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1. Introduction

Over the last decade, kernel-based nonlinear learning machines, e.g., support vector machines

(SVMs) Vapnik (1995), kernel principal component analysis (KPCA) Scholkopf (1998), and

kernel Fisher discriminant analysis (KFDA) Mika (1999), attracted a lot of attentions in the

fields of pattern recognition and machine learning, and have been successfully applied in

many real-world applications Mika (1999); Yang (2002); Lu (2003); Yang (2004). Basically,

the kernel-based learning methods work by mapping the input data space, X , into a high

dimensional space, F , called the kernel feature space: Φ : X −→ F , and then building linear

machines in the kernel feature space to implement their nonlinear counterparts in the input

space. This procedure is also known as a “kernelization”, in which the so-called kernel trick is

associated in such a way that the inner product of each pair of the mapped data in the kernel

feature space is calculated by a kernel function, rather than explicitly using the nonlinear map,

Φ.

The kernel trick provides an easy way to kernelize linear machines. However, in many cases,

formulating a kernel machine via the kernel trick could be difficult and even impossible. For

example, it is pretty tough to formulate the kernel version of the direct disciminant analysis

algorithm (KDDA) Lu (2003) using the kernel trick. Moreover, for some recently developed

linear discriminant analysis schemes, such as the uncorrelated linear discriminant analysis

(ULDA) Ye (2004), and the orthogonal linear discriminant analysis (OLDA) Ye (2005), which

have been shown to be efficient in many real-world applications Ye (2004), it is impossible

to directly kernelize them via the kernel trick, since these schemes need first computing the

singular value decomposition (SVD) of an interim matrix, namely, Ht (see Ye (2004)), which is

generally of infinite column size in the case of the kernel feature space.

Theoretically, the kernel feature space is generally an infinite dimensional Hilbert space.

However, given a training data set {xi} (i = 1, 2, . . . , n), the kernel machines we known

perform actually in a subspace of the kernel feature space, spanΦ(xi) (i = 1, 2, . . . , n),

which can be embedded into a finite-dimensional Euclidean space with all data’s geometrical

measurements, e.g., distance and angle, being preserved Xiong (2005). This finite-dimensional

embedding space, called empirical kernel feature space, provides a unified framework for

kernelizing all kinds of linear machines. With this framework, kernel machines can be
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2 Face Recognition / Book 1

“seamlessly” formulated from their linear counterparts without any difficulty: performing

linear machines in the finite-dimensional empirical kernel feature space, the corresponding

nonlinear kernel machines are then constructed in the input data space.

In this chapter, we propose to approach the kernelization from the empirical kernel feature

space, that is, we formulate nonlinear kernel machines by directly performing their linear

counterparts in the empirical kernel feature space. The kernel machines constructed, called

empirical kernel machines, are usually different from the conventional kernel machines

based on the kernel trick, and surprisingly, the empirical kernel machines are shown to be

more efficient in many real-world applications, such as face recognition, facial expression

recognition, and handwritten digit recognition, than the conventional nonlinear kernel

machines and their linear counterparts.

The remainder of this chapter is organized as follows: In Section 2, we introduce the concepts

and related notation concerning the empirical kernel feature space. Section 3 shows the

difference in formulation between the conventional kernel principal component analysis

(KPCA) and the empirical kernel principal component analysis (eKPCA), which is constructed

by performing the linear principal component analysis (PCA) in the empirical kernel feature

space. In Section 4, we formulate three other empirical kernel machines, namely, the empirical

kernel direct discriminant analysis (eKDDA), the empirical kernel ULDA, denoted as eKUDA,

and the empirical kernel OLDA, denoted as eKODA, via directly performing the DLDA Yu

(2001), ULDA, and OLDA schemes in the empirical kernel feature space. Experiments for

evaluating the performance of the empirical kernel machines in the real-world applications,

e.g., face and facial expression recognition, are presented in Section 5.1. Finally, Section 6

concludes this chapter.

