably through blocking of ligand interaction (Seiter et al., 1993). 

Increased CD44 expression correlates with locoregional recurrence following radiation 

therapy for laryngeal cancer (de Jong et al.). In addition, CD44 expression has been 

correlated to patient prognosis in colorectal (Lugli et al.), breast (Neumeister et al., ; Zhou, L. 

et al.) and pancreatic cancer (Gotoda et al., 1998). 

Early phase I clinical studies examined the effect of a humanized mAb to CD44v6 

(Bivatuzumab) labeled with the radio isotope rhenium-186 in patients with head and neck 

squamous cell carcinoma (Stroomer et al., 2000; Borjesson et al., 2003). These studies 

demonstrated acceptable toxicity with stable disease in patients who received higher drug 

doses.  
However, the enthusiasm for further development of CD44-based antibody therapy waned 
after a subsequent phase I study demonstrated unacceptable toxicity. In this dose-escalation 
study, bivatuzumab conjugated to the chemotherapeutic mertansine was evaluated in 
patients with head and neck cancer. Skin-related toxicity occurred with increasing dose and 
the trial had to be halted early after one patient died from toxic epidermal necrolysis (Tijink 
et al., 2006; Rupp et al., 2007). 
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CD133: CD133 is a well-recognized CSC marker in multiple malignancies, including 
glioblastoma, colorectal, prostate, pancreatic, ovarian and renal cancer (Hermann et al., 
2007; Ricci-Vitiani et al., 2007; Baba et al., 2009). CD133 is a pentaspan transmembrane 
glycoprotein that localizes to cell protrusions. It has known interactions with cholesterol and 
is speculated to be involved in plasma membrane organization, although the exact 
functional properties of this molecule are not well characterized (Mizrak et al., 2008). 
Mutations in this gene are associated with multiple retinal diseases and it has been well-
defined as a marker for hematopoetic and neural progenitor cells.  
Expression of CD133 has been linked to adverse tumor behavior. CD133-positive cells have 
been shown to be resistant to standard chemotherapy in multiple tumor cell types, among 
them head and neck (Zhang, Q. et al.), pancreatic (Hermann et al., 2007), glioblastoma 
(Blazek et al., 2007), and colorectal cancer cells (Dallas et al., 2009). CD133 expression has 
also been correlated to tumor recurrence in patients with colorectal cancer treated with 
chemotherapy and radiation (Nagata et al.). Whether CD133 has a direct functional role or is 
merely a convenient marker of cells that express these abilities is, as yet, unknown.  
As of yet, antibody therapy directed against CD133 has only been evaluated in limited 
preclinical models. Chen and colleagues demonstrated that CD133 targeting with a mAb 
could inhibit proliferation of colorectal cancer cell in vitro (Chen, W. et al.). Damek-Poprawa 
and colleagues conjugated a genetically modified cytotoxin from Aggregatibacter 
actinomycetemcomitans to an anti-human CD133 mAb and demonstrated its ability to 
selectively target CD133+ head and neck cancer cells in vitro (Damek-Poprawa et al.). 
The potential for success of anti-CD133 antibody therapy has been recently questioned by 
the discovery that CD133 expression may not be as tightly linked to CSC function as 
previously suggested. Chen and colleagues elegantly demonstrated that the CD133 negative 
cell population in neuroblastoma, a tumor in which CD133 is well-characterized as a CSC 
antigen, harbors a subset of cells with tumor-initiating capability (Chen, R. et al.). Clearly, a 
more in-depth knowledge of the correlation between cell-surface phenotype and functional 
activity is needed if we are to be successful in selectively targeting the CSC population. 
ALCAM: Activated leukocyte cell adhesion molecule (ALCAM), also known as CD166, has 
been characterized as a stem cell niche marker in the colon (Levin et al.) and as a CSC 
marker in colorectal (Dalerba et al., 2007) and prostate cancer (Rajasekhar et al.). CD166 is  
a member of a subfamily of immunoglobulin receptors with five extracellular 
immunoglobulin-like domains, a transmembrane section and a short cytoplasmic tail 
(Weidle et al.). It is involved in homotypic interactions as well as heterotypic interactions 
with CD6.  
Altered CD166 function, levels of expression and subcellular localization are all suspected to 
play a role in tumor biology. Functional polymorphisms of the CD166 gene that confer 
increased transcriptional activity have been correlated to an increased risk of the 
development of breast cancer (Zhou, P. et al.). Furthermore, overexpression of CD166 as 
compared to surrounding normal tissue has been demonstrated in papillary and medullary 
thyroid cancer (Micciche et al.). In pancreatic cancer, overexpression of CD166 has been 
associated with shorted disease-free and overall survival (Kahlert et al., 2009). However, in 
gastric cancer, decreased CD166 expression through microRNA and siRNA ALCAM 
silencing has been shown to increase cellular proliferation (Jin, Z. et al.). The conflicting 
reports on the role of over- or under-expression of CD166 in multiple cancers highlights our 
incomplete understanding of the functional role of this molecule. It is quite possible that the 
function of CD166 differs by malignancy type. 
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Rather than over- or under-expression, altered cellular localization of CD166 has been 

