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1. Introduction

One of the more exciting and unsolved problems in computer vision nowadays is automatic,
fast and full interpretation of face images under variable conditions of lighting and pose.
Interpretation is the inference of knowledge from an image. This knowledge covers
relevant information, such as 3D shape and albedo, both related to the identity, but also
information about physical factors which affect appearance of faces, such as pose and lighting.
Interpretation of faces not only should be limited to retrieve the aforementioned pieces of
information, but also, it should be capable of synthesizing novel facial images in which
some of these pieces of information have been modified. This kind of interpretation can
be achieved by using the paradigm known as analysis by synthesis, see Figure 1. Ideally,
an approach based on analysis by synthesis, should consist of a generative facial parametric
model that codes all the sources of appearance variation separately and independently, and an
optimization algorithm which systematically varies the model parameters until the synthetic
image produced by the model is as similar as possible to the test image, also called input image.
A full interpretation approach should include the recovery of 3D shape, 3D pose, albedo and
lighting from a single face image which exhibits any possible combination of these sources of
variation.
Active appearance models, or simply AAMs (Cootes et al. (2001); Edwards et al. (1998);
Matthews & Baker (2004)), with respect to other approaches, represent a fast alternative to
perform face interpretation using the analysis by synthesis paradigm. Texture and shape, are
attributes modeled by AAMs by using statistic tools such as principal components analysis or
shortly PCA. However, the apparent texture of a face is an implicit combination of lighting
and albedo. The separation process of these two attributes is not an easy task within the
context of sparse models, like AAMs. AAMs use a sparse set of vertices which outline the
shape. Texture is interpolated over that shape. In fact, a detailed dense set of surface normals,
which is not available in AAMs, is required to perform the separation of lighting and albedo.
On the other hand, texture and shape variation among human faces is relatively small when
uniform lighting is considered. AAMs take advantage of this fact by supposing a constant
relationship between changes of appearance and the variation of the model parameters
producing those changes. This approximately constant relationship is a constant gradient
which is used for performing fast fitting to input images. However, for most purposes,
lighting is not uniform, and a proper separation of albedo and lighting becomes necessary.
In a similar way as is texture variation in uniform lighting, albedo variation among human
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faces is small. In contrast to albedo, lighting is not necessarily constrained to a small variation
interval. In fact, lighting affects appearance more than identity and pose, and presents many
degrees of freedom (see Ramamoorthi & Hanrahan (2001) and Basri et al. (2003)). During a
fitting process, an initial model is gradually modified in each iteration until it match the input
image. Therefore, if the illumination of the input image is too different from the illumination
of the initial model, the ratio of appearance variation with respect to the parameters variation
can not be the same during all the iterations of the fitting process. For instance, if we have
a model with a pronounced left illumination, and a model with uniform illumination, the
change of appearance caused by an increase on one of the model parameters, for example
the parameter of scale, is not the same in both cases. This ratio of appearance variation with
respect to the model parameters is in fact a Jacobian whose value changes in each iteration.
Therefore, if we want to fit an AAM to a face with any kind of lighting, a constant Jacobian is
not the solution. On the other hand, recomputing the Jacobian in each iteration is an expensive
computational task Cootes et al. (2001),Matthews & Baker (2004).
In this chapter, we introduce an innovative 3D extension of AAMs based on an illumination
model. By using interpolation, we incorporate a dense set of surface normals to our sparse
3D AAM model. In this way, we can model lighting within the process of synthesizing
faces, and also within the optimization process used for fitting the face model to an input
image. We propose a fitting method based on an inexpensive way for updating the Jacobian
in accordance to the illumination parameters recalculated in each iteration. Our method is
able to encode separately four of the more relevant sources of appearance variation: 3D
shape, albedo, 3D pose and lighting. This approach estimates 3D shape, 3D pose, albedo,
and illumination simultaneously during each iteration. Since our model uses analysis by
synthesis, it has an inherent ability of adaptation to the input image. Adaptation is a
desirable characteristic because it provides the possibility of designing person-independent
face interpretation systems. Experimental results show that the proposed approach not only
can be extended to face recognition, but also demonstrate its ability for fitting to novel faces
and performing interpretation. We implement a novel way to cope with an important source
of appearance variation which affects significatively face images: lighting. We anticipate that
this approach can be extended to face recognition under difficult conditions of lighting and can
be generalized to the analysis and recovery of other types of sources of appearance variation
such as age, gender, expression, etc., where lighting interferes seriously in the analysis process.

Fig. 1. Schematized flow of the analysis by synthesis approach.

Particularly, face interpretation has been faced through two paradigms: 3DMMs Blanz et al.
(1999; 2003); Romdhani et al. (2005; 2006) and AAMs Cootes et al. (1998; 2001); Dornaika et
al. (2003); Edwards et al. (1998); Kahraman et al. (2007); Legallou et al. (2006); Matthews &
Baker (2004); Sattar et al. (2007); Xiao et al. (2004). 3DMMs cover a wide range of information
recovery but are slow and cannot model properly every type of lighting. On the other hand,
AAMs are fast but cannot model lighting and 3D information simultaneously. AAM models
have been used for fast 2D face alignment under variable conditions of lighting Huang et
al. (2004); Kahraman et al. (2007); Legallou et al. (2006), but not for estimation of 3D pose,
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3D shape, albedo and illumination under non-uniform lighting conditions, which is still a
challenging problem. In contrast, some authors Dornaika et al. (2003); Sattar et al. (2007); Xiao
et al. (2004) have proposed 3D AAMs for estimating 3D pose and shape but do not include
illumination. Finally, authors who reported lighting modeling for face recognition, do not
propose methods for estimation of pose, shape, albedo and lighting simultaneously. This
chapter describes a proposal for a complete 3D approach for an automatic and fast recovery
of 3D shape, 3D pose, albedo and lighting of a face under non-uniform lighting and variable
pose. This recovery is performed by fitting a parametric 3D Active Appearance Model based
on the 9D subspace illumination model. Once we have finished the fitting process of the
model to an input image, we obtain a compact set of parameters of shape, albedo, pose and
lighting which describe the appearance of the original image. Because lighting parameters are
not in a limited range, for faces with a pronounced non-uniform illumination, it is not possible
to successfully use a constant Jacobian during all the fitting process as is done in original 2D
AAM models Cootes et al. (2001). Instead of that, during the fitting stage, our algorithm
uses the estimated lighting parameters, obtained in preceding iterations, for updating the
Jacobian and the reference mean model on each iteration. The proposed method is called 3D
Illumination-Based Active Appearance Models Ayala-Raggi et al. (2008), Ayala-Raggi et al.
(2009) and is suitable for face alignment, pose estimation and synthesis of novel views (novel
poses and lighting) of aligned faces. In this chapter, we explain the method, measuring its
capability to recover 3D shape and albedo, and showing its capability to fit faces not included
within the training set. Our experimental results, performed with real face images, show that
the method could be extended to lighting-pose invariant face recognition.

