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1. Introduction 

Carbon nanotubes (CNTs), which are entirely composed of sp2 carbons, can be viewed as 
graphite sheets that have been rolled into seamless cylinders. Since their discovery in 1991 [1], 
CNTs have become the “superstar” in the field of nanoscience and nanotechnology because of 
their unique structural, mechanical, and electronic properties [2]. Various promising 
biomedical applications have also been proposed, such as drug design [3], drug delivery [4], 
tumor therapy [5], tissue engineering [6], DNA recognition [7], and biosensor design [8]. It was 
predicted that the global market for CNTs could grow to $2 billion by 2014 [9]. 
On the other hand, with the fast advance of the nanotechnology and its widespread 
applications in various industries, there is a growing concern on the biosafety of these 
nanomaterials to human health [10-17]. Human skin, lungs, and gastrointestinal tract are in 
constant contact with the environment. Despite the skin is an effective barrier to foreign 
substances, the lungs and gastrointestinal tract are vulnerable. Recent experiments showed 
that unrefined CNTs might be aerosolized and release fine particles into air [18]. When the 
concentration of CNTs in air is sufficiently high, they can be inhaled and then migrate into 
other parts of body [19]. These inhaled CNTs can enter cells and accumulate in cytoplasms 
[20, 21], which may lead to the lung insult [22-24], immunologic toxicity [25], and adverse 
cardiovascular effects (on mice) [26]. Injections and implants, which are required for some 
biomedical applications, are the other possible routes of the exposure of human cells to 
nanoparticles. The experiments on mice showed that the tissue exposing directly to the 
injected CNTs may lead to asbestos-like pathogenic behaviors, including inflammation and 
the formation of lesions known as granulomas [27]. In addition, the injecting CNTs into the 
tail vein of male mice may cause the reversible testis damage [28]. Therefore, there is an 
urgent need for the understanding of nanotoxicity and the development of biocompatible 
nanomaterials. 
Recently, the interactions between nanoparticles, such as CNTs, and biological molecules, 
such as proteins, have received great attention due to the aforementioned biosafety 
concerns. Proteins are the functional units of life. Studies on the interaction of CNTs and 
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proteins may provide a key to understand the basic questions in the nanotoxicology and 
nanopharmacology. In 1999, Mioskowski and coworkers observed that the protein 
streptavidin can grow into helical crystals on the surface of CNTs in experiment [29]. In 
2003, Park et al. showed experimentally that the CNT is effective in blocking some biological 
membrane ion channels due to its structural match in size and shape [30]. Using atomic 
force microscope (AFM) and Fourier transform infrared spectroscopy (FTIR), Karajanagi et 

al. investigated the conformational changes of two enzymes, ǂ-chymotrypsin (CT) and 
soybean peroxidase (SBP), after adsorbing onto the SWCNT [31]. They argued that the 
distribution of the hydrophobic residues on the surface of the enzymes may determine the 
protein conformational changes when adsorbed onto the CNT. The important role of 
hydrophobic residues during the interactions between proteins and CNTs was also found 
by the experiments of Goldberg-Oppenheimer and Regev [32], in which they explored the 
conformational changes of bovine serum albumin (BSA) bound with CNTs via Cryogenic 
temperature transmission electron microscopy (Cryo-TEM). And the experiments on the 
interactions between small peptides and CNTs also showed that the tryptophan residues 
play a key role in the binding of the peptides on CNTs [33, 34].  
In addition to these studies mentioned above, various experimental techniques have also 
been developed to shed light on this challenging problem [35-37]. However, the mechanism, 
particularly the effect of CNTs on the structure and function of biomolecules which may 
lead to the loss of the original function of proteins, is far from being understood. The 
inherent difficulties involved in these complex settings can limit their applications due to 
too many factors involved (“side effects”) and experimental results may vary for the same 
proteins interacting with the same nanoparticles (such as same chemical composition, same 
shape, length, and aggregation property, etc.) under same conditions (such as same 
concentration, temperature, and pressure, etc). The computational simulations, on the other 
hand, might mimic and model this kind of interactions and avoid some complicated side 
effects. Molecular dynamics (MD) is one of these computational techniques, which is widely 
used in the studies of biomolecules [38-55], and nanoscale systems [56-60]. It is found 
effective in providing insights to the interactions between proteins and CNTs. For example, 
a recent MD simulation revealed some stepwise conformational changes of the sub-domain 
of human serum albumin (HSA) due to its adsorption onto the CNT surfaces [61].  
In this chapter, we will review some of our recent works on the interactions between single-
wall carbon nanotubes (SWCNTs) and proteins, and their effects on protein structure and 
function, using large scale molecular dynamics simulations. It is widely accepted that 
specific interactions between proteins and other molecules, often based on the structures of 
active sites, play a vital role in the function of proteins. Thus, if a SWCNT can occupy or 
disrupt the active site of a protein, it will very likely affect the function of the protein. First, 
we investigated the probability of the SWCNT disrupting the active site by using a signaling 
and regulatory protein WW domain (a relatively small protein) as an example. It was found 
that the SWCNT could plug into the hydrophobic cores of WW domains. Two key residues 
forming the functional scaffold in the native structure were separated by the SWCNT. This 
plugging of the SWCNT seriously broke the structure of the active site and reduced the 
possibility of the WW domain in binding with its partners. Second, we investigated the 
three-way binding competition among a SWCNT, protein SH3 domain (another small 
signaling and regulatory protein domain), and a proline rich motif ligand. It was found that 
the SWCNT had a very high probability occupying the active site of the SH3 domain, which 
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prevented the ligand from binding to the active site. In these two cases, the effects of the 
SWCNT on the proteins would lead to the loss of the original function of the proteins. 
Finally, the interactions between the SWCNT and human blood serum proteins, including 
BSA (bovine serum albumin), Ǆ-Ig (gamma-globulin), Tf (transferring), and BFg (fibrinogen), 
were also investigated by MD simulations, to confirm that the mechanisms identified with 
these small protein domains, such as WW domains and SH3 domains, also apply to much 
larger proteins. It is found that the hydrophobic interactions between the SWCNTs and 
nonpolar residues, particularly those aromatic ones through so-called r/r stacking, play a 
key role in the interaction between the SWCNTs and proteins.  