correlated with disease progression in multiple tumor types. In colorectal (Lugli et al.) head 

and neck (Sawhney et al., 2009), ovarian (Mezzanzanica et al., 2008) and breast cancer 

(Burkhardt et al., 2006) loss of membranous staining has been associated with disease 

progression. In many cases, loss of membranous CD166 expression (or an increase in 

cytoplasmic CD166) is associated with loss of cell-cell adhesion and the acquisition of a 

metastatic phenotype (Mezzanzanica et al., 2008). Some have speculated that CD166 functions 

as a sensor of cell density, which may help to explain the fact that it is strongly expressed on 

CSCs.  
In preclinical studies, selective targeting of CD166 with a recombinant single-chain antibody 
inhibited breast cancer invasion in vitro and colorectal tumor growth in a nude mouse 
xenograft model (Wiiger et al.). CD166 internalization as a means for intracellular drug 
delivery has also been studied in vitro. Piazza and colleagues demonstrated that the human 
single-chain antibody fragment I/F8 selectively targets CD166 and induces internalization 
of the antibody-CD166 complex. They then developed an immunotoxin from the conjugation 
of I/F8 to the ribosome inhibiting protein saporin and demonstrated the ability of their 
antibody fragment to deliver the toxin intracellularly and selectively kill CD166 expressing 
cells (Piazza et al., 2005). A similar strategy targeting CD166 for intracellular delivery of 
liposomal drugs has been shown to have some efficacy in vitro in select prostate cancer cells 
(Roth et al., 2007). Given the loss of cell surface CD166 expression that has been shown to 
occur with disease progression in many malignancies, targeted therapy directed at 
extracellular CD166 epitopes may prove to have limited therapeutic efficacy in vivo. 

3.1.2 Dendritic cell vaccines 
In addition to antibody-based therapy, cancer stem cell antigens are also being targeted 

through dendritic cell vaccines. In a rat model of glioblastoma, dendritic cell vaccination 

using CSC antigens produced T-cell responses against CSCs but not those primed with 

daughter cells. Furthermore, survival was prolonged in animals receiving CSC dendritic cell 

vaccines as compared with non-CSC tumor cell vaccination (Xu et al., 2009). Current phase I 

trials are underway in patients with glioblastoma using dendritic cell vaccines primed with 

mRNA or whole cell lysates from CD133 positive tumor cells. 