2. Modeling lighting

Human face can be considered approximately as a convex surface with Lambertian reflectance
Basri et al. (2003),Ramamoorthi & Hanrahan (2001). In Basri et al. (2003), Basri et al.,
propose using spherical harmonic functions to model lighting for face recognition. Spherical
Harmonics are a set of functions which form an orthonormal basis which is able to represent
all possible continuous functions defined in the sphere. The image of a face, illuminated by
any lighting function can be expressed as a linear combination of harmonic reflectances (face
images illuminated by harmonic lights),

Ii =
∞

∑
n=0

n

∑
m=−n

In,mbn,m(xi) (1)

where bn,m are the set of harmonic reflectances and xi is the i-th pixel of the object, in this case
the face surface. In Basri et al. (2003), Basri et al. showed that the precision to approximate
any function of light if we take a second order approximation (n = 0, 1, 2) is at least 97.96%.
From Equation (1) we see that this precision is achieved with only 9 harmonic images, and
Equation (1) can be expressed in matrix notation as

I = BL (2)

where B is a matrix with 9 columns. Each column is a harmonic image, and L is a column
vector containing 9 arbitrary parameters.

2.1 Forcing the lighting model to be positive

By using Equation (2), we could obtain not physically realizable images if we take arbitrary
linear combinations of the harmonic images. In fact, any arbitrary combination could produce
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an image with negative values. The harmonic images themselves have negative values, and
as we know, light intensity is always positive. Therefore, different combinations of lightings
must produce positive intensity values too. In Basri et al. (2003), the authors showed that the
soft harmonic space spanned by the harmonic images can be discretized by using a sufficiently
populated set of point light sources (delta functions) uniformly distributed around the sphere.
Thus, Equation (2) can be modified as

I = BHTL (3)

where L is a column vector of arbitrary lighting parameters and B is a matrix with columns
formed by the nine harmonic images. H is a matrix whose columns contain samples
of the harmonic functions, whereas its rows contain the transform of the delta functions
corresponding to the discrete number of point light sources.
This is a mathematical way of making discrete the smooth harmonic subspace by sampling
the harmonic reflectance images. The more densely populated with deltas is H, the better is
the approach to the original space of the 9 harmonics. In order to obtain a good approximation
to the original harmonic space, we should use a large set of point lights uniformly distributed
around the sphere. However, in Lee et al. (2001), Lee et al., found an important result about
how to approximate the illumination cone of lighting (see Georghiades et al. (1998)) with a
small number of deltas. Only nine light point sources strategically distributed are necessary
for approximating any reflectance on a face. Thus, H will be a constant 9 × 9 matrix.
In fact, the basis images can be obtained from two possible ways, the first one is the explained
here, by using the compact notation through the spherical harmonics reflectances, and the
second one is to explicitly render each one of the basis images, obtained from computing the
intensity of each point by using the Lambert’s law. This intensity can be computed if we know
the surface normal, the albedo and the corresponding vector of the point light source.

3. Face synthesis using a 3D illumination-based active appearance model

(3D-IAAM)

In this section, we describe an original method for face image synthesis based on the 3D −
IAAM model proposed in this chapter. Our face synthesizer is capable of creating face images
with arbitrary 3D pose, identity and illumination.

3.1 Construction of a bootstrap set of surfaces and albedo maps

In order to construct parametric models of shape and albedo, we need a bootstrap set of
3D face surfaces of different individuals, and their corresponding 2D albedo maps. This
set of surfaces and albedo maps will be used to train models of 3D shape and 2D albedo,
respectively.

3.1.1 Recovery of the face surface for each training identity

A bootstrap set of face surfaces can be obtained under well controlled laboratory conditions
by using a set of distant directional lights which illuminate the face one at the time but all
working during a short period of time, in such a way that there is not movement from one
image to the next.
Surfaces can be recovered by using a technique known as photometric stereo Forsyth & Ponce
(2002); Horn et al. (1978); Silver (1980); Woodham (1989). By using M (M > 3) different
images per individual, each one illuminated by a different point light source, it is possible
to simultaneously estimate the surface normals map and the albedo map of a face. This is
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accomplished by using minimum squares for solving a linear system of M equations, each
one expressing the pixel intensity as a function of the direction of the incident light (Lambert’s
cosine law) for each pixel. From surface normals maps, it is possible to reconstruct the surface
of each face by using shapelets Kovesi (2005). This is done by correlating the surface normals
with those of a bank of shapelet basis functions. The correlation results are summed to
produce the reconstruction. The summation of shapelet basis functions results in an implicit
integration of the surface while enforcing surface continuity.
On the other hand, a mean surface normals map, computed from the set of surface normals
maps, is used as a deformable template for building basis reflectance images during the fitting
stage.

3.2 Constructing the models of shape and albedo

In order to obtain a parametric 3D shape model, first of all, we have to capture the more
significative modes of shape variation. This can be accomplished by using a statistical method
such as PCA (principal component analysis) applied to a set of training faces with different
identity. We can place 3D landmarks over the surface of N training faces. To be sure that
we are only modeling variations in shape and not in pose, we have to align the 3D shape
models first, by using an iterative algorithm based on Procrustes analysis (see Figure 2).

Fig. 2. The shape models (each one defined as the set of landmarks over a particular face
surface) (a) must be aligned by using Procrustes Analysis (Ross (2004)) (b) before performing
the statistical study of shape variation.