2. Results  

2.1 Disruption of protein active sites 
Proteins are molecular machines, building blocks, and arms of living cells. The enormous 
variety of protein functions is based on their high specificity in partnering with other 
molecules, with which they interact -- a relationship that resembles a key and lock. This 
specific relationship demands a fairly unique spatial structure of the protein, in which the 
hydrophobic residues are buried in the core (named hydrophobic core). The pristine CNTs 
are extremely hydrophobic. Thus it is possible for the pristine CNTs to plug into the 
hydrophobic core due to the strong affinity between the CNT and the hydrophobic residues 
in the core. This plugging will lead to the loss of the original function of the protein, and 
thus is a potential mechanism for the toxicity of the CNTs (and maybe other hydrophobic 
nanoparticles). 
We take a WW domain interacting with various sized SWCNTs as an example to illustrate 
this idea [62]. The WW domain is a protein module in signaling and regulatory proteins as 
the functional module to identify and bind the proline-rich motifs (PRMs) of its binding 
partner [63-67]. They exist as a triple stranded anti-parallel ǃ-sheet structure [68-70]. Two 
highly conserved aromatic residues, a tryptophan residue in the third ǃ-strand and an 
aromatic residue in the second ǃ-strand, are together in the native structure to form the 
scaffold to bind the proline residue in the PRM. For the WW domain used in our simulation, 
which is a module of the human Yes-associated protein [71], the two key residues are W39 
at the third ǃ-strand and Y28 in the second ǃ-strand. The SWCNTs used in the simulation 
are armchair of (m, n), where m = n = (4, 5, 6), corresponding to the tube diameters of (5.38 
Å, 6.73 Å, 8.08 Å), respectively. The SWCNT and protein are initially well separated, with a 
distance between the geometric centre of protein domain and the SWCNT of 15.0 Å. Each 
system was solvated with TIP3P model water. We performed 36 independent simulations 
for the YAP65 WW domain and these three sizes of SWCNTs with different initial velocities, 
each with 200 ns (see more detail in Computational Methods).  

Interaction of YAP65 WW domain with SWCNT 

In our simulations, we found several cases that the SWCNTs plugged into the YAP65 WW 
domain between the second and third ǃ-strands, as one representative structure shown in 
Fig. 1(a). Fig. 1(b) shows the superposition of the structure of the WW domain in the 
complex and in the native state. It was found that the main change of the protein 
conformation in the complex was its third ǃ-strand. It unfolds into a loop and wraps on 
the SWCNT. Most of the contacts between the second and third ǃ-strand are broken. 
Essentially, these conformational changes of the WW domain are pre-requirements for the 
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formation of this complex of the protein domain and the SWCNT. In the complex, nine 
residues in the second and third ǃ-strands contact with the SWCNT. Most of them are 
hydrophobic residues, such as W39. This implies that the hydrophobic interaction, the 
dominant force for protein folding [72], is the key to this phenomenon, in which the 
SWCNT plugged into the hydrophobic core of the WW protein domain to form a stable 
protein-SWCNT complex.  
 

    
Fig. 1. Typical structures of (a) a complex of the SWCNT plugging into the YAP65 WW 
domain and (b) The WW domain in the complex (magenta and solid) superposed with its 
native state (cyan and half semitransparent). In the complex, the YAP65 WW domain is 
shown in cartoon with magenta strand and salmon loop, and the key residues (W39 and 
Y28) are identified by green sticks. The (6, 6) armchair SWCNT has a diameter of 8.08 Å,  
and its atoms are shown in wheat spheres. The solvated surfaces of the complex are shown 
in semitransparent. 

Fig. 2(a) displays some representative snapshots of these complexes at different times to 
show the plugging process of the SWCNT. The interface area between the protein domain 
and the SWCNT (denoted by S, shown in Fig. 2(b)) is used to illustrate this process. Here S is 
defined as half of the difference between the solvent accessible surface area of the complex 
and the sum of solvent accessible surface areas of the protein and the SWCNT [73]. Thus at  
t = 0, S is small (~50 Å2) since the YAP65 WW domain and the SWCNT are initially 
separated. The YAP65 WW domain and the SWCNT approached each other very quickly. 
As a result, S rose to about 200 Å2 within only 1 ns. This indicated that the SWCNT was 
adsorbed onto the protein surface (see the snapshot of t = 1 ns in Fig. 2(a)). In the next 45 ns, 
S gradually increased from ~200 Å2 to ~250 Å2, with significant fluctuations along the way. 
It was found that the contacting surface region of the domain kept changing during the 
process of adsorption. That is, the SWCNT was constantly seeking for a more stable binding 
site. Around t = 45 ns, there is a negative impulse in the interface area S. A careful 
examination on the trajectory showed that the SWCNT began to plug into the second and 
third ǃ-strands and the negative impulse was a result of the opening of the second and the 
third ǃ-strands before the SWCNT was “swallowed” by the protein. S reached its maximal 

(a)                                                        (b) 
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value of ~300 Å2 at around t = 80 ns, meaning that the SWCNT was finally successful in 
plugging into the protein domain. In these structures, the SWCNT was basically wrapped 
by the second and the third ǃ-strands, forming a complex of the WW domain with the 
SWCNT. From t = 80 ns up to 200 ns, there were only minor fluctuations of S at ~300 Å2, 
showing the stability of this protein-SWCNT complex (data after 100 ns were not shown 
since the plugging was mainly done in the first 100 ns). 
 