3.2 Targeting cancer stem cell signaling pathways 
3.2.1 Targeting notch signaling  
The Notch signaling pathway is a highly conserved pathway in multicellular organisms. 
There are four different Notch receptors (Notch 1-4) that are single pass transmembrane 
proteins with large extracellular and small intracellular domains. The two most well-
characterized notch ligands are Delta-like and Jagged, which are also single pass 
transmembrane proteins. Upon ligand binding, the extracellular portion of Notch is cleaved 
by a metalloprotease called TACE (Tumor Necrosis Factor Alpha Converting Enzyme) and 
the ligand and notch extracellular domain are then endocytosed by the ligand-expressing 
cell. Subsequently, ┛-secretase cleaves the intracellular notch domain, releasing it move to 
the nucleus and regulate gene expression (Harrison et al.). Strategies to target Notch 
signaling in cancer have focused on multiple points in this pathway, including ┛-secretase 
inhibition and antibody therapy directed against notch ligands as well as the notch receptor 
(Figure 6).  
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Fig. 6. Targeting critical CSC pathways  

The Notch pathway is known to regulate cell fate and renewal, particularly during embryonic 
development. Notch signaling in cancer has been demonstrated to be a particularly important 
in regulating the function of the CSC tumor population. For instance, in lung adenocarcinoma 
CSCs, Notch signaling is important for key stem-like properties. Sullivan and colleagues 
demonstrated that lung adenocarcinoma CSCs identified by high Aldehyde Dehydrogenase 
activity had elevated expression of Notch pathway transcripts. Furthermore, when the notch 
pathway was targeted either through ┛-secretase inhibition or expression of a shRNA 
against Notch3, decreased tumor cell proliferation and clonogenicity were noted (Sullivan et 
al.).  
In glioblastoma xenograft models, ┛-secretase inhibition has been shown to deplete CD133+ 
CSCs and prolong survival (Fan et al.). In addition, when combined with temozolomide 
therapy, ┛-secretase inhibition blocked tumor progression in 50% of mice with established 
xenografts (Gilbert et al.). Preclinical activity of ┛-secretase inhibition has also been 
demonstrated in colorectal (Akiyoshi et al., 2008), breast (Han et al., 2009; Rasul et al., 2009), 
ovarian (Wang, M. et al.) and lung cancer (Konishi et al., 2007). These encouraging 
preclinical results have paved the way for currently ongoing Phase I studies. RO4929097, 
MK-0752 and PF-03084014 are three different ┛-secretase inhibitors currently being 
evaluated in phase I oncology trials. 
Gamma-secretase inhibition is a relatively non-specific method of decreasing Notch 
signaling. Although Phase I data is not yet available for us to understand treatment toxicity 
in human patients, early preclinical evidence suggests that dual inhibition of Notch1 and 2 
through ┛-secretase inhibitition may lead to intestinal morbidity through depletion of crypt-
based progenitor cells (Riccio et al., 2008). In an effort to more selectively target individual 
Notch receptors (Notch1-4), antibodies selectively targeting Notch1 and Notch2 have been 
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developed. In xenograft tumor models, Notch1 blockade inhibits tumor growth through 
inhibition of both cancer cell growth and angiogiogenesis (Wu et al.). Based upon these 
encouraging early results, there may be a role for the selective targeting of individual Notch 
receptors as a way to minimize therapeutic morbidity. 
As well as notch receptor blockade and ┛-secretase inhibition, blocking notch receptor 

ligands is an alternative strategy to abolish notch signaling. Preclinical studies in colorectal 

tumor xenograft models have demonstrated the efficacy of anti-DLL4 antibodies in 

inhibiting tumor growth, particularly in combination therapy with irinotecan (Fischer et al.). 

Interestingly, in contrast to cetuximab therapy, anti-DLL4 showed efficacy in both KRAS 

wild-type and mutant tumors. Preclinical efficacy of anti-DLL4 therapy has also been noted 

in pancreatic cancer (Oishi et al.), Ewing’s sarcoma (Schadler et al.). DLL4 blockade appears 

to work through similar mechanisms to notch receptor blockade in that it reduces CSC 

frequency and tumor cell growth (Hoey et al., 2009) as well as inhibits angiogenesis 

(Ridgway et al., 2006). 