Then we apply PCA to the set in order to obtain the principal modes of variation of 3D shape.
We can generate an arbitrary model using the following expression

s = s̄ + Qsc (4)

where s̄ is the mean shape model and Qs is a matrix which contains the basis shapes (also
known as eigenshapes) and c is a vector with arbitrary shape parameters. Similarly, we apply
PCA to the set of shape-normalized 2D albedos maps. Before applying PCA, the albedos map
of each training face must be shape-normalized (using the bidimensional projection of the
mean shape frame) as is shown in Figure 3.
A triangulation is designed to warp original images into the mean shape frame. Finally, any
shape-normalized albedo image can be generated with

λ = λ̄ + Qλa (5)
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Fig. 3. Normalizing in shape the albedo images by warping the original albedo images into
the 2D projection of the mean shape. Top: Original albedo images. Bottom:
shape-normalized albedo images.

where λ̄ is the mean albedo image, Qλ is a matrix which contains principal albedo variation
modes and a is a vector of arbitrary parameters.

3.3 Synthesizing faces with novel appearances

By using Equation (5), it is possible to synthesize an arbitrary albedo image λ and then warp
it to the 2D projection of an arbitrary frontal shape generated with Equation (4). This new face
is not illuminated yet. In the same process of warping the albedo image to the new shape, it is
also possible to carry out a 2D warping from the 2D mean map of surface normals (calculated
during the training stage) to the same new shape s. So far, we have a new albedo image and
a new map of surface normals, both of them shaped according to the new generated shape.
With these two maps (albedos and normals), we can construct 9 basis reflectance images as
is described in Section 2 by using Equation 3. Any illumination can be generated by a linear
combination of these basis images. In order to give a 3D pose to the model, we use the 3D
landmarks of the new generated 3D shape. By applying a rigid body transformation (T, R, s)
to these landmarks we give any pose and size to the created face.
If we suppose that the distance from the camera to the face is considerably greater than the
depth of the face itself, then it is reasonable to use a simple orthographic projection model.
Orthographic projection is the projection of a 3D object onto a plane by a set of parallel rays
orthogonal to the image plane.
Finally, we warp the frontal face to the 2D orthographic projection of the transformed 3D
shape. Figure 4 illustrates the synthesis process.

Fig. 4. Face synthesis process.
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4. Face alignment using the 3D-IAAM model

The original 2D AAM approach for face alignment presented in Cootes et al. (2001),
consists of an iterative algorithm which minimizes the residual obtained by comparing a
shape-normalized region (taken from the target image) with a reference mean-shape model
which evolves in texture in each iteration. This method supposes a constant relationship
between residuals and the additive increments to the model parameters. This approximation
uses a constant Jacobian during all the fitting process, and works well when lighting is
uniform because texture variation is small and residuals are always computed in the same
reference frame, see Cootes et al. (2001). Since we know, in contrast to texture in human
faces, lighting variation is not limited. Therefore, if the initial reference model is substantially
different in lighting to that in the input image, it is not possible to consider a constant Jacobian
for all the fitting process. Here, we propose an iterative fitting algorithm capable of correcting
the Jacobian in each iteration by using the current estimation of lighting, which in turn, is used
to update the reference model too.

4.1 Overview of the iterative fitting process

Once we have created the models of shape and albedo, we can use them in the face alignment
process. The alignment process consists of an iterative algorithm which captures a region
within the input image, performs a normalization of this region according to the current
set of model parameters and compares this normalized image with a reference model. The
comparison is always performed into a fixed reference shape. The reference model evolves
only in lighting in each iteration. The resulting residual from that comparison is used in
conjunction with a Jacobian for calculating suitable increments to be added to the current
model parameters. During the following iteration the new set of model parameters are
used again to capture and normalize a new region within the input image, and so on. At
the beginning of the alignment process, a set of initial model parameters is defined by the
user. Commonly, shape, albedo and rotation parameters are initialized with zero, illumination
parameters are initialized to a medium illumination, and translation and scale parameters are
initialized to a rough value near to the real 2D position and size of the face. In other words,
initial parameters are initialized in such a way that they would produce a frontal mean face
placed over the face in the input image.
On the other hand, at the end of the alignment process, the final set of model parameters
should be capable of synthesizing a face image similar to the original in the input image
by using the synthesis process described in section 3.3. The normalization process over the
input image is composed by a pose normalization, a shape normalization and an albedo
normalization, all described in the following subsections.

4.2 Pose and shape normalization

In each iteration the model parameters of 3D shape and 3D pose determine a 3D structure
whose orthographic 2D projection is used to define a region within the input image. This
region can be mapped to a reference shape-normalized frame.
By using the rigid body transformation parameters (T, R, s) and the shape parameters c,
a region in the image is sampled and warped to the 2D mean shape frame. This new
shape-normalized image is denoted as Ishape aligned.

4.3 Albedo normalization

A novel contribution of this work is a method for normalizing albedo when we have an
estimate of lighting and albedo parameters. In fact, at the beginning of the fitting process,
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albedo parameters have a zero value, then the normalization will produce the same image
before normalization, see Equation 13. In contrast, as the albedo and illumination parameters
get closer to the ideal values for synthesizing a face equal to the original, then normalization
will produce an image more similar to a face with mean albedo illuminated by the actual
lighting present in the original image. The image normalized in pose, shape and albedo, can
be compared with a reference mean-shape mean-albedo face which evolves in lighting each
iteration. The residual obtained from this comparison will give us the possibility to use a
gradient matrix, or simply a Jacobian which is almost constant and is easily updated by using
the estimated illumination parameters.

4.3.1 Albedo normalization by using a current estimation of parameters of albedo and

illumination

In Section 2 we have showed that every illumination over a face can be synthesized by using
the following expression

I = BHT
9PLL (6)

as explained before, BHT
9PL represents a matrix with nine columns each one being a real and

positive basis reflectance image. In order to compact the notation, we can denote that matrix
as

β9PL = BHT
9PL (7)

then Equation 6 can be rewritten as

Iilluminated f ace = β9PLL = ([λ..λ] · Φ)L (8)

where λ is the albedos map represented as a column vector repeated in order to form a matrix
with the same dimensions as the basis reflectances matrix without albedo, represented by Φ.
These two matrices are multiplied in an element-wise fashion (Hadamard product). Then,
Iilluminated f ace can be rewritten as

Iilluminated f ace = λ · (ΦL) (9)

Now, suppose that the fitting algorithm has successfully recovered the shape and pose
parameters corresponding to the input image. In that situation, the process of pose and shape
normalization explained in the preceding section would produce a frontal shape-normalized
face.
On the other hand, if we would know the correct illumination parameters L of that face,
we could solve for the albedo by manipulating Equation 9 and using Ishape aligned instead of
Iilluminated f ace,

λ̂ =
(Ishape aligned)