   
Fig. 2. A typical trajectory of the YAP65 WW domain together with a SWCNT.  
(a) Representative snapshots at various time points. The proteins are shown in cartoon with 
magenta strand and salmon loop. The binding scaffold residues are shown in green sticks 
and the SWCNT are shown in wheat sticks. (b) The interface area of the WW domain and 
the SWCNT, (c) The RMSD of the YAP65 WW domain from its native structure, and  
(d) The distances between the SWCNT and the key residues of YAP65 WW domain,  
W39 (red) and Y28 (blue), and distance between these two residues (black),  
denoted by dW39, SWCNT, dY28, SWCNT, and dW39, Y28, respectively, as a function of time.  

In order to investigate the conformational change of the YAP65 WW domain, we 
computed the RMSD from its native structure in the MD trajectory, as shown in Fig. 2(c). 
As a comparison, we had also performed simulations for the YAP65 WW domain only 
(without any SWCNT or ligand). It was found that without the disruption of the SWCNT, 
the RMSD of the WW domain remained at a value of around 2.0 Å. From the RMSD 
shown in Fig. 2(c), the conformational change of the YAP65 WW domain can be described 
as four stages. In the first stage, from 0 to ~45 ns, the RMSD maintained at roughly 2.0 Å. 
That is, there was little impact of the SWCNT on the conformation of the YAP65 WW 
domain despite its adsorption on the SWCNT surface. In the second stage, from ~45 to 
~70 ns, the RMSD increased gradually from ~2.0 Å to ~3.5 Å, which was a notable 

(a) 
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conformational change and corresponded to the opening of the second and third  
ǃ-strands due to the insertion of the SWCNT. The third stage is from ~70 to ~90 ns. In this 
stage, a small plateau for the RMSD, around 3.0 Å, appeared. It was due to the partial 
recovery of the contacts between the second and third ǃ-strands. Around 90 ns, there was 
a significant jump in the RMSD, from ~3.0 to ~4.0 Å, which initiates the fourth stage. 
Detailed studies showed that there was a change in both the orientation and binding site 
of the indole ring of W39 residue on the SWCNT during this jumping process. From  
t = ~95 ns, the RMSD kept roughly constant at ~4.0 Å, indicating the final complex of the 
YAP65 WW domain and SWCNT was quite stable. This relatively large RMSD indicates a 
significant conformational alteration of the YAP65 WW domain caused by the insertion of 
the SWCNT. 
The W39 and Y28 are the key residues for the function of the YAP65 WW domain. The 
interaction between the SWCNT and these two key residues were also investigated. Fig. 2(d) 
shows the distances between these two residues, and distances between each residue with 
the SWCNT as a function of time, denoted by dW39,Y28, dW39,SWCNT, and dY28,SWCNT, 
respectively. Corresponding to the adsorption of the SWCNT on the YAP65 WW, there is a 
drop of dW39,SWCNT and dY28,SWCNT in the first ns. And then dW39,Y28, dW39,SWCNT, and dY28,SWCNT 
all kept almost as a constant at ~6.0 Å with small fluctuations until t = 45 ns, showing that 
the two key residues were “confined” in their native state, and the initial adsorption of the 
SWCNT does not impact much on their structures and orientations. In the period of  
t = 45 - 50 ns, there were an impulse jump in dW39,Y28 to a value around 9 Å and a drop in 
dY28,SWCNT to a valley around 4 Å. These changes indicate the detachment of W39 with Y28 
and the approach of Y28 to the SWCNT. However, dW39,SWCNT decreased sharply to < 4 Å at 
the same time and remained nearly unchanged for the rest of the simulation times, which 
indicates a strong and favorable interaction between W39 and the SWCNT. It is interesting 
to note that this favorable tryptophan-CNT interaction has also been observed in recent 
experiments for CNT-peptide interactions [33, 34]. Therefore, even though we do not have 
direct experimental evidence at this point for this plugging of SWCNTs, it might not be 
totally impossible due to the strong and favorable interactions between CNTs and 
hydrophobic residues with aromatic rings such as tryptophan residues. It was very 
interesting to find that both dY28,W39 and dY28,SWCNT returned to their previous values (before  
t = 45 ns) at ~50 ns. A careful examination of the trajectory movie showed that there was a 
rotation of the SWCNT orientation, with the SWCNT firmly seizing the W39 in the period of 
t = 50 -70 ns. After t = 70 ns, dY28,SWCNT decreased to a small value again (~4 Å), and the 
dW39,Y28 turned to a significantly larger value (8-12 Å). This indicates a significantly larger 
separation of the two active-site residues, which corresponds to a wide opening of the 
second and third ǃ-strands, indicating a potential loss of its function.  

Stability and hydrophobic interaction 

We had computed various interaction energies of the system as functions of the interface 
area between YAP65 WW domain and SWCNT (shown in Fig. 3). For the interaction energy 
of the total system (using the initial state as reference, see Fig. 3(a)), there is a basin at about 
S = 280 Å2, with the interaction energy about 30.0 kcal/mol lower than the reference state, 
the state where YAP65 WW domain and the SWCNT are well separated. From Fig. 2(b), we 
know that S ~ 280 Å2 corresponds to the state in which SWCNT plugs into the YAP65 WW 
domain. Therefore, the complex with SWCNT inserted into the core of YAP65 WW domain 
is the energetically more favored state.  
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Fig. 3. Interaction energy from the initial state (a) of the total system, (b) of solutes, (c) of 
solvent, and (d) between solute and solvent, as a function of the interface area S between the 
YAP65 WW domain and the SWCNT, averaged from the six trajectories of the MD 
simulations. The interaction energy of the initial state, with the SWCNT and WW domain 
well separated, is set as 0.  