2. The empirical kernel feature space

Let {xi, ξi}n
i=1 be a d-dimensional training data with class labels {ξ i}, the kernel matrix K =

[kij]n×n, where kij = Φ(xi) ·Φ(xj) = k(xi , xj), and rank(K) = r, r ≤ n. Since K is a symmetrical

positive semi-definite matrix, K can be decomposed as:

Kn×n = Pn×rΛr×rPT
r×n (1)

where Λ is a diagonal matrix only containing the r positive eigenvalues of K in decreasing

order, and P consists of the eigenvectors corresponding to the positive eigenvalues. The map

from the input data space to an r-dimensional Euclidean space Φe: X −→ Rr

x −→ Λ− 1
2 PT(k(x, x1), k(x, x2), . . . , k(x, xn))

T

is referred to the empirical kernel map in Xiong (2005); Scholkopf (1999). We call the subspace

span{Φe(xi)} the empirical kernel feature space, and denote it by F e. Obviously, we have

span{Φe(xi)} ⊂ span{Φe(X )} ⊂ Rr. For the completion of the subspaces, it is easy to verify:

span{Φe(xi)} = span{Φe(X )} = Rr.

It is well-known that various kernel machines, such as KPCA and SVM, perform only in a

subspace of the kernel feature space: span{Φ(xi)}, which is actually isometric isomorphic

with the empirical kernel feature space span{Φe(xi)}. In fact, let Y denote the data matrix

208 Reviews, Refinements and New Ideas in Face Recognition
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Constructing Kernel Machines in the Empirical Kernel Feature Space 3

with size r × n in the empirical kernel feature space, that is,

Y = (Φe(x1), Φe(x2), . . . , Φe(xn)) = Λ− 1
2 PTK. (2)

The dot product matrix of {Φe(xi)} in the empirical kernel feature space can be calculated as

YTY = KPΛ− 1
2 Λ− 1

2 PTK = K. (3)

This is exactly the dot product matrix of {Φ(xi)} in the feature space. Since the distances

of the n vectors {Φ(xi)}n
1 in the kernel feature space are uniquely determined by the dot

product matrix, we can see the training data have the same distance matrix in both the

empirical kernel feature space, F e, and the kernel feature space, F , that is, as pointed out

in Xiong (2005), span{Φ(xi)} can be embedded into an r-dimensional Euclidean space with

the distances between each pair of the training data being preserved. Note that the dimension

of the samples in the empirical kernel feature space is always smaller than the sample size,

r ≤ n, which may help to some extent to alleviate the so-called “Small Sample Size” (SSS)

problems Chen (2000); Yu (2001) in discriminant analysis.

3. Principal component analysis in the empirical kernel feature space

Principal component analysis (PCA) is a widely used subspace method in pattern recognition

and dimension reduction. It gives the optimal representation of the pattern data with the

minimum mean square error. The PCA transform (projection) matrix can be calculated

from the eigendecomposition of the sample covariance matrix, or alternatively, from the

eigendecomposition of the inner product matrix of samples in the case of high data

dimensionality. Kernel principal component analysis (KPCA) is carried out by applying

PCA in the kernel feature space. Using the kernel trick, the KPCA transform matrix can be

computed from the eigendecomposition of the kernel matrix.

Let us perform the linear PCA in the empirical kernel feature space. The scheme obtained

is called empirical kernel principal component analysis, denoted as eKPCA for short. Let Kc

represent the centered kernel matrix, that is,

Kc = (In×n −
1

n
1n×n)K(In×n −

1

n
1n×n),

where In×n is the n × n identity matrix, and 1n×n represents the n × n matrix with all
entries being equal to unity. The centered kernel matrix can be decomposed as Kc = QΣQT,

where Σ is a diagonal matrix containing the positive eigenvalues of Kc, and Q consists of the

eigenvectors corresponding to the positive eigenvalues. Given a sample x, the conventional

KPCA maps x to Σ− 1
2 QT(k(x, x1), . . . , k(x, xn))T. However, when we perform the linear PCA

in the empirical feature space, the x will be transformed to

Σ− 1
2 QTYTΦe(x)

= Σ− 1
2 QTYTΛ− 1

2 PT(k(x, x1), . . . , k(x, xn))
T

= Σ− 1
2 QTPPT(k(x, x1), . . . , k(x, xn))

T .

This is our eKPCA formula. Note that PT P is the identity matrix of size r × r, however, PPT

generally is not the identity matrix of size n × n. If QTPPT = QT, or equivalently, PPT Q = Q

209Constructing Kernel Machines in the Empirical Kernel Feature Space
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holds, our eKPCA scheme turns to be Σ− 1
2 QT(k(x, x1), . . . , k(x, xn))

T, which is actually the

conventional KPCA. Many experiments (see the experiment section below) show that eKPCA

and KPCA usually lead to the same results, which may suggest that the equation PPTQ = Q

holds frequently in practices.