(ΦL̂)
(10)

where the division denotes an element-wise division.
Suppose now, that we have a correct estimation of the albedo parameters (a). Then, by using λ̂
and the albedo parameters (a) we can derive an approximated mean albedo by using Equation
5,

λ̃ ≈ λ̂ − Qλa (11)
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Finally, we can normalize the image in albedo by using λ̃,

Ialigned = (λ̃) · (ΦL̂) (12)

where L̂ is a vector containing the current estimated illumination parameters. We can rewrite
Equation 12 as

Ialigned = [Ishape aligned./(ΦL̂)− Qλa] · (ΦL̂) (13)

The residuals vector can be calculated as

r = Ialigned − λ̄ · (ΦL̂) (14)

The energy of this residual image is a quantity to minimize by the iterative optimization
algorithm

‖r‖2 = ‖Ialigned − λ̄ · (ΦL̂)‖2 (15)

where [λ̄ · (ΦL̂)] represents the reference model with mean shape, mean pose, mean albedo,
but illumination determined by the last estimated lighting parameters L̂. The process for
obtaining residuals in each iteration is shown in Figure 5, where the reference model [λ̄ · (ΦL̂)]

is denoted by f.

Fig. 5. Estimation of residuals during a step of the fitting process. The mean shape is
deformed by using the current parameters c and ø (top). Then, the region within the 2D
projection of this new structure is warped from the test image to the reference mean shape
frame (in the bottom and in the middle) in order to apply the process of albedo
normalization. The resulting image called IAligned is compared with a reference model in
order to obtain a residual image.

In order to work with a more compact notation, we can view the pose-shape and albedo
normalization as an inverse transformation to the 3D-IAAM synthesis process. Therefore, we
can denote that process as

Ialigned = T−1
p (Iinput) (16)

where Iinput represents the input image and p is a vector containing the model parameters

p = (TT , RT , s, cT , LT , aT)T . The initial parameters for the start of a fitting process are denoted
as
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p0 = (TT
0 , RT

0 , s0, cT
0 , LT

0 , aT
0 )

T (17)

where TT
0 is the initial position vector (x0, y0) given by the user. RT

0 = (0, 0, 0) is the initial

rotation vector, and s0 the initial scale factor (commonly equal with 1). cT
0 = (0, 0, 0, 0, ...) is the

initial shape parameters vector. LT
0 = (L01, L02, L03, L04, L05, L06, L07, L08, L09) is the initial

illumination parameters vector. Finally, aT
0 = (0, 0, 0, 0, ...) is the initial albedo parameters

vector.

4.4 Modeling the residuals

During the fit, according to the last estimated parameters, the pixels inside of a region in the
image are sampled and transformed. So, the residuals image computed with (14) is a function
of the model parameters p, that is r = r(p). The first order Taylor expansion of (14) gives

r(p+ δp) = r(p) + δr
δp δp, here, pT = (TT |RT |s|cT |aT |LT), and the ij− th element of the matrix

δr
δp is ∂ri

∂pj
. We desire to choose δp such that it minimize ||r(p + δp)||2. Equating r(p + δp) to

zero leads to the solution

δp = −J−1r(p) (18)

and J−1 can be calculated by pseudo-inverting the Jacobian matrix (Moore-Penrose
pseudo-inverse), or by using the normal equations:

J−1 = (
δrT

δp

δr

δp
)−1 δrT

δp
(19)

where δr
δp is actually a gradient matrix or Jacobian changing in each iteration. Recalculating

it at every step is expensive. Cootes et al. in Cootes et al. (2001), assume it to be constant
since it is being computed in a normalized reference frame. This assumption is valid when
we are only considering variations of texture, and lighting is ignored because it is uniform.
Since texture parameters do not present a large variation between training faces, then, it is
possible to compute a weighted average of the residuals images for each displaced parameter
in order to obtain an average constant Jacobian. In our case, we are dealing with non-uniform
illumination, therefore we propose to construct an adaptive Jacobian as is explained later.

4.5 Iterative fitting algorithm

In Cootes et al. (2001), authors propose to utilize a precalculated constant Jacobian matrix
which is used during all the fitting process. Each iteration, a sampled region of the
image is compared with a reference face image normalized in shape which is updated
only in texture according to the current estimated parameters. Ideally, this reference image
constitutes a reference model evolving in texture which should be associated to a Jacobian
evolving in texture too. However, in practice, a mean constant Jacobian, computed from
the different textures found in the training set, is used. This constant Jacobian works well
in uniform lighting conditions, because texture variation between training faces is relatively
small. Nevertheless, using a constant Jacobian would produce bad alignments in both, the
approach described in Cootes et al. (2001) and in our 3D approach Ayala-Raggi et al. (2008)
when the lighting of the input face is considerably different from the lighting used during
the training stage. In our 3D approach, an ideal procedure to achieve good convergence
results, at a high computational cost, would be to recalculate completely the Jacobian each
iteration. This operation could be performed each iteration by displacing the parameters of
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the reference model. The parameters of albedo and illumination would be displaced from
their current estimated values, and the 3D shape and pose parameters from their mean
state values. All these parameter displacements would be used to synthesize displaced face
images which, in turn, would be used for computing residuals by subtracting the images
without displacement from the displaced images. Finally, residual images and their respective
parameter displacements would be used to calculate the Jacobian. This process of synthesis
of multiple images should be performed on-line during the fitting stage and certainly would
be an extremely expensive operation.
In contrast, we propose a computationally inexpensive way to update the Jacobian by using
the current illumination parameters. Each iteration, our optimization algorithm samples a
region of the image and normalizes it in pose, shape and albedo. Albedo normalization
is performed by using the current estimated illumination parameters. Thus, a comparison
should be computed between this normalized image and the reference mean model (a
model with mean shape and albedo) illuminated by using the same current illumination
parameters. The estimated residuals and an updated Jacobian (re-illuminated by using the
current estimated lighting) can be used to compute the new parameters displacements.
Updating the Jacobian with the current estimated illumination parameters is an easy and
computationally inexpensive step, because we use the fact that lighting and albedo are
separated vectors and they are independent of basis reflectance images, see Equation 9. In
training time, we construct a set of displaced images that will be used during the fitting
stage to update the Jacobian. We know that basis reflectances Φ (without albedo) are not
affected by albedo displacements, but they can be modified by pose and shape increments.
Our model uses 33 parameters: 6 for pose, 9 for 3D shape, 9 for illumination, and 9 for albedo.
We construct 15 (6 + 9 = 15) basis reflectance matrices Φpi+∆pi

by displacing, in a suitable
quantity, each one of the 15 parameters of pose and shape. That is, by using face synthesis
(through our model), we synthesize each reflectance image represented as a column within
the matrix Φpi+∆pi

by giving the following synthesis parameters:

p = (p1, p2, ..., pi + ∆pi, ..., p15)
T (20)