Fig. 3(b-d) show the interaction energies of the solute (YAP65 WW domain and SWCNT), 
the solvent (the water molecules), and between solute and solvent, as functions of the 
interface area, respectively. As shown in these figures, the internal interaction energies of 
the solute and the solvent (see fig. 3(b and c)) change in the opposite direction of the 
interaction energy between the solute and the solvent (see fig. 3(d)). Clearly, in our current 
system, the internal interaction energies of the solute and the solvent dominate the total 
energy of the system, which both have an energetic basin around S=280 Å2. This implies that 
the solute and the solvent (water) are favored to interact with themselves and not favored to 
interact with each other, i.e., a separation of the two is energetically more favored, which is 
best described as so-called hydrophobic interactions. It is the hydrophobic interaction 
between the YAP65 WW, SWCNT and water that makes the plugging of SWCNT into 
YAP65 WW domain. 

Binding site and structural flexibility 

In each case of a SWCNT plugging into the YAP65 WW domain, we have found that the 
YAP65 WW domain displays the same binding site after relentless search. It was shown 
above that the hydrophobic interaction dominated the binding and plugging of the 
SWCNT. However, there are also hydrophobic residues, including a tryptophan residue, 
on the first ǃ-strand of the YAP65 WW. Thus the question was why the SWCNT plugged 
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into the gap between the second and third ǃ-strand instead of that between the first and 
second ǃ-strand. The flexibility of different part of the YAP65 WW domain may be a 
factor of selection of the plugging site. To illustrate this idea, Fig. 4 shows the root mean 
square fluctuations (RMSF) of the average of non-hydrogen atoms of each residue for the 
YAP65 WW domain (the simulation was performed without any SWCNT or ligand). 
Generally, the loops and turns have larger fluctuations. The notable point of this figure is 
the difference between the three ǃ-strands. Clearly, the fluctuations of the third ǃ-strand 
residues are significantly higher than those of the other two ǃ-strands. This indicated that 
the third ǃ-strand was more flexible than the other two ǃ-strands. That is, the gap 
between the second and third ǃ-strand is easier to be opened, and thus the SWCNT is 
easier to penetrate it. 
 

 
Fig. 4. RMSF of the non-hydrogen atoms for the simulation of the YAP65 WW domain 
without SWCNT. The yellow arrows show the three ǃ-strands of the WW domain. The 
secondary structure information of the domain is obtained by DSSP [74]. 

Effect on protein function 

As shown above, the SWCNT plugged into the second and third ǃ-stands and formed a 
stable complex. In the protein-SWCNT complex, two active residues of YAP65 WW domain 
(W39 and Y28) are separated, thus the primary functional unit, the scaffold, for binding with 
prolines in the proline rich motifs (PRM) is disrupted. In general, the SWCNT insertion of 
the binding site is much more disruptive than the typical surface adsorption, which may 
result in the loss of the original function of the WW domain. To demonstrate this, we 
performed simulations for the system with an additional PRM ligand (sequence 
GTPPPPYTVG), which binds to both the YAP65 WW domain in its native state [71], and to 
the protein-SWCNT complex. In the PRM binding simulations, the PRM was initially placed 
at 25 Å away from the center of the protein-SWCNT complex. There were 7045 TIP3P water 
molecules and one Cl- (which was used to neutralize the system), and all other MD setups 
and parameters were similar to the previous simulations. Ten independent runs were 
performed for each system in NVT ensemble at 298 K. 
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Fig. 5. A typical structure of (a) the protein-SWCNT complex with the adsorbed proline-rich 
motif (PRM) and (b) the domain binding with the PRM (PDB code: 1JMQ). Here the YAP65 
WW protein domain is shown in cartoon with magenta strand and salmon loop, and the key 
residues (W39 and Y28) are identified by green sticks. The atoms of the (6, 6) armchair 
SWCNT are shown in wheat spheres. The PRM ligand with the sequence GTPPPPYTVG is 
shown in cyan cartoon with the key residues identified by blue sticks. The solvated surfaces 
of the complex are shown in semitransparent. 

Our simulations showed that the protein-SWNT complex was stable, and the PRM always 
bound to the SWCNT instead of the binding site of the YAP65 WW, as shown in one 
representative structure in Fig. 5(a). As for comparison, we also showed the native structure 
with the PRM in Fig. 5(b). Clearly, the binding site (labeled by the green stick in these two 
figures) had been blocked by the SWCNT in the YAP65 WW domain-SWCNT complex. 
These findings indicate that the insertion of the SWCNT disrupted and blocked the binding 
site of the YAP65 WW domain, and disabled its function of identifying and binding with the 
PRM. To validate this prediction from our in silico approach, in vitro and/or in vivo 
experiments are highly needed. Interestingly, there is recent evidence from both experiment 
and theory showing that some antibody from mouse immune repertoire can “absorb” the 
C60 nanoparticle through similar hydrophobic interactions [75, 76].  

2.2 Competitive binding with ligands to receptors 
The scheme of protein functioning can be roughly described into three steps: binding, 
transforming, and releasing. The binding, especially the specific binding, between proteins and 
ligands is the primary step for the protein functioning. Again, hydrophobic interactions often 
play a vital role in the binding of proteins with ligands.  If pristine CNTs (which are extremely 
hydrophobic) pass through cell membranes and possess stronger binding affinity than ligands 
with hydrophobic binding sites of some key proteins, these CNTs may hold their hydrophobic 
binding sites, obstruct their binding processes, and disrupt the functions of these proteins. This 
competitive binding may be another potential mechanism of toxicity of hydrophobic 
nanoparticles, including CNTs. All the aforementioned studies focus on the direct interactions 
of nanoparticles with proteins. The effect of nanoscale particles on the ligand-receptor binding, 
i.e., a three way nanoparticle-ligand-protein competitive binding, is much less studied.  