4. Discriminant analysis in the empirical kernel feature space

Currently, linear discriminant analysis (LDA) has become a classical statistical approach for

pattern classification, feature extraction, and dimension reduction. It has been successfully

applied in many real-world applications, e.g., face recognition Belhumeour (1997),

information retrieval Berry (1995), and microarray gene expression data analysis Dudoit

(2002). while PCA calculates the optimal projection for pattern representation, LDA projects

data aiming to discriminate the labeled pattern data. LDA calculates the optimal projection

directions by maximizing the ratio of the between-class scatter measure to the within-class

scatter measure, and thus, achieves the maximum class discrimination. A big challenge facing

the conventional LDA is that it requires the within-class scatter matrix (or the total scatter

matrix) be nonsingular, which usually cannot be met in practices, specifically for the “SSS”

problems Chen (2000); Yu (2001).

In recent years, we have witnessed a great development of the linear discriminant analysis

(LDA) research in handling the problem caused by the singularity of the scatter matrices. A

variety of linear schemes have been proposed, from the pseudo-inverse LDA Raudys (1998),

the null space LDA Chen (2000), and the direct linear discriminant analysis (DLDA) Yu (2001),

to the recently developed sophisticated schemes, the uncorrelated LDA (ULDA) Ye (2004) and

orthogonal LDA (OLDA) Ye (2005).

In this section, we perform various linear discriminant analysis schemes in the r-dimensional

empirical kernel feature space to formulate our kernel nonlinear discriminant analysis

schemes. It needs to emphasis that, in the empirical kernel feature space, the data dimension

and the scatter matrix size are always smaller than the sample size (r ≤ n). However, even so,

we still face the singularity problem of the scatter matrices. We choose to kernelize three LDA

schemes, namely, the DLDA, ULDA, and OLDA schemes, which are three typical extensions

of the classical LDA scheme in overcoming the singularity problem. With these examples,

we want to highlight our point that performing linear LDA schemes in the empirical kernel

feature space can seamlessly formulate the kernel versions of vaious linear discriminant

analysis schemes.

Suppose the labeled training data {xi, ξi}n
i=1 are grouped into m class, and each class contains

ni samples, where ∑
m
i=1 ni = n. The data matrix of the training data in the empirical kernel

feature space is Y, that is, Y = Λ− 1
2 PTK. Let us define three matrices Hb, Hw, and Ht as

follows:

Hb =
1√
n
[
√

n1(y1 − y), · · · ,
√

nm(ym − y)]

Hw = [
1√
n
(Y1 − y11T

n1
), · · · , (Ym − ym1T

nm
)]

Ht =
1√
n
(Y − y1T

n )

210 Reviews, Refinements and New Ideas in Face Recognition
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Constructing Kernel Machines in the Empirical Kernel Feature Space 5

where Yi and yi respectively denote the data matrix and centroid of the i-th class in the

empirical kernel feature space, y is the global centroid of the data in the empirical kernel

feature space, and 1ni
represents the ni-dimensional vector with entries being unity. Then, the

between-class scatter matrix Sb, the with-in class scatter matrix Sw, and the total scatter matrix St

defined in Fukunaga (1990) can be represented as: Sb = Hb HT
b , Sw = HwHT

w, and St = Ht HT
t .

It is easy to verify:

Hb = YEb, Hw = YEw, and Ht = YEt (4)

and therefore, we have

Sb = YEbYT, Sw = YEwYT, and St = YEtY
T (5)

where the three constant matrices, Eb, Ew, and Et, are:

Eb = D − 1

n
1n×n

Ew = In×n − D

Et = In×n −
1

n
1n×n

in which matrix D is: ⎛
⎜⎜⎝

1
n1

1n1×n1

. . .
1

nm
1nm×nm

⎞
⎟⎟⎠ ,

In×n is the n × n identity matrix, and 1ni×ni
represents the ni × ni matrix with all the entries

being equal to unity.