Phase I clinical studies are currently underway to evaluate the safety of a humanized mAb 

targeting the N-terminal epitope of DLL4 (OMP-21M18) in combination with other 

chemotherapeutics in colorectal, lung and pancreatic cancer. The potential for significant 

toxicity with anti-DLL4 therapy will be carefully evaluated given that chronic DLL4 

blockade has been demonstrated to induce hepatic toxicity and, in a dose-dependent 

manner, lead to the development of subcutaneous vascular neoplasms in rats (Yan et al.).  

3.2.2 Targeting hedgehog signaling  
The hedgehog (Hh) signaling pathway is a key developmental pathway that regulates animal 

morphogenesis. In cells receiving Hh signaling, pathway activity is controlled at multiple 

levels. In the absence of Hh, Patched1 (PTCH1), a transmembrane receptor, suppresses the 

activity of Smoothened (Wiiger et al.) by preventing its cell surface localization. In the 

presence of Hh ligand, the Hh pathway is activated by PTCH1 relieving its inhibition of 

SMO. SMO localizes to the cell surface and initiates a signaling cascade that activates the 

glioma-associated (Gli) family of zinc finger transcription factors (Evangelista et al., 2006). 

Dysregulation of the Hh signaling pathway has been noted in multiple types of cancer, the 

prototype of which is basal cell carcinoma. Inactivating mutations of PTCH1 are noted to be 

the cause of Gorlin syndrome, a disease characterized by the development of multiple basal 

cell carcinomas (BCCs) and keratocystic odontogenic tumors with increased susceptibility to 

the development of medullblastoma and rhabdomyosarcoma. In addition, most sporadic 

BCCs have been demonstrated to have inactivating PTCH1 mutations (Caro et al.). 

Increased Hh pathway expression has also been documented in a large number of 

malignancies, among them medulloblastoma (Raffel et al., 1997; Taylor et al., 2002), head 

and neck (Schneider et al.), pancreatic (Walter et al.) and breast cancer (ten Haaf et al., 2009). 
It has been speculated that the hedgehog pathway may promote key tumor behaviors by 
acting predominantly on CSCs (Evangelista et al., 2006). The Hh pathway is well-known to 
regulate tissue growth and regeneration through its effects on normal tissue stem cells 
(Bhardwaj et al., 2001; Machold et al., 2003; Ahn et al., 2005; Palma et al., 2005; Plaisant et 
al.). Shin and colleagues have shown that in response to injury, sonic hedgehog protein 
expression is upregulated in bladder epithelial stem cells. This in turn elicits increased Wnt 
expression in the adjacent stroma, with resultant epithelial and stromal cell proliferation and 
restoration of urothelial function (Shin et al.).  
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Accumulating evidence suggests that CSCs may rely on Hh signaling in a similar manner. In 
gastric cancer cells, inhibition of Hh signaling selectively reduced proliferation and 
increased susceptibility to chemotherapy in the CSC subpopulation (Song et al.). In CD133-
positive glioma CSCs, treatment with the Hh inhibitor cyclopamine increased sensitivity to 
temozolomide therapy. Interestingly, the combination of cyclopamine with a ┛-secretase 
inhibitor provided an even greater increase in CD133-positive cytotoxicity with temozolomide, 
indicating a potential role for the simultaneous inhibition of multiple CSC signaling 
pathways. 
Current strategies to target the Hh pathway rely mainly on SMO targeting. The naturally-
occuring plant teratogen cyclopamine and subsequent synthetic derivates were first 
demonstrated to inhibit aberrant Hh pathway activation due to oncogenic SMO and PTCH 
mutations through inhibition of SMO over a decade ago (Taipale et al., 2000). Since that time 
the efficacy of SMO inhibition has been demonstrated in preclinical models of glioblastoma, 
small cell lung, gastric, pancreatic and prostate cancer (Evangelista et al., 2006). GDC0449, 
an oral small molecule inhibitor of SMO, is the furthest along in clinical development. Other 
small molecule inhibitors of SMO under development include LDE-225, BMS-833923, IPI-
926 and PF-04449913 (Figure 6). 
Phase I clinical trial data for GDC0449 in patients with advanced and/or metastatic solid 
organ malignancies has recently been reported (Lorusso et al.). An acceptable side-effect 
profile was observed. Furthermore, a clinical response was seen in 19 of 33 patients with 
basal cell carcinoma and in 1 patient with medulloblastoma, both of which are tumors 
known to be driven by PTCH1 and SMO mutations. Phase II trials in multiple malignancy 
types are now underway with this compound as well as other phase I studies evaluating 
other small molecule SMO inhibitors. Interestingly, the well-characterized antifungal 
Itraconazole was recently demonstrated to inhibit Hh pathway activation and cancer growth 
through SMO inhibition (Kim et al.). Undoubtedly, future studies will likely evaluate the 
efficacy of this relatively well studied and well-tolerated agent in a cancer setting. 
Future strategies to overcome tumor dependence on Hh signaling will likely incorporate 
downstream targeting of Hh pathway components. Because current therapeutic approaches 
predominately target the transmembrane protein SMO, they would not be expected to 
abrogate Hh pathway activation due to overexpression of molecules further downstream in 
the signaling cascade. This is becomes a valid consideration given that overexpression of 
Gli, a downstream effector of the Hh pathway, has been documented in some tumor types, 
including esophageal and colorectal cancer (Rizvi et al., ; Mazumdar et al.). In addition, the 
acquisition of SMO mutations may interefere with the ability to target this protein. In fact, in 
medulloblastoma, the acquisition of a SMO mutation that disrupts the ability of GDC0449 to 
bind SMO has been demonstrated to confer resistance to this method of targeted Hh 
pathway inhibition (Yauch et al., 2009). Several small molecule anatagonists of downstream 
Hh pathway effectors have been discovered (Hyman et al., 2009; Mazumdar et al.) and may 
provide a basis for the development of future therapeutics that more comprehensively 
target the Hh pathway. 