(a)                                                        (b) 
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We take a proline-rich ligand (PPPVPPRR) and its binding module, the SH3 domain, together 
with a pristine SWCNT as an example to illustrate the idea. The SH3 domain is one of the most 
abundant protein interaction domains [77], and usually found in the signaling and regulatory 
proteins as the functional module to identify and bind PRM of their binding partners [78-84]. 
Fig. 6(a) shows the native structure of the SH3 domain binding with the ligand. It exists as a 
characteristic ǃ-barrel fold which consists of five ǃ-strands arranged as two tightly packed 
anti-parallel ǃ-sheets [85]. The residues, including F8, W36, P50, and Y53, are the key residues 
to bind ligands [78, 86]; and the hydrophobic interaction is the dominant force for the binding 
process [87]. The SWCNTs are armchair of (m, n), where m = n = 3, corresponding to the tube 
diameters of 4.04 Å with a length of 19.54 Å. The ligand, SWCNT and protein are initially well 
separated from each other. The initial distances of the geometric centers, of both the SWCNT 
and the ligand, from that of the SH3 domain are set at 30 Å, but in different orientations. The 
distance between the geometric centers of the SWCNT and ligand is about 42 Å. They were 
solvated with TIP3P model water as well. We performed 20 independent simulations for the 
SH3 domain, the PRM ligand, and the SWCNT with different initial velocities, each with 200 
ns (see more detail in Computational Methods).  

Interaction of SH3 domain, ligand and SWCNT  

We find that the SWCNT occupies the binding pocket and contacts directly with the key 
residues of the SH3 domain in 13 of the 20 simulation trajectories. In this way, the SWCNT 
prevents the ligand from forming the native contacts with the SH3 domain binding pocket. 
 

     
Fig. 6. Structures of (a) the SH3 domain binding with the PRM ligand (PDB: 1CKB) in its 
native state; and (b) a typical snapshot in which the SWCNT occupies the binding pocket 
and contacts with the key residues of the SH3 domain, while the ligand binds partly to the 
SWCNT and partly to the SH3 domain; and  Here the SH3 domains are shown in cartoon 
with magenta strand and salmon loop, and the key residues (F8, W36, P50 and Y53) in the 
pocket are identified by green sticks. The atoms of the SWCNT are shown in wheat 
spheres. The ligands with sequence PPPVPPRR are shown in cyan cartoon with the key 
residues identified by blue sticks. The solvated surface of complexes is shown 
semitransparent. 

(a)                                                       (b) 
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Fig. 6(b) shows a typical structure for the case that SWCNT occupies the binding pocket  
of SH3 and the ligand binds to the SWCNT. The SWCNT directly contacts with nine 
residues of the SH3 domain in the pocket, including the key residues W36, P50, and  
Y53. In the other 12 cases, the SWCNT contacts with at least one of the key residues of the 
binding pocket of the SH3 domain. And in 11 of those 13 trajectories, the ligand binds 
partly to the SWCNT and partly to the surface of the SH3 domain (near the SWCNT).  
In other two cases, the ligand only binds to the surface of the SH3 domain (but not the 
active site) and does not bind to the SWCNT. Even though the other seven trajectories do 
not show a direct binding of the SWCNT with the SH3 domain binding pocket, the 
SWCNT does display some tendency of the binding. For example, in three of the seven 
trajectories, the SWCNT is getting close to the key W37 residue in the binding pocket; and 
in the other two trajectories, it is getting close to the key Y03 residue. The incomplete 
binding might be caused by the fact that our simulation lengths, 200+ ns, are still not long 
enough. 
The binding process is illustrated by representative snapshots as well as the interface areas 
between the SH3 domain, the ligand, and the SWCNT, using a typical trajectory (see Fig. 7), 
in which the SWCNT first binds onto the SH3 and then the ligand binds onto the SWCNT. 
 

   
Fig. 7. One representative trajectory in which the SWCNT adsorbs onto the binding pocket 
and makes direct contacts with the key residues of the SH3 domain, while the ligand binds 
partly with the SWCNT and partly with the SH3 domain. (a) Some representative snapshots. 
Here the proteins are shown in cartoons with magenta strand and salmon loop. The key 
residues of the protein domain are noted by red sticks, the ligands with the sequence 
PPPVPPRR are shown in cyan cartoon with the key residues identified by blue sticks. The 
SWCNTs are shown in wheat sticks. (b) The protein-SWCNT, protein-ligand, and ligand-
SWCNT interface areas as function of time. 

(a)                                                   (b) 
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To illustrate the binding process of the ligand, we also show the interface areas of the ligand 
with the SH3 domain (protein-ligand), and the ligand with the SWCNT (ligand-SWCNT), 
denoted by SPL and SLC, respectively (see Fig. 7(b)). At t = 0, SPL = SLC = 0 since the ligand is 
separated from both the SH3 domain and the SWCNT initially. In the first 5 ns, SPL increases 
to about 200 Å2 very quickly, and maintains that value until t = ~ 90 ns. At the snapshot of  
t = 40 ns, the ligand is adsorbed onto the SH3 domain (but not at the binding pocket). On the 
other hand, SLC still keeps at about 0. The most notable event happened at about 90 ns. After 
that, SPL decreases quickly from 200 Å2 to a very small value, and later recovers back to 
~150 Å2. Meanwhile, SLC increases to about 100 Å2. At t = 89 ns, the ligand has temporarily 
separated from the SH3 domain, diffuses to the other side of the SH3 domain, and then 
binds to both the SWCNT and the SH3 domain (the structure is shown in the snapshot at 
100 ns). From t = 90 ns to t = 200 ns, both SPL and SLC remain at these values with normal 
fluctuations, indicating a stable three-way bound structure among the SWCNT, the ligand, 
and the SH3 domain.  
From the interface areas, we showed the main picture of the binding process of the SWCNT, 
the ligand and the SH3 domain. To give a more detailed picture about the binding process at 
the residue level, we had computed the contact number of the SWCNT and the ligand with 
the residues of SH3 domain. Here we used the protein residue as a unit base in accounting 
(see Fig. 8), and a contact is counted if the distance between a non-hydrogen atom in the  
 