For instance, if i = 8, i.e. we are constructing the matrix for the second shape parameter, then
the generating parameters p will be:

p = (TT
0 , RT

0 , s0, [0 (0 + ∆p8) 0 0 0 0 0 0 0])T (21)

In practice, we construct 30 basis reflectance matrices because we consider 15 positive
displacements and 15 negative displacements. In a similar way, by displacing each parameter
with a suitable increment pi + ∆pi (positive and negative), we obtain 30 albedo images for
positive and negative increments in pose and shape parameters, and 18 albedo images for
positive and negative increments in albedo parameters. These albedo images do not have
information about lighting.
These 30 reflectance matrices and 48 albedo images are created during training time (off-line).
During the alignment stage, we can create a Jacobian on-line according to the current
parameters of illumination L:

δr

δp
= [

∂r1

∂p1
. . .

∂r33

∂p33
] (22)

79Face Image Synthesis and Interpretation Using 3D Illumination-Based AAM Models

www.intechopen.com



12 Will-be-set-by-IN-TECH

where each column can be calculated as:

∂ri

∂pi
= [

∂ri

∂pi (∆+)

+
∂ri

∂pi (∆−)

]×
1

2
(23)

with i = 1, 2, ..., 33. Here, ∂ri
∂pi (∆+)

and ∂ri
∂pi (∆−)

can be computed as:

∂ri

∂pi (∆+)

=
λpi+∆pi

· [Φpi+∆pi
L]− λ0 · [Φ0L]

∆pi
(24)

∂ri

∂pi (∆−)

=
λpi−∆pi

· [Φpi−∆pi
L]− λ0 · [Φ0L]

−∆pi
(25)

where λ0 is the mean albedo, and Φ0 is the matrix which columns are the mean basis
reflectances (without albedo information). When pi corresponds to an albedo parameter, then
we use Φpi+∆pi

= Φ0, since the reflectance matrices are not affected by albedo variations.
Because the Jacobian is constructed using the last estimated lighting parameters, we denote it
as J(L̂),

J(L̂) =
δr

δp
(26)

The iterative fitting algorithm is outlined in Figure 6.
Basically, the algorithm can be summarized as follows: When the fitting process begins, Ialigned
is an unprocessed region of the test image delimited only by the position of the initial model
over the image. There is not shape or albedo normalization at this moment, so that the residual
(step 2) will be computed between the region (without transformation) and the model in a
similar way such as it is done in the 2D AAM algorithm Cootes et al. (2001). This first residual
in combination with the Jacobian (which is a precalculated constant the first time) produces
(such as it happens in Cootes et al. (2001)) an additive increment vector δp to be added to the
initial parameters. δp is iteratively reduced by re-scaling it (step 15) until the energy of the
residual is lower than its initial estimate. If this value does not decrease after a fixed number
of reductions, the algorithm claims that convergence was not reached and stops. Otherwise,
if the value is lower than the initial, then the new set of model parameters is used again to
normalize a new region within the test image. The new residual in combination with a new
Jacobian is used to compute a new set of increments to the parameters, and so on. Figure 7
illustrates two consecutive iterations of the fitting process.
On the other hand, Figure 8 shows the evolution of the model during the fitting process.
Figure 8 is illustrative and shows only five representative iterations in both alignments.
Actually, the algorithm takes an average of 14 iterations to reach convergence.
In practice, we have implemented this algorithm using a pyramid of two resolution levels.
A multi-resolution approach overcomes to the single resolution method and improves the
convergence of the algorithm, even if we place the initial model farther from the actual face.
On the other hand, the columns within the Jacobian matrix which correspond to illumination
parameters, are maintained fixed during the fitting process and they are precalculated from a
mean state of uniform lighting.
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1. Project the sampled region from the input image Iinput to the mean-shape model frame by applying

pose-shape-albedo normalization Ialigned = T−1
p0

(Iinput) with parameters p = p0.

2. Compute the residual, r = Ialigned − λ̄ · (ΦL0)

3. Compute the predicted displacements, δp = −[J0]
−1r(p). Where J0 is a Jacobian computed in the

training stage by taking little displacements of the parameters from their initial values p0. [J0]
−1 is the

Moore-Penrose pseudoinverse matrix of the Jacobian.

4. Take only the new estimate of illumination parameters and put the other parameters in their initial
values ignoring the estimates, p0 = (T0, R0, s0, c0, L̂, a0)

5. Set p = p0.

6. Project the sampled region from the input image Iinput to the mean-shape model frame by applying

pose-shape-albedo normalization Ialigned = T−1
p (Iinput)

7. Compute the residual, r = Ialigned − λ̄ · (ΦL̂)

8. Compute the current error, E = ||r||2

9. Compute the predicted displacements, δp = −J−1r(p). Here J−1 = [J(L̂)]−1. Jacobian J(L̂) is
assembled by using the precomputed images of basis reflectance and albedo in combination with
the estimated parameters L̂ computed in last iteration, see Equations 24 and 25.

10. Update the model parameters p −→ p + kδp, where initially k = 1.

11. Using the new parameters, calculate the new face structure X and the new mean-shape reference
model λ̄ · (ΦL̂).

12. Compute Ialigned = T−1
p (Iinput)

13. Calculate a new residual r = Ialigned − λ̄ · (ΦL̂)

14. If ||r||2 < Threshold then terminate else go to the next step

15. If ||r||2 < E, then accept the new estimate, make k = 1 and go to step 8; otherwise go to step 10 and
try at k = 0.5, k = 0.25, etc.. (In practice, after 7 attempts of reducing k, if ||r||2 ≥ E then the fitting
process is finished.)

Fig. 6. Fitting algorithm.

5. Experimental results

5.1 Individuals used

We evaluated our approach on two different datasets. The first one was called set A and is
composed by the 10 identities contained in the Yale B Database. Each subject in the database is
photographed in six different poses. For each pose many different illuminations are available.
A second dataset, that we call set B is composed by 20 individuals. This second dataset is
composed by the 10 identities from Yale B Database plus other 10 identities randomly selected
from the extended Yale B database (which contains 28 identities from different ethnicity).