3.2.3 Targeting Wnt signaling 
The Wnt highly conserved signaling pathway that plays a key role in maintenance of the 
stem cell population, proliferation, differentiation and apoptosis (de Sousa et al.). In the 
canonical Wnt pathway, signaling is mediated primarily through ┚-catenin. In the absence 
of Wnt ligands, ┚-catenin is phosphorylated which primes it for ubiquitination by a 
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destruction complex composed, in part, by the tumor suppressor protein APC. After 
ubiquitination Wnt undergoes proteosomal degredation. Upon Wnt ligand binding to the 
Wnt receptor Frizzled (FZD), ┚-catenin is no longer degraded due to dissolution of the 
destruction complex. ┚-catenin translocates to the nucleus where along with coactivators 
CBP and p300 it activates the lymphoid enhancer factor/T-cell factor (LEF/TCF) family of 
transcription factors, leading to expression of Wnt target genes. 
Upregulation of Wnt signaling is a common finding in cancer (Deonarain et al., 2009). A 
prime example of this is colorectal cancer, in which frequent activating mutations of ┚-
catenin or inactivating mutations of APC lead to constitutive Wnt pathway activation. 
Interestingly, Wnt signaling appears to be particularly important in CSC function. In 
colorectal cancer, higher Wnt pathway activation is noted in the cancer stem cell population 
adjacent to the tumor stroma as compared with the bulk of tumor cells. Furthermore, high 
Wnt signaling has been shown to functionally define the CSC compartment in vitro and in 

vivo (Vermeulen et al.). Wnt signaling has also been demonstrated to play a key role in the 
regulation of cancer stem cells in lung cancer (Teng et al.) and glioblastoma (Jin, X. et al.). 
Therapies are under development that target multiple points in the Wnt signaling pathway, 
from antibodies directed against Wnt ligands and their receptor Frizzled to small molecules 

such as PRI-724 that inhibit the β-catenin/CBP transcription activating complex (Figure 6). 
Of these, PRI-724 is the furthest along in clinical development, with phase I clinical trials 
currently ongoing. 