 
Fig. 8. Numbers of the contacts of the SWCNT and the ligand with the residues of SH3 
domain, together with those of the SH3 domain and the SWCNT with the residues of the 
ligand. The number denoted by the color and the ” blank” meaning no contact. There is a 
contact if the distance between a non-hydrogen atom in the bound object and a non-
hydrogen atom in the residue is less than 5 Å.  
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bound object and a non-hydrogen atom in a residue is less than 5 Å. Generally speaking, the 
closer the object is to the protein residue, the larger the contact number is between the 
protein and the object, and the stronger the object binds to the protein residue. Similarly, 
from the contacts of the SWCNT on the SH3 domain, we found that there were three stages 
in the binding process. In the initial stage, from 0 to ~3 ns, the SH3 domain and the SWCNT 
were separated; in the second stage, from ~3 to ~35 ns, the SWCNT was adsorbed onto four 
residues of the SH3 domain; in the third stage, from ~35 ns to the end of the simulation, the 
SWCNT bound closely with many residues (up to 9) of the SH3 domain, including the key 
residues W36, P50, and Y53.  
Furthermore, the contacts between the SWCNT and the ligand are found to be quite stable, 
i.e., these contacts remain in contact once they appear (see Fig. 8). On the contrary, the 
contacts between the ligand and the protein (both ligand on protein and protein on ligand) 
vary with time, indicating that the relative positions between the ligand and the SH3 
domain change with time much more often. Further, the great changes of the ligand-protein 
contacts happen at t = ~88 ns (Fig. 8), corresponding to the previous observation that the 
ligand temporarily separates from the SH3 domain, then diffuses to the other side of the 
SH3 domain, and finally re-adsorbs onto both the SWCNT and the SH3 domain.  
Conformational fluctuations of the ligand on the SWCNT and SH3 domain are observed 
after the final adsorption.  For example, from 90 ns to 150 ns, the ligand binds both the SH3 
domain (on the residues 12-13, 16, and 36) and the SWCNT by the C-terminal residues; 
while from 150 ns to 200 ns, the ligand binds the SH3 domain (on the residues 9~11, and 53) 
by the N-terminal and the SWCNT by C-terminal (see also Fig. 8). 

Free energy landscape 

Fig. 9(a) shows the free energy landscape as a function of two reaction coordinates: the 
interface area between the SH3 domain and the SWCNT (SPC), and the minimal distance 
between the SWCNT and the key residues of the SH3 domain (including F08, W36, P50, and 
Y53), denoted by DKC. Clearly, the SWCNT will prevent the regular binding of the ligand to 
the SH3 domain if it binds to one of the key residues. Thus, the reaction coordinate DKC 
could be a good reaction coordinate to describe the binding free energy landscape. To obtain 
a reasonable result, we sampled the structures with a time interval of 20 ps in the last 180 ns 
of all the 20 trajectories. The global minimum in this landscape is found at SPC ~ 220 Å2 and 
DKC < 5.0 Å (see Fig. 9(a)) with a binding free energy of -6.08 kcal/mol, which corresponds  
 

   
Fig. 9. The binding free energy landscapes of the SWCNT (a) and the ligand (b) with the SH3 
domain. “SPC” and “SPL” denote the interface area of the SWCNT and ligand with the SH3 
domain, respectively. “DKC” and “DKL” are the minimal distance of the SWCNT and the 
ligand from these key residues, respectively. The unit of the free energy is kcal/mol. 
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to the state where the SWCNT binds to the SH3 domain binding pocket. Two local minima, 
in which SPC ~ 150 Å2 & DKC ~ 8.0 Å, and SPC ~ 180 Å2 & DKC ~ 18.0 Å, are also observed.  
Detail studies show that these two states correspond to the SWCNT binding to the side (the 
region around the residue W37) and the opposite (the region around the residue Y03) of the 
binding pocket of the SH3 domain, respectively.  
The binding of the ligand to the SH3 domain is also described by the free energy landscape 
as a function of the two equivalent reaction coordinates: the interface area between the 
ligand and the SH3 domain (SPL), and the distance between the ligand and the key residues 
of the SH3 domain (DKC) (shown in Fig. 9(b)). The lowest binding affinity for the ligand is  
-5.51 kcal/mol, which is 0.57 kcal/mol less than the SWCNT shown above. This explains 
why the PRM ligand loses the competition to the SWCNT in the binding to the SH3 domain.  
Interestingly, the binding free energy landscape also shows that there are two basins, with 
the free energy of -5.51 kcal/mol (the lowest for the ligand binding) and -5.16 kcal/mol, 
respectively. Both states have similar values of SPL ~ 180 Å2, i.e., adsorbing onto the SH3 
domain with similar contacting surface areas. The difference lies in the DKL, i.e., the distance 
to the key residues of the SH3 domain binding pocket.  The deeper one has a very small 
value of DKL ~ 5.0 Å, which indicates that the ligand is around the binding pocket. The other 
basin has a larger value of DKL ~ 12.0 Å, indicating that the ligand is far away the binding 
pocket.  We note that the same DKL (~12 Å) does not mean that there is only one binding site 
for the ligand in this case.  A detailed study shows that the ligand binds to a broad region of 
the SH3 domain with residues 11-19, 23-25, and 43-47 involved.   