4.1 Empirical kernel direct discriminant analysis

In discriminant analysis, it has been recognized that the null space of the within-class scatter

matrix may contain significant discriminant information. The so-called “direct LDA”, or

DLDA in the literature, involves two schemes Chen (2000); Yu (2001) in extracting the

discriminant information from the null space, and meanwhile addressing the singularity

problem of the scatter matrix. Different from Chen et.al.’s scheme Chen (2000), Yu et.al.’s

scheme Yu (2001) first projects the data into the range space of the between-class matrix,

and then calculates the projection in the null space of the within-class scatter matrix. Yu

et.al.’s scheme is more efficient in computation than Chen et.al.’s, and this scheme has

been kernelized by Lu et.al. in Lu (2003). In this section, we formulate our kernel direct

discriminant analysis by performing the Yu’s DLDA scheme in the empirical kernel feature

space. The obtained kernel direct discriminant analysis algorithm is called empirical kernel

direct discriminant analysis, denoted as eKDDA in order to differentiate it from Lu’s KDDA

scheme:

• Step 1. Calculate the matrices Y, Sb, and Sw in Eq.(2) and Eq.(5).

• Step 2. Calculate the eigen decomposition of Sb = YEbYT as Sb = PbΛbPT
b , where Λb is

the diagonal matrix consisting of the rb positive eigen values sorted in decreasing order,

and rb = rank(Sb). Let M1 = PbΛ
− 1

2

b .

211Constructing Kernel Machines in the Empirical Kernel Feature Space

www.intechopen.com



6 Face Recognition / Book 1

• Step 3. Calculate S̃w = MT
1 SwM1, and decompose it as:

S̃w =
(

P̃w, Ñw

)(
Λ̃w

0

)(
P̃T

w

ÑT
w

)

• Step 4. Suppose we need extracting q-dimensional feature vectors, where q ≤ m − 1. Let

M = M1Ñw(:, 1 : q), then, for given x ∈ X , eKDDA transform x to

G(k(x, x1), k(x, x2), . . . , k(x, xn))
T ,

where G = MTΛ− 1
2 PT = ÑT

wΛ
− 1

2

b PT
b Λ− 1

2 PT.

In the implementation of the eKDDA algorithm, to avoid possible numerical instability in step

2, we introduce an extra parameter, ε, to discard some tiny eigenvalues. The eigenvalue λ is

considered to be zero if λ
λmax

≤ ε, where λmax denotes the maximum eigenvalue. In the step 3,

we only need calculate the eigen decomposition of the matrix S̃w, and sort the eigenvalues (or

the absolute values of the eigenvalues) in ascend order. The Ñw(:, 1 : q) is then composed of

the q eigenvectors corresponding to the first p small eigenvalues.

4.2 Empirical kernel uncorrelated and orthogonal discriminant analysis

Uncorrelated linear discriminant analysis (ULDA) Ye (2004) and orthogonal linear

discriminant analysis (OLDA) Ye (2005) are two recently developed LDA schemes, in which

some sophisticated matrix techniques such as singular value decomposition (SVD) and

QR-decomposition are used to address the singularity problem in the classical LDA scheme.

In the ULDA and OLDA algorithms, we need first compute the SVD of the matrix Ht, which

makes it difficult to kernelize ULDA and OLDA directly via the conventional kernel trick,

since the dimension of the matrix Ht in the kernel feature space is infinite in general. In Ji

(2008), an indirect kernelization scheme of ULDA and OLDA, refereed to as KUDA and

KODA, respectively, is proposed. Essentially, in the scheme of Ji (2008), KUDA “is equivalent

to applying ULDA to the kernel matrix, where each column is considered as an n-dimensional

data point” Ji (2008). Since the geometrical structure, e.g., distance and angle, among the

“column” data of the kernel matrix is different from that of the data in the kernel feature space,

some discriminatory information may be changed or lost as we use the “column” data to

replace the data in the kernel feature space. On the contrary, the empirical kernel feature space

preserves the geometrical structure of the training data in the kernel feature space, therefore,

there would be no information loss in performing LDA in the empirical kernel feature space

instead of the kernel feature space. Furthermore, our experiments show (see the experiment

section) that the kernel ULDA and OLDA formulated in the empirical kernel feature space

perform substantially better than KUDA and KODA in most cases.

According to the schemes of ULDA and OLDA Ye (2004; 2005), we simply perform the ULDA

and OLDA algorithms in the empirical kernel feature space to formulate our empirical kernel

ULDA and OLDA, denoted as eKUDA and eKODA, respectively.