5.2 Setup for experiments

The test set for this experiments was composed by 60 real images (with a size of 320 × 240
pixels) taken from Yale database B in the following manner: all images have the pose number
6 which presents a similar angle in azimuth to the left and elevation up. This pose has an
angle of 24 degrees from the camera axis. We choose 6 different illuminations for using with
each one of the identities. Each illumination is generated by a single point light source, and its
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Fig. 7. Two consecutive iterations of the fitting process. During the iteration Iti a region in
the test image is captured and normalized according to the current parameters p producing
the image Ialigned. A residual r is calculated by comparing Ialigned with a reference

shape-normalized model illuminated by the current parameter L̂. An additive increment
vector δp is computed. δp is iteratively reduced by re-scaling it (step 15) until the energy of
the residual is lower than its initial estimate. When this event occurs, the new set of model
parameters p′ is used again to normalize a new region within the test image. The new
residual r′ in combination with a new Jacobian J(L̂′) is used to compute a new set of
increments to the parameters, and so on.

Fig. 8. Evolution of the synthetic face produced by the model during the fitting process, from
initialization to convergence.

direction is specified with an azimuth angle and an elevation angle with respect to the camera
axis, see table 1.

L1 L2 L3 L4 L5 L6

A + 50E + 00 A + 35E + 15 A + 10E + 00 A − 10E + 00 A − 35E + 15 A − 50E + 00

Table 1. Illuminations used for experiments.

The initial conditions of the model at the beginning of the fitting process were manually setup
only in translation and scale. The rest of the parameters: rotation, 3D shape, illumination
and albedo were always initialized in their mean state for all the alignments, i.e., rotation:
RT

0 = [0, 0, 0], 3D shape: cT
0 = [0, 0, 0, 0, 0, 0, 0, 0, 0], albedo: aT

0 = [0, 0, 0, 0, 0, 0, 0, 0, 0], and

illumination: LT
0 = [0.6, 0.6, 0.6, 0.4, 0.4, 0.9, 0.9, 0.4, 0.4] (this configuration of the intensity of

the light sources produces a mean lighting which illuminates uniformly the face).
In all the alignments, the translation and scale parameters were initialized with the output
values of a manual pose estimator which uses three landmarks manually placed on the two
external eye corners and on the tip of the nose. The output of this manual estimator are rigid
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body parameters (T, R, s) computed by using 3D geometry. From those parameters, we only
used the translation and scale values in order to initialize the fitting process.
Our fitting algorithm is a local optimization and can fall into local minima, particularly if the
initial model is placed far from the face to fit. We observed that the algorithm converges if we
give an initial translation value with a maximum difference of ±10 pixels far from the ideal
initial position. Therefore, the algorithm tolerates up to certain degree of imprecision in the
initial position of the model over the test image.
Over the test set (the 60 images) we performed 180 alignments distributed within the
following groups:

1. Group 1: 60 alignments using the fitting algorithm programmed with 4 computations of
the adaptive Jacobian. That is, the algorithm has been allowed to recompute the Jacobian
only during the first 4 consecutive iterations.

2. Group 2: 60 alignments using the fitting algorithm programmed with 2 computations of
the adaptive Jacobian. That is, the algorithm has been allowed to recompute the Jacobian
only during the first 2 consecutive iterations.

3. Group 3: 60 alignments using the fitting algorithm programmed with a constant Jacobian.

Figure 9 shows the alignments belonging to Group 1 (4 computations of the Jacobian) for each
one of the 6 illuminations for identity 7.

Fig. 9. Alignments for identity 7 with each one of the 6 different illuminations.

5.3 Recovery of 3D shape and Albedo and measuring its quality through identification

In order to measure the quality of the recovered 3D shape and albedo, we have considered
that this quality is encoded into the recovered shape and albedo parameters. These estimated
shape and albedo parameters are directly related to identity. Therefore, it is reasonable to
compare them with those stored within a gallery containing parameters of all the training
identities. In fact, PCA allows the computation of the generative parameters for each training
identity when the models of shape and albedo are created (see Section 3.2).
As a previous step before performing the comparison between estimated and stored
parameters, they have to be re-scaled by dividing them by their respective standard
deviations. Then, we measure the distance between the recovered parameters and the original
parameters from the gallery. An appropriate distance measure in this case is the cosine of the
angle between both vectors. This metric has the advantage of being insensitive to the norm of
both vectors. In fact, that norm does not modify the perceived identity (see Romdhani (2005)).
This operation was performed separately for vectors of albedo and for vectors of shape.
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If we denote as ∢(â, ai) the angle between the vector â (estimated albedo parameters) and the
vector ai (stored albedo parameters for identity i), then the cosine can be computed with the
following expression for albedo:

Ωa
i = cos(∢(â, ai)) =

âTai
√

(âT â)(aT
i ai)

(27)

and the following expression for 3D shape parameters:

Ωs
i = cos(∢(ĉ, ci)) =

ĉTci
√

(ĉT ĉ)(cT
i ci)

(28)

where ĉ are the estimated shape parameters vector, and i is an index which indicates the
identity of the parameters vector stored in the gallery. Because the cosine function might be
negative, Ωs

i and Ωa
i are equated to zero in such a case. This positive cosine function works

fine because we are interested on detecting only small angles related with the presence of high
similarity between faces.
In order to perform the identification, we have to combine these two results (cosines for shape
and cosines for albedo) to obtain a single identification result. An appropriate approach to
combine both cosines is to convert them in likelihood values.
Using the known probability property which states that the sum of all likelihoods must be 1,
we can normalize the computed cosines for albedo:

ILa
i =

Ωa
i

(Ωa
1 + Ωa

2 + Ωa
3 + · · ·+ Ωa

10)
(29)

and normalize the computed cosines for shape:

ILs
i =

Ωs
i

(Ωs
1 + Ωs

2 + Ωs
3 + · · ·+ Ωs

10)
(30)

where ILa
i (with i = 1, 2, ..., 10) represents the identity likelihood of the estimated albedo for

each one of the ten identities stored in the gallery. Similarly, ILs
i (with i = 1, 2, ..., 10) represents

the identity likelihood of the estimated shape for each one of the ten identities stored in the
gallery.
Now, we can combine both likelihoods using a weighted sum. By experimentation, we
found that weights with better identification rates are 0.6 for albedo, and 0.4 for shape. This
experimental result can be explained by the following fact: 3D shape information of the
original face is lost when the 2D image is formed. In fact, our fitting approach has to infer
a probable shape. On the other hand, albedo which can be considered as 2D is recovered with
more accuracy. In our experimental results we saw, that in some cases, the values of the cosine
measured between the estimated shape vector and the shape vectors from the gallery, were
very similar. These similar values of the cosine can produce confusion in the decision of the
identity based only on the shape. Therefore, we considered that using probability functions
instead of the cosine values is a more appropriate way to obtain a correct decision of the
identity.
The conditional likelihoods ILa

i and ILs
i , for albedo and shape respectively, can be combined

to obtain a single likelihood ILi:

ILi = 0.6(ILa
i ) + 0.4(ILs

i ) (31)
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For instance, if the face of the test image corresponds to the identity i = 2, then, we would
expect a higher value for IL2 (theoretically IL2 = 1) with respect to the values for ILi with
i = 1, 3, 4, 5, 6, 7, 8, 9, 10 (theoretically 0).
In order to show the probability of the algorithm to select the correct identity under a specific
illumination, we have used (from Group 1) ten alignments for test images of individuals
i = 1, 2, 3, ..., 10 under the same illumination. Then, for each alignment a single value ILi
(with i being the test identity) was computed. For each illumination an average of the ILi
values was computed and plotted in Figure 10 (b). The little vertical segments represent the
associated standard deviation. We see that the mean IL is greater when lighting is frontal
to the face (illumination 5). Figure 10 (c) shows the identification rate for each illumination.
The identification rate for each illumination is computed by summing the number of correct
identifications and dividing this result by the total number of alignments for that specific
illumination. In this graph we have plotted the identification rate computed for Group 1,
Group 2, and Group 3 of alignments.

Fig. 10. a) Evolution of RMS error in intensity difference. b) Average (over the 10 identities)
of the identity likelihood measured between estimated and ideal parameters. c)
Identification rates for each one of the six illuminations.

In the case of fitting with four computations of an adaptive Jacobian we see the worst
identification rate (50%) with the illumination number 1, and the best identification rate
(100%) using the illumination number 5 which is nearly frontal to the face. A similar relation
among identification rates for all the six lightings is conserved for the case of fitting with two
computations of the adaptive Jacobian (plot in the middle). The phenomenon is repeated
again for the case of fitting with a constant Jacobian (plot in the bottom). Anyway, we can see
an important improvement on the quality of the reconstructions when the adaptive Jacobian
is computed more times.
In a similar way, we have evaluated the fitting algorithm now trained with the 20 identities
from set B.
For this test we used 6 images (with a size of 320× 240 pixels) with the same pose and different
lighting for each one of the 20 individuals from the set B. Hence, our test set is composed by
120 real images. Again, all images have the pose number 6 which presents a similar angle in
azimuth to the left and elevation up. This pose has an angle of 24 degrees from the camera
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axis. We choose the same 6 different illuminations for using with each one of the identities.
See table 1.
Over the test set (the 120 images) we performed 360 alignments distributed within the
following groups:

1. Group 1B: 120 alignments using the fitting algorithm programmed with 4 computations of
the adaptive Jacobian.

2. Group 2B: 120 alignments using the fitting algorithm programmed with 2 computations of
the adaptive Jacobian.

3. Group 3B: 120 alignments using the fitting algorithm programmed with a constant
Jacobian.

Figure 11 shows the identification rate for each illumination. In this graph we have plotted
the identification rate computed for Group 1B, Group 2B, and Group 3B of alignments.

Fig. 11. Identification rates for each one of the six illuminations

In the case of fitting with four computations of an adaptive Jacobian we see the worst
identification rate (25%) with the illumination number 1, and the best identification rate (60%)
with the illumination number 5 and 6 which are nearly frontal to the face. In a similar way
as in the case of experiments for set A, a similar relation among identification rates for all
the six lightings is conserved for the case of fitting with two computations of the adaptive
Jacobian (plot in the middle). Again, we can see an important improvement on the quality of
the reconstructions when the adaptive Jacobian is computed more times.
In this test we used a training set of 20 individuals. In a similar way as in all experiments,
model parameters have been limited to 9 shape parameters and 9 albedo parameters.
We used Principal Component Analysis for reducing the dimensionality of shape and albedo
variation. Model parameters of shape and albedo are weights of a weighted sum of
eigenvectors, see 4 and 5. Eigenvectors of shape or albedo represent variation modes (20
modes) and they are sorted according to their associated variances, from the higher to the
lower value of these variances. Each variance associated to each eigenvector represents the
relevance of the eigenvector into the weighted sum. The greater the variance, the more
relevant the eigenvector (variation mode).
In order to reduce the dimensionality of the training set and using the same number of
parameters, we have taking into account only the first 9 relevant eigenvectors of shape and
albedo. We can compute the percentage of total variance that can be represented by the model
using only 9 parameters of shape as

Ξσ2 =
∑

9
i=1 σ2

i

∑
20
i=1 σ2

i

× (100) = 83.5% (32)
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where Ξσ2 is the shape representation capability of the model relative to the training set. In
a similar way, since we only used the first 9 eigenvectors of albedo, we can compute the
percentage of total variance that can be represented by the model using only 9 parameters of
albedo as

Ξη2 =
∑

9
i=1 ηi

∑
20
i=1 ηi

× (100) = 87.1% (33)

where Ξη2 is the albedo representation capability of the model relative to the training set.

These percentages are lower than those corresponding to the experiments using 10 training
individuals where the number of model parameters of shape and albedo is also 9 and 9
respectively, where model parameters cover 100% of the total variance. Therefore, we can
conclude that using a bigger set of training faces while keeping a fixed number of model
parameters decrements the ability of representing the 100% of shape and albedo variation
contained into the training set. In turn, that conclusion explains the lower identification rates
observed on Figure 11 with respect to those observed on Figure 10 (c).
Figure 12 illustrates the difference in fitting with a constant Jacobian in contrast to fit with an
adaptive one. Here we show reconstructions for two different lightings.

Fig. 12. Reconstructions of two individuals from set B under two different lightings. The
reconstructions obtained with the fitting algorithm which uses an adaptive Jacobian are
visually better than those obtained from using a fitting algorithm which uses a constant
Jacobian.