3.3 Telomerase inhibition  
Telomerase is an enzyme that adds repeating sequences of TTAGGG to the 3’ ends of DNA 
strands, thereby preventing loss of important DNA from chromosome ends. Telomerase 
activity has been implicated in the limitless self-renewal potential of CSCs, making it an 
attractive target for inhibition. In preclinical models, telomerase inhibition depletes the CSC 
tumor cell subpopulation in breast and pancreas (Joseph et al.), neural (Castelo-Branco et al.) 
and prostate (Marian et al.) cancer cell lines. Imetelstat (GRN163L), a synthetic 
oligonucleotide that targets the template region of telomerase is currently being evaluated in 
Phase I clinical trials.  

3.4 Targeting CSC DNA repair mechanisms 
Efficient DNA repair has been identified as one mechanism by which the CSC tumor 
subpopulation is more resistant to standard DNA-damaging therapy (Bao et al., 2006). In 
glioblastoma, CD133+ CSCs display increased DNA damage checkpoint response to 
radiation and have more efficient DNA repair. Furthermore, the radioresistance of these 
CSCs can be reversed with inhibition of the checkpoint kinases Chk1 and Chk2 (Ropolo et 
al., 2009). Of the many compounds that have been identified to inhibit Chk1 and Chk2 
(Garrett et al.), Ly2606368, a Chk1 inhibitor, is currently being evaluated alone and in 
combination with cisplatin in phase I clinical trials. 

3.5 Targeting CSCs through differentiation therapy 
Rather than targeting drugs to specific features of CSCs, an alternative strategy may be to 
make CSCs more responsive to existing chemotherapeutic agents. This may be 
accomplished by promoting differentiation of CSCs from their resistant, stem cell state to 
more responsive differentiated cells. This has already been shown to be an effective strategy 

www.intechopen.com



 
 Cancer Stem Cells - The Cutting Edge 

 

58 

in some model systems. In chronic myeloid leukemia, primitive, quiescent CSCs are 
resistant to imatinib, an inhibitor of the BCR-ABL fusion kinase. However, treatment with 
several days of G-CSF stimulates differentiation of these CSCs, increasing sensitivity to 
imatinib (Jorgensen et al., 2006). Similarly, CD133+ CSCs in glioblastoma are very drug 
resistant. Treatment with bone morphogenic proteins (BMP), particularly BMP4, effectively 
initiates differentiation of glioblastoma cells, thereby reducing CD133+ cells, clonogenic 
ability, and cell proliferation in mouse xenografts (Piccirillo et al., 2006). This therapy may 
also make these glioblastoma cells more sensistive to other drugs, increasing the efficacy of 
chemotherapy for this tumor (Figure 7). 
 

 

Fig. 7. Differentiation therapy. Strategies forcing CSC differentiation may increase 
therapeutic efficacy of traditional cytotoxic therapy 

3.6 Targeting the CSC microenvironment   
Rather than targeting the CSC directly, attempts to disrupt the CSC’s specialized 
microenvironment may prove an alternative strategy for eradicating the CSC population. 
Much in the way normal adult tissue stem cells require a specialized microenvironment, or 
niche, to maintain a balance between self-renewal and differentiation, increasing evidence 
suggests that CSC behavior relies on similar microenvironmental cues.  
Components of this specialized microenvironment include both non-tumor cells such as 
fibroblasts, myoepithelial cells, osteoblasts, leukocytes and endothelial cells, as well as the 
extracellular matrix proteins and signaling molecules they produce. The composition of the 
niche varies by tumor type; for example, hematopoetic stem cells reside in an osteoblastic 
niche (Zhang, J. et al., 2003; Arai et al., 2004), while epithelial stem cells reside in a niche 
composed of fibroblasts and myoepithelial cells (Ohlstein et al., 2004).  
Evidence that CSCs require a similar microenvironment is mounting. Leukemic CSCs 
preferentially home to the niche and enjoy a growth advantage once there (Kawaguchi et al., 
2001), while both glioblastoma (Charles et al.) and HNSCC (Krishnamurthy et al.) CSC’s 
reside in a perivascular niche that is critical for their survival. The CSC-niche interaction 
functions to support and maintain CSCs through a variety of interactions and signaling 
cascades, and it has been suggested that maintaining the CSC-niche interaction is the 
primary role of many known CSC surface markers such as CD44 (Marhaba et al., 2008). 
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Targeting these physical interactions as well as niche-CSC signaling pathways hold 
therapeutic promise (Figure 8). 
 