4.2.1 The eKUDA algorithm

• Step 1. Calculate the matrices Y, Ht, and Hb in Eq.(2) and (4).

• Step 2. Calculate the reduced SVD of Ht as Ht = UtΣtV
T
t .

212 Reviews, Refinements and New Ideas in Face Recognition
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Constructing Kernel Machines in the Empirical Kernel Feature Space 7

Fig. 1. Some sample images in the ORL, JAFFE, and Yale data sets.

• Step 3. Let B = Σ−1
t UT

t Hb, and q = rank(B). Calculate the reduced SVD of B as B =
UBΣBVT

B .

• Step 4. Let X = UtΣ
−1
t UB, M = X(:, 1 : q), then, for given x ∈ X , eKUDA transform x to

G(k(x, x1), k(x, x2), . . . , k(x, xn))
T ,

where G = MTΛ− 1
2 PT.

4.2.2 The eKODA algorithm

• Step 1. Calculate the matrices Y, Ht, and Hb in Eq.(2) and (4).

• Step 2. Calculate the reduced SVD of Ht as Ht = UtΣtV
T
t .

• Step 3. Let B = Σ−1
t UT

t Hb, and q = rank(B). Calculate the reduced SVD of B as B =
UBΣBVT

B .

• Step4. Let X = UtΣ
−1
t UB. Calculate the QR-decomposition of Xq = X(:, 1 : q) as Xq = QR,

then, for a given sample x ∈ X , eKODA transform x to

G(k(x, x1), k(x, x2), . . . , k(x, xn))
T ,

where G = QTΛ− 1
2 PT.

5. Experiments

We conduct three types of experiments to investigate the efficiency of our empirical kernel

machines in a wide range of real-world applications. We compare the performances of our

empirical kernel machines, specifically, eKPCA, eKDDA, eKULDA ,and eKOLDA, with those

of the kernel-trick-based machines, namely, KPCA, KDDA, KUDA, and KODA, and the linear

machines, namely, PCA, ULDA, and OLDA, in the applications of face recognition, facial

expression recognition, and handwritten digit recognition.

Four standard databases, including three face image data sets and one handwritten

digit image data set, are used to evaluate the pattern classification algorithms

213Constructing Kernel Machines in the Empirical Kernel Feature Space
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p 0.2 0.3 0.4 0.5 0.6
PCA 81.40±1.99 88.03±2.36 92.14±1.65 94.62±1.66 95.52±1.49
KPCA 81.44±1.97 88.16±2.36 92.26±1.62 94.90±1.65 95.94±1.35
eKPCA 81.44±1.97 88.15±2.36 92.26±1.62 94.90±1.65 95.94±1.35

KDDA 78.80±5.27 86.29±2.54 93.09±1.63 95.90±1.10 97.70±1.39
eKDDA 83.38±2.01 89.93±2.07 93.51±1.68 94.64±1.44 96.34±1.35

ULDA 80.84±2.57 86.46±2.01 90.18±1.91 92.05±2.26 93.33±1.49
KUDA 85.96±2.06 91.78±1.88 95.06±1.55 96.51±1.08 97.77±1.10
eKUDA 85.52±2.14 91.42±1.89 94.82±1.53 96.91±1.21 97.67±1.10

OLDA 84.96±2.18 90.86±2.09 94.18±1.47 96.01±1.25 97.25±1.35
KODA 85.07±2.44 91.41±1.95 95.08±1.75 96.57±1.16 97.84±1.33
eKODA 85.30±2.13 91.58±1.90 95.37±1.35 96.95±1.10 98.09±1.11

Table 1. Experimental results in terms of the average values and the standard deviations of
the best recognition accuracy (%) on test data for the ORL data set

mentioned above. The three face image databases are ORL face images (available

at http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html), Yale face images

(available at http://cvc.yale.edu/projects/yalefaces/yalefaces.html), and JAFFE facial

expression images Lyons (1998). The handwritten digit images, in size 16 × 16, are collected

from the USPS database Hull (1994). Some samples of these image databases are shown in

Fig.(1). Except the JAFFE images and Yale images, where the face part of each image is

cropped, in size of 128 × 128 and 112 × 112, respectively, from the original images, no any

other preprocessing is applied to the images. The ORL and Yale data are used to evaluate

the algorithms for the task of face recognition, and the JAFFE face images are used for facial

expression recognition.