5.4 Face alignment of faces not included into the training set: Fitting novel faces

The 3D − IAAM model trained with the set of 20 individuals has been tested for fitting to
novel faces not contained within the training set. Again, we used 33 model parameters: 6 for
3D pose, 9 for 3D shape, 9 for illumination, and 9 for albedo.
We selected 5 individuals not contained within the training set and captured in 3 poses each
one (-24ž, 0, and +24ž with respect to the camera axis). For all the images, the 3D pose only
varies in azimuth: -25, 0, and 25 degrees with respect to the camera axis. Figures 13, 14, 15, 16,
and 17 show alignments for novel faces take from the extended Yale B database and originally
numbered as 18,25,35,36. The fifth face belongs to the author of this work.
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Fig. 13. Alignments for the face number 18 from the extended Yale B database. This face is
not included in the training set. The recovered 3D pose angles are specified in degrees

Fig. 14. Alignments for the face number 25 from the extended Yale B database. This face is
not included in the training set. The recovered 3D pose angles are specified in degrees

Fig. 15. Alignments for the face number 35 from the extended Yale B database. This face is
not included in the training set. The recovered 3D pose angles are specified in degrees
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Fig. 16. Alignments for the face number 36 from the extended Yale B database. This face is
not included in the training set. The recovered 3D pose angles are specified in degrees

Fig. 17. Alignments for the author’s face. This face is not included in the training set. The
recovered 3D pose angles are specified in degrees

The experiments performed over faces not included within the training set give us with signs
about the ability of the method for adapting to novel faces, and also demonstrate that it is
possible to estimate relevant information about a new face. That information is provided at the
end of the fitting process, and is delivered to us through the model parameters. We think that
a possible generalization of the method consisting on the capability of fitting any human face
may be feasible. The solution will be based on making a careful and systematic selection of the
training faces according to desired characteristics. That could be another research problem.

6. Conclusions

Shape and albedo are estimated more accurately when an adaptive Jacobian is used. The
adaptive Jacobian is a way to express the appearance variation produced by parameters
variation as a function of the lighting parameters computed in each iteration. Hence, the
adaptive Jacobian works better than the constant one when the initial model is different (in
lighting) from the test image, as it actually happens in the most of cases. The improvement
provided by the use of an adaptive Jacobian was confirmed when we obtained better
estimations of shape and albedo whenever we were increasing the times that this Jacobian was
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computed. On the other hand, we determined that the computational time used in calculating
the Jacobian is linear with respect to the number of times that this Jacobian is computed. In
contrast, the improvement in the recovery of the parameters was not significative when the
Jacobian was computed more than two times. Therefore, we conclude that four computations
of the Jacobian is sufficient to obtain acceptable reconstructions. On the other hand, the
capability of the fitting algorithm to reconstruct novel faces not contained within the training
set was demonstrated in this chapter. Finally, our proposed interpretation approach not only
provides information from a face image, also it is capable of creating new information by
reconstructing unseen novel views of a recovered face. This work has addressed the problem
of automatic and fast interpretation of a face which exhibits any pose and any lighting.
Modern approaches have important limitations regarding processing speed, fully automatic
operation, 3D, lighting invariant and simultaneous handling of multiple appearance variation
sources. We introduced a novel and fast method for automatic interpretation of face images
from a single image. Pose, shape, albedo, and lighting are sources of appearance variation
which modify the face image simultaneously. For that reason, trying to estimate only one of
these factors without considering the others would produce inaccurate estimates. In order
to avoid an inaccurate estimation of each one of these sources of appearance variation, our
fitting method estimates simultaneously, in each iteration, the appropriate increments for
parameters of 3D shape, 3D pose, albedo and lighting. At the end of the fitting process our
proposed algorithm provides us with a compact set of parameters of 3D pose, 3D shape,
albedo and lighting which describe the test image. The fitting algorithm is based on a
priori knowledge of the relationship between the appearance variation (of the model) and
the parameters. The appearance variation of the model is produced by changes in pose,
shape, albedo and lighting. This appearance variation maintains a non-linear relationship
with respect to the model parameters. However, in the case of pose, shape, and albedo, the
appearance variation range is sufficiently small so that we can approximate this non-linear
relationship with a linear relationship which can be easily learned. On the other hand, the
range of appearance variation produced by changes in lighting is unlimited. Then, it is not
possible to approximate the appearance variation with respect to the lighting parameters with
a simple linear relationship. Fortunately, we found a way to separate lighting from the other
sources of appearance variation, in such a way that we can learn a linear relationship between
a set of parameters (pose, shape, and albedo) and the appearance variation caused by these
parameters. This learned linear relationship is completely independent from lighting. By
incorporating a particular lighting to this linear relationship in each iteration of the fitting
process, it is possible to reconstruct a new relationship between the full appearance variation
and the changes of all the model parameters, i.e. pose, shape, albedo and lighting. This
new relationship is represented in our fitting algorithm by the adaptive Jacobian which
is reconstructed in each iteration according to the current estimated lighting parameters.
Our results, both quantitative and qualitative, show that the method is able to align a 3D
deformable model not only in shape but also in albedo, pose and lighting simultaneously.
The identification results lead us to think that our approach could be extended to automatic
face recognition under arbitrary pose and non-uniform illumination. Besides, the model can
synthesize unseen face images of people not used to train the model

7. Future work

In our approach, the process of creating synthetic faces is used during the synthesis of the basis
reflectance images created during the training time. This set of resulting images is utilized
later for the on-line construction of the Jacobian during the test stage. We could improve
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the accuracy in the synthesis of lighting by refining the mapping of the normals from the
mean model to the new deformed model. Presently, this mapping is purely 2D, but because
our shape model is 3D, normals can be reoriented according to the new 3D position of each
triangular facet. A more accurate representation of lighting should improve the recovery
of 3D shape and albedo, and therefore the identification rate. We think that our method
can also be optimized in fitting speed by reducing the times that the Jacobian is updated.
According to the initial estimated lighting it would be possible to establish a criterium
to determine the minimum necessary number of Jacobian updates, while is preserved an
acceptable alignment. Also, a robust face recognition scheme can be implemented if we
increase the number of identities for training, in such a way, that they have the enough kinds of
extreme variations in shape and albedo for modeling all intermediate possibilities. There are
many interesting avenues of feature work. With a careful and systematic selection of the faces
for the training set, our method can be extended to a generic person-independent automatic
3D face interpretation system, useful for face recognition in difficult conditions of lighting and
pose. Combined with other methods for identification, this kind of generic approach could be
a suitable part of a complete biometric system for identity recognition.
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