 

Fig. 8. Several differing strategies are currently under evaluation for targeting the CSC 
niche. Targeted anti-vascular therapy and anti-Notch strategies highlight the prominent role 
of the endothelial cell in the niche. Other therapies seek to target physical interactions 
between CSC proteins and non-cellular niche components, such as therapies that disrupt the 
interaction of CD44 with components of the extracellular matrix 

This interaction appears to function both ways, as glioblastoma CSCs may create and 
maintain their vascular niche by differentiating into endothelial cells (Ricci-Vitiani et al., 
2007). Furthermore, there is evidence that some tumors may induce creation of a niche-like 
environment prior to the arrival of tumor cells in metastatic spread, likely via secretion of 
tumor-derived growth factors (Kaplan et al., 2005). Thus inhibition of the CSC-niche 
interaction may be a useful strategy for elimination of CSCs. In mouse glioblastoma 
xenografts, inhibition of CSC-derived endothelial differentiation led to tumor reduction, 
likely via inhibition of the CSC niche (Ricci-Vitiani et al., 2007). These findings may help to 
explain the efficacy of anti-vascular therapies, such as VEGF inhibition, in select cancers.  
Anti-CD44 therapy may be another strategy to disrupt the CSC niche. CD44 is well-known 
to interact with components of the extracellular matrix such as hyaluron, osteopontin, 
fibronectin and collagen. There is increasing evidence that disruption of this interaction may 
impact CSC survival. Current strategies using antibody therapy directed against CD44, 
hyaluron-chemotheraeputic conjugates, and even miR-34a are under development (Wang, S. 
J. et al., 2006; Li et al.; Liu et al.).  
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Target Drug Trial # Phase Cancer types 

GDC-0449 
(SMO and/or 
PTCH1 inhibitor) 

NCT01088815
NCT00980343
NCT00957229 
NCT00959647 
NCT00982592 
NCT01267955 
NCT00887159 

II 
II 
II 
II 
II 
II 
II 

Pancreatic 
Brain & CNS 
BCC 
BCC, CRC, Ovarian 
Gastric, Esophageal 
Chondrosarcoma 
Lung 

LDE-225 
(SMO inhibitor) 

NCT00961896
NCT01125800
NCT01208831
NCT00880308
NCT01033019 

II 
I 
I 
I 
II 

BCC 
Pediatric solid malignancies 
Solid malignancies 
Solid malignancies 
BCC 

BMS-833923  
(XL139) 
(SMO inhibitor) 

NCT00670189
NCT00909402
NCT00927875 

I 
I 
I 

Solid malignancies 
Gastric, Esophageal 
Small cell lung cancer 

IPI-926 
(SMO inhibitor) 

NCT00761696
NCT01130142
NCT01310816 

I 
I, II 
II 

Solid malignancies 
Pancreatic 
Chondrosarcoma 

Hedgehog 

Pathway 

PF-04449913 
(SMO inhibitor) 

NCT01286467
 

I 
 

Solid malignancies 
 

MK-0752 

(γ-secretase 
inhibitor) 

NCT00645333
NCT00106145 

I, II 
Breast 
Breast 

RO4929097  
(γ-secretase 
inhibitor) 

NCT01071564
NCT01192763
NCT01193868 

I 
I 
II 

Breast 
Pancreatic 
Lung 

PF-03084014 
(γ-secretase 
inhibitor) 