rr/r stacking interaction 

From Fig. 9(a), there are three basins in the free energy landscape of the SWCNT binding on 
the SWCNT. When the SWCNT was in the global minimum (binding on the binding 
pocket), it contacted with at least one of the aromatic residues, including F08, W36 and Y53. 
The upper panel of Fig. 10 shows the typical binding mode of the SWCNT contacting with 
these three aromatic residues, in which their side chains of are almost parallel with the 
SWCNT. For the two local minima, the SWCNT contacted with the Y03 and W37, 
respectively (shown in the lower panel of Fig. 10). Overall, the SWCNT always contacts with 
aromatic residues when it binds onto the SH3 domain. In the SH3 domain native structure, 
there are a total of 47 residues exposed to environment (solvent, ligand, or SWCNT), but 
only ten of them are hydrophobic and five of them aromatic residues. This indicates the 
SWCNT is favored to contact with the hydrophobic and aromatic residues (more below).  
In order to describe quantitatively the degree by which the SWCNT favors to contact  
with the hydrophobic and aromatic residues, we estimated the p-values of distribution  
of the hydrophobic and aromatic residues in contact with the SWCNT based on the  
χ2 hypothesis [88] (see Fig. 11). It was found that the SWCNT is remarkably favored  
in binding with the hydrophobic residues of the SH3 domain. The p-value for the  
SWCNT in contacting with hydrophobic residues (Ile, Val, Leu, Met, Ala, Trp,  
and Phe, following the hydrophobicity classifications of this NCBI website: 
http://www.ncbi.nlm.nih.gov/Class/Structure/aa/aa_explorer.cgi), aromatic residues 
(His, Tyr, Phe, and Trp), and the hydrophobic aromatic residues (Phe and Trp; here we do 
not include Tyr residue, even though many people might classify Tyr to be hydrophobic 
aromatic residue as well) were 6.51 x 10-3, 2.42 x 10-12, and 2.00 x 10-19, respectively.  This 
indicates that the interactions between the SWCNT and the hydrophobic residues, 
particularly the aromatic residues *r/r stacking interactions), play an important role in 
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the binding of SWCNT and proteins. We note that favorable interactions of the carbon 
nanotube with the hydrophobic and aromatic residues had also been observed in recent 
carbon nanotube-peptide experiments [33, 34, 89]. That is, these interactions are 
independent of the sizes of proteins and CNTs. Therefore, even though the SWCNT used 
in our simulation is quite small, the observation of the high probability to occupy the 
binding pocket of the protein by the SWCNT is extendable to the hydrophobic nanoscale 
particles of larger lengths, which is expected to be observed with more extensive 
computations with the development of the supercomputers as well as advanced 
simulation techniques. It should also be noted that the r/r stacking interactions might be 
underestimated in standard force fields due to the lack of polarization, and more 
advanced techniques such as quantum mechanics simulations might be needed to fully 
catch the effect; however, a recent study shows that classical simulations can be 
sometimes even better to capture this r/r stacking interactions than the quantum 
mechanics simulations due to the facts that the classical force fields are often directly 
fitting from experimental data, while the quantum mechanics simulations, on the other 
hand, might suffer from the limited size and boundary conditions [90]. 
 

     
 

   
Fig. 10. Interaction between the SWCNT and the aromatic residues of SH3 domain. The top 
panel shows the key residues of the binding pocket, including F08, W36 and Y53. The 
bottom panel shows the aromatic residues which are exposed but not belong to the binding 
pocket, including Y03 and W37. Here the SH3 domains are shown in semitransparent sky 
blue cartoon. The aromatic residues are shown in sticks (magenta tryptophan, cyan 
phenylalanine, and green tyrosine) and labeled by red text. The SWCNTs are shown in 
wheat sticks.  
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Fig. 11. Distribution of the number of the hydrophobic, aromatic, and aromatic hydrophobic 
residues contacted with SWCNT. Here a residue is contacted with the SWCNT when the 
distance between one of its non-hydrogen atoms and SWCNT is less than 5 Å. The left 
column shows the expected distribution based on the number of the residues and the total 
number of the residues contacted with SWCNT. The right column shows the practical 
distribution. The p-values for the distribution are estimated on the χ2 hypothesis test, and 
shown on the right column. 

Effect on the binding event 

It is noteworthy that a previous MD simulation has shown that the ligand could recognize 
the binding pocket and form the native binding mode with the SH3 domain, in the absence 
of nanoscale particles [87]. The long-range electrostatic interactions are found to play an 
important role in the ligand recognition of the binding pocket, through its two arginine 
residues on the C-terminal [87]. The PRM ligand’s R7 and R8 residues have favorable long-
range electrostatic interactions with SH3-domain’s acidic residues, D14, E16, D17, and E33 
on RT and n-sCr loops, near one end of the binding pocket, which provides guidance to an 
accelerated ligand binding mode search. This electrostatically accelerated association of 
proteins was also previously observed in experiments [91, 92]. And studies had confirmed 
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that the arginine residue is conserved in the PRM to this SH3 domain [78, 79]. The stability 
of the final binding, on the other hand, is driven by the structural match and hydrophobic 
interactions between the ligand (proline residues and V4) and the SH3 domain (F8, F10, 
W36, P50, P52, and Y53), in addition to the salt-bridges formed by R7/R8 (see Fig. 6(a)). In 
our current complex system with the presence of SWCNT, the SWCNT wins the competition 
over the ligand for the binding pocket even without any guidance from the long-range 
electrostatic interactions (since SWCNT is uncharged in our simulations), indicating a very 
strong hydrophobic interaction between the SWCNT and the SH3 domain. Interestingly, the 
ligand still manages to locate the area of the active site and bind with both the SWCNT and 
SH3 domain (though no longer in the binding pocket), which implies the PRM ligand still 
maintains some recognition capability due to the long-range electrostatic interactions 
through its two C-terminal arginine residues.  
The structural match between the ligand and active site stabilized the native binding mode. 
However, it raised the demand for an extensive conformational space mapping even with 
the electrostatic acceleration. And the hydrophilic residues in the ligand (the two terminal 
arginines) often shield the hydrophobic ones in the water environment to “inhibit” their 
exposure to the active site. On the other hand, the hydrophobic interactions between the 
SWCNT and the hydrophobic residues of the binding pocket, particularly those aromatic 
ones, are strong and nonspecific. This makes the SWCNT more straightforward to be 
adsorbed onto the binding pocket. Thus it takes only about 35 ns for the SWCNT to reach a 
stable binding state at the active site, while it takes ~130 ns for the ligand to come near the 
SH3 domain in the previous MD simulations [87]. This is also consistent with the above free 
energy landscape analysis, which reveals that the SWCNT is more favorable than the PRM 
ligand to be bound to the active site of the SH3 domain. That is, in the competition for the 
binding pocket of the SH3 domain, the SWCNT has advantages over the PRM ligand in both 
kinetics and thermodynamics. The SWCNT essentially occupies the binding pocket of the 
SH3 domain and interrupts its native binding with the PRM ligand. 