We only consider the Gaussian kernel, k(x, y) = exp(−γ‖x − y‖2), in this chapter. There is

no parameter need to be set in advance for the ULDA and OLDA schemes, and only one

parameter, γ, need to set for the KUDA, eKUDA, KODA, and eKODA schemes. However, for

the KPCA, eKPCA, KDDA, and eKDDA schemes, an extra parameter, ε, is introduced to avoid

the numerical instability caused by the tiny eigenvalues. The tiny eigenvalue λ is considered

to be zero, if λ
λmax

≤ ε, where λmax denotes the maximum eigenvalue. We select the parameter

γ from set {10−5, 10−6, 10−7, 10−8, 10−9, 10−10}, and the parameter ε from set {10−2, 10−3,

10−4, 10−5, 10−6, 0}. For the KDDA and eKDDA schemes, the final projection dimension

q, where q ≤ m − 1, still needs to be pre-specified. However, to avoid setting too many

parameters, especially, for the KDDA scheme, we usually fix q at m − 2. In the experiments,

we implement the KDDA scheme using the Matlab code written by Lu, which is available

for downloading at http://www.dsp.utoronto.ca/juwei/juwei_pubs.html). However, for the

sake of fairness in the comparisons, the regularization constant, “Eta_sw”, in Lu’s KDDA code

is set to zero, since no other scheme employs the regularization technique to further improve

performance.

After data are mapped to the different projection spaces, the nearest neighbor (NN) classifier

is employed to classify the sample images, and the classification accuracy on test samples are

used to evaluated the performances of various learning machines.

214 Reviews, Refinements and New Ideas in Face Recognition
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p 0.2 0.3 0.4 0.5 0.6
PCA 57.59±4.91 64.62±3.01 67.26±4.32 68.92±4.11 72.12±4.85
KPCA 58.17±4.71 64.92±2.98 67.69±4.17 69.22±4.13 72.37±4.73
eKPCA 58.13±4.69 64.90±2.95 67.67±4.15 69.19±4.12 72.42±4.67

KDDA 49.46±6.14 69.15±3.67 74.21±4.35 76.69±4.04 81.00±4.43
eKDDA 63.33±3.87 74.94±3.79 77.45±3.59 82.53±3.68 86.46±3.60

ULDA 70.63±3.73 79.60±3.10 81.38±5.33 83.94±4.81 86.54±5.34
KUDA 68.74±6.57 79.69±2.93 76.29±15.86 74.08±21.16 72.88±24.09
eKUDA 71.63±3.26 80.54±2.99 83.05±4.34 85.44±4.36 88.58±4.46

OLDA 66.67±3.74 77.65±3.55 81.90±4.00 84.92±2.81 87.00±4.79
KODA 63.20±4.01 75.35±3.46 79.00±3.92 82.08±3.08 87.33±4.23
eKODA 67.19±3.75 78.21±3.44 82.55±3.95 85.78±2.65 88.96±3.92

Table 2. Experimental results in terms of the average values and the standard deviations of
the best recognition accuracy (%) on test data for the Yale data set

p 0.5 0.6 0.7 0.8 0.9

PCA 58.48±4.48 64.52±4.15 69.25±5.69 73.04±5.69 78.33±8.62
KPCA 59.05±4.40 65.06±4.03 70.08±5.54 73.69±6.31 79.52±8.50
eKPCA 58.93±4.38 65.06±4.04 70.04±5.54 73.69±6.31 79.40±8.45

KDDA 61.57±5.32 65.51±4.36 68.33±5.20 70.77±7.15 73.33±8.68
eKDDA 69.48±5.00 73.87±4.51 77.06±4.97 79.46±4.96 86.55±7.54

ULDA 70.62±4.71 74.37±4.41 77.34±5.05 79.70±5.39 85.71±7.78
KUDA 71.69±4.50 75.71±4.12 79.25±5.00 82.74±5.08 88.07±6.82
eKUDA 71.83±4.48 75.95±4.23 79.44±5.01 83.04±4.80 88.10±7.23

OLDA 72.14±5.31 76.82±5.09 78.97±5.36 82.38±5.80 87.74±7.46
KODA 73.50±5.03 78.42±5.09 80.55±5.74 85.24±5.32 89.52±6.92
eKODA 73.62±4.72 78.07±5.01 81.03±5.26 85.36±4.84 90.12±6.23