NCT00878189 I Solid Malignancy & Leukemia 

Notch 

Pathway 

OMP-21M18  
(anti-DLL4 mAb) 

NCT01189942
NCT01189929
NCT01189968 

I 
I 
I 

CRC 
Pancreatic 
Lung 

Telomerase Imetelstat 
(GRN163L) 

NCT01137968 II Lung 

Dendritic cell 
vaccine to CD133+ 
CSC mRNA 

NCT00846456
NCT00890032 

I, II 
I 

Glioblastoma 
Brain & CNS 

Dendritic 

Cell 

Vaccines 

Dendritic cell 
vaccine to whole 
CD133+ CSC lysate 

NCT01171469 I Brain & CNS 

PRI-724 NCT01302405 I, II CRC, Pancreatic Wnt 

Pathway 
Resveratrol NCT00256334 I, II CRC 

Table 1. Current clinical studies evaluating CSC-directed therapies in solid organ 
malignancies. BCC = Basal cell carcinoma, CRC = Colorectal carcinoma 
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4. Conclusions 

The CSC theory, aside from the contribution to our understanding of tumor biology, has 
potential far-reaching clinical implications. Early preclinical success, while certainly 
encouraging, has yet to be confirmed in clinical studies. For many of the therapeutic 
strategies discussed, phase I and II clinical studies are currently ongoing and will additional 
evidence as to the safety and efficacy of these therapies in the near future (Table 1). 
In order to specifically target CSCs while sparing somatic stems cells, it will be critical to 
identify unique molecules and dysregulated pathways in the CSC population when compared 
to the somatic stem cell population. Our understanding of the differential regulation of 
CSCs and normal tissue stem cells is yet in its infancy and clearly needs further exploration. 
Our ability to consistently and reliably identify tumor cell populations with CSC 
functionality needs to be improved. It is becoming increasingly apparent that currently 
identified CSC antigens are insufficient to detect all cells harboring CSC functions (Chen, R. 
et al.). This may be due to plasticity in the CSC compartment with cells gaining and losing 
CSC functions in response to environmental signals. It may also be due to the possibility 
that current surface antigens simply are not selective enough, or the combination of surface 
antigens not fully refined. Part of this problem stems from our incomplete understanding of 
the functional aspects of these CSC markers/molecules. In many cases these antigens are 
used because they have been shown to conveniently mark a population of cells that happen 
to have stem-like properties rather than because their expression is intrinsically tied to CSC 
functionality.  
Furthermore, if we wish to target these CSC antigens, our understanding of their expression 
patterns in normal tissues needs to be elucidated. A prime example of this is the case of anti-
CD44v6 therapy discussed previously. Clinical trials for a CD44-drug conjugate were halted 
early due to excessive skin toxicity and a patient death that occurred because of targeting of 
CD44v6 expressed in the basal layer of the skin. A more comprehensive knowledge of CSC 
antigen expression patterns may help better predict and subsequently avoid treatment-
related toxicity. 
Preclinical studies suggest that the combination of CSC-specific and broad cytotoxic therapy 
holds the best chance for disease eradication. In many preclinical examples, CSC-targeted 
therapy appears to increase the sensitivity of the CSC subpopulation to traditional cytotoxic 
therapies. Furthermore, it is possible that differentiated tumor cells may provide feedback 
and support to their undifferentiated CSC counterparts and that removal of this population 
may impact CSC survival as well. As therapeutic strategies are developed to target the CSC 
subpopulation, consideration will need to given to appropriate combinations with 
traditional cytotoxic therapies. 
While there are clearly many obstacles to overcome, CSC-directed therapy has the ability to 
revolutionize cancer treatment. By focusing on tumor subpopulation heterogeneity in 
treatment response and tumorigenic potential, we will undoubtedly uncover novel 
therapeutic targets that would have remained otherwise undiscovered. Although CSC 
theory is yet in its infancy, the success of early preclinical studies brings hope that it may 
carry with it improved treatments. 
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