Table 3. Experimental results in terms of the average values and the standard deviations of
the best recognition accuracy (%) on test data for the JAFFE data set

5.1 Experiment on face recognition

In this experiment, we compare the empirical kernel machines with the kernel-trick-base

kernel machines and the linear machines in the application of face recognition. The

experiment is carried out on two face image database, the ORL and Yale database. The ORL

data contain 40 persons, each having 10 different images of size 92 × 112 with the variation

to a certain extent in pose and scaling, and the Yale data we used includes 15 individuals,

each having 10 pictures (cropped to size 112 × 112) with different facial expressions and

illuminations, wearing or without wearing glasses. The samples of each subject are randomly

divided to two disjoint subsets, one is used as the training data, and the other the test data.

The ratio of the training data number to the total sample number per class (individual), called

training rate, is denoted by p.

We investigate the performances of different machines with different values of p. The best

value of the recognition accuracy on the test data over different parameter settings is used

to evaluate the performances of different algorithms. The experiment is repeated 40 times,

and the experimental results in terms of the average values and the standard deviations of

the recognition accuracy on test data are shown in Table 1, for the ORL data, and Table 2, for
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Fig. 2. Performance comparisons of (a) KUDA vs. eKUDA, and (b) KODA vs. eKODA on
ORL data, with different parameter γ settings.

the Yale data. The best results under different training rates (p) are shown in boldface in the

tables.

We also compare the performances of two pairs of kernel machines, namely, KUDA vs.

eKUDA, and KODA vs. eKODA, when their unique parameter γ is set to different values.

Fig.(2) (a) (b) illustrate the average test recognition accuracy (%) as a function of 1/γ on the

ORL data set, where the training rate is set at p = 0.6. The corresponding result on the Yale

data set is presented in Fig.(3)

The experimental results in Tables 1 and 2 and Figs.(2)(3) lead to following points:
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Fig. 3. Performance comparisons of (a) KUDA vs. eKUDA, and (b) KODA vs. eKODA on
Yale data, with different parameter γ settings.
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p 0.2 0.3 0.4 0.5 0.6
PCA 82.54±2.31 83.25±2.37 84.30±1.73 87.30±2.13 88.53±2.39
KPCA 83.33±2.21 84.25±1.99 85.24±1.67 87.97±1.86 89.41±1.89
eKPCA 83.33±2.21 84.25±1.99 85.22±1.66 88.00±1.85 89.41±1.89

KDDA 82.92±2.46 84.45±2.04 83.62±1.87 87.10±1.80 87.45±2.09
eKDDA 83.84±2.59 85.82±1.71 86.08±2.07 88.11±2.13 90.23±2.20

ULDA 60.80±4.00 52.75±4.95 46.60±3.60 40.99±4.11 29.18±3.04
KUDA 83.91±2.99 86.85±2.54 88.16±1.76 90.20±2.11 92.19±1.87
eKUDA 86.16±2.00 88.44±1.98 89.45±1.41 90.65±1.98 92.78±1.73

OLDA 67.32±3.50 59.85±3.52 57.60±3.06 50.84±3.81 37.05±3.63
KODA 83.22±2.62 85.93±2.22 86.98±1.66 88.45±2.13 89.37±2.24
eKODA 86.74±2.20 89.12±1.97 89.75±1.33 91.09±1.66 92.91±1.90

Table 4. Experimental results in terms of the average values and the standard deviations of
the best recognition accuracy (%) on test data for the USPS data set

1. Empirical kernel machines achieve the best results in most cases.

2. Empirical kernel PCA performs almost the same as the conventional KPCA, which may

suggests that the Eq.(2) holds or approximately holds in practices.

3. Lu’s KDDA scheme works better than eKDDA in two cases on the ORL data. However,

on the Yale data set, where the within-class scatter measure is much larger than that of the

ORL data due to the variations of illumination, the eKDDA scheme performs much better

than the KDDA scheme.

4. For the SVD-based discriminant analysis schemes, either ULDA, OLDA, or their kernel

counterparts, they usually outperform the PCA schemes and the direct-LDA schemes.

Moreover, while the KUDA and KODA schemes work better than their linear counterparts

on the ORL data, their performances degenerate remarkably on the Yale data, especially

for KUDA. However, in either case, our eKUDA and eKODA work well, and lead to most

best results.

5.2 Experiment on facial expression recognition

We investigate the efficiency of our empirical kernel machines in the application of facial

expression recognition, and compare their performances with those of the other pattern

classification methods. Compared with face recognition, the facial expression recognition

is a more challenging classification task, since the between-class discrimination among

different facial expression patterns is much smaller than the within-class discrimination of

the expression patterns. In this experiment, we use the JAFFE facial expression database

to test and evaluate various algorithms. The JAFFE data set is a widely-used database for

facial expression recognition. It contains ten Japanese women’s face images with 7 typical

facial expressions (angry, disgust, fear, happy, sad, surprise, and neutral), each expression

having three different pictures, which are cropped to size 128 × 128. Since facial expression

recognition is a difficult classification task, the training rate p is set to a relatively large

value. The experimental results are shown in Table 3 in terms of the average best recognition

accuracy on test data over 40 trails , corresponding to the training rate p = 0.9, 0.8, 0.7, 0.6,

and 0.5, respectively. Furthermore, we also compare the performances of KDDA and eKDDA
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Fig. 4. Comparison of the performances of the KDDA and eKDDA schemes on, (a) the JAFFE
data, and (b) the USPS data, under different projection dimension q
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with different projection dimension q (in the previous experiments, we fix q at m − 2 = 5), as

the training rate p is at level 0.9. Fig.(4) (a) shows the results.

It can be seen that, for the facial expression recognition on the JAFFE data set, 1)the eKDDA

scheme remarkably outperforms the KDDA scheme; 2)the orthogonal discriminant analysis

schemes perform better than the uncorrelated disciminant analysis schemes, either in OLDA

vs. ULDA, KODA vs. KUDA, or eKODA vs. eKUDA, and furthermore, the eKODA scheme

achieves the best results in all cases except p = 0.6.

5.3 Experiment on handwritten digit recognition

To test our algorithms in a wide-range of applications, we conduct experiment for handwritten

digit recognition using the USPS data. The USPS handwritten digit data set, available for

downloading at http://www.csie.ntu.edu.tw/ ˜cjlin/libsvmtools/datasets/, is widely used

as a benchmark for evaluating various learning methods. It contains more then 7 thousands

training samples and two thousands test samples of handwritten digits from 0 to 9. Each

sample is represented by an 16 × 16 image.

Since our goal in this experiment is focused at comparing different classification algorithms,

to reduce the computational burden, we randomly select 800 samples, 80 samples per class,

from the training set of the USPS data to form our experiment data set. Considering the data

dimension in this experiment is much smaller than that of the data used in other experiments,

we choose the value of the parameter γ from {100, 10−1, 10−2, 10−3, 10−4, 10−5}, and the

parameter ε from {10−1, 10−2, 10−3, 10−4, 10−5, 0}. Table 4 gives the experimental results

in terms of the average values of the best recognition accuracy on test data over 40 trails ,

corresponding to the training rate p = 0.2, 0.3, 0.4, 0.5, and 0.6, respectively. Furthermore,

to compare the performances of the KDDA and eKDDA schemes under different projection

dimension q (in the previous experiments, we always set q = m − 2), we illustrate the average

test recognition accuracy (%) as a function of q in Fig.(4) (b), where the training rate is set at

p = 0.6.

From Table 4 and Fig.(4), it is easy to see that the eKODA scheme achieves the best recognition

results in all cases, and eKDDA performs substantially better than KDDA. Moreover, a big

difference between Table 4 and other tables is that the linear versions of the SVD-based

discriminant analysis, i.e., ULDA and OLDA, perform surprisingly worse than other methods

this time. However, their kernel nonlinear versions still work well, especially, the empirical

kernel versions.

6. Conclusion

We have presented a new way to “seamlessly” kernelize linear machines. The empirical kernel

feature space, a finite-dimensional embedding space, in which the distances of the data in

the kernel feature space are preserved, provides a unified framework for the kernelization.

This method is different from the conventional kernel-trick based kernelization, and more

importantly, the final empirical kernel machines performs more efficiently in many real-world

applications, such as face recognition, facial expression recognition, and handwritten digit

identification, than the kernel-trick based kernel machines.
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