2.3 Interaction with human blood serum proteins  
All the above simulations were done with relatively short CNTs (~20 Å) and small proteins 
(SH3 domain has 57 amino acids and WW 26 amino acids) due to the enormous 
computational resources needed. In order to see whether longer SWCNTs and larger 
proteins might exhibit similar behaviors, we have recently performed simulations with IBM 
BlueGene supercomputers on much larger systems – the SWCNTs interacting with human 
blood serum proteins BSA (bovine serum albumin), Ǆ-Ig (gamma-globulin), Tf 
(transferring), and BFg (fibrinogen), also in an attempt to compare with experiments 
directly. The total number of atoms in the solvated systems is up to 1.06 million. Figure 12 
shows one example of the system setup with BFg dimmer interacting with SWCNT in 
solution. Since this is still an ongoing research, only a very brief description of the current 
results will be given. More simulation results and detailed comparisons with experiments 
will be reported elsewhere [93].  
To elucidate the mechanism of protein adsorption by the SWCNT, up to 150 ns molecular 
dynamics simulations have been performed for each protein-SWCNT complex in explicit 
solvent. In our experiments, including AFM images, fluorescence spectroscopy, and SDS-
PAGE, we found that these serum proteins display a competitive binding/adsorption with 
the SWCNTs, with BFg showing the largest adsorption capacity. In addition, the adsorption 
capacity displays a general trend of BFg > Ǆ-Ig > Tf > BSA [93]. 
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Fig. 12. Representative snapshot from the simulation trajectory of the human blood serum 
protein BFg interacting with a SWCNT. The solvated complex system has 1,058,598 atoms. 
The top panel shows the BFg-SWCNT complex alone, while the bottom panel also includes 
the solvation box. Here the protein BFg is shown in ribbons colored by chain. The SWCNT is 
shown in wheat sticks, and water in dots (with only O atoms shown). 

As mentioned above, the aromatic residues, tryptophan (Trp), tyrosine (Tyr) and 
phenylalanine (Phe), could produce π-π stacking interactions between aromatic rings of 
amino acids and six-member rings of the SWCNT. As a first analysis, the numbers of these 
three kinds of amino-acid residues on the surface of initial conformation for each protein 
molecule were counted. The approximate numbers of (Trp, Tyr, Phe) for BFg, Ǆ-Ig, Tf and 
BSA were in sequence of (14, 47, 27); (2, 25, 10); (1, 13, 15); and (1, 9, 10); respectively. This 
implies that the aromatic residues on the surface of these blood serum proteins particularly 
consist of Tyr and Phe, and lack of Trp, except for BFg which has 14 surface Trp residues. 
Most of the Trp residues are wrapped in the core of proteins, and play a lesser role in these 
serum protein-SWCNT complex adsorptions, which seems to be different from the above 
WW domain and SH3 domain cases where Trp residues play a significant role.  
The snapshots of MD simulation results describe the preferred binding sites on proteins for 
SWCNT. If we highlight the residues within 5 Å distance from the surface of SWCNT, the 
aromatic residues Tyr and Phe stand out as the key residues involved in the adsorption. 
Interestingly, only Tyr and Phe were observed in the adsorption on the surface of SWCNT 
(at least in the first 150 ns simulations, longer runs might reveal larger protein 
conformational changes and exposure of Trp residues to the SWCNT surface as well), and 
Trp residues made little contribution for adsorption in the present MD simulations, which 
are still very short in time scale as compared to experiments (5 min to 1 hour). Nevertheless, 
our simulations show that there is a positive correlation between the total numbers of Trp, 
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Tyr, and Phe residues and the binding surface areas, thus the adsorption content, of the 
proteins, respectively.  
In order to illuminate the above positive correlation relationship more clearly, we calculated 
the contact residue number and contact surface area of various proteins, in adsorption of 
SWCNT versus time. We used the average contact residue number (ACRN) of the protein to 
quantify its adsorption ability with SWCNT. The ACRN for BFg during 140 to 150 ns is 94. 
The ACRN for Ǆ-Ig after its saturation during 70 to 150 ns is 28. The ACRN for Tf after its 
saturation during 80 to 150 ns is 13. The ACRN for BSA after its saturation during 65 to 150 
ns is 12. The relationship of ACRN of various protein complex systems shows an order of 
BFg > Ǆ-Ig > Tf > BSA, which is in good agreement with the experimental findings [93] (and 
also compatible with the above simple analysis using aromatic hydrophobic residues). 
Similarly, we computed the average contact surface area (ACSA) for these blood serum 
proteins (see Fig. 13). The ACSA for BFg, Ǆ-Ig, Tf and BSA during the responding time 
ranges are 4360 Å2, 1240 Å 2, 580 Å 2 and 470 Å 2 respectively, which again shows an order of 
BFg > Ǆ-Ig > Tf > BSA, in good agreement with the experimental findings [93].  
 

 
Fig. 13. The protein-SWCNT interface area as a function of time for various human blood 
serum proteins. Here the interface area is defined as half of the difference between the 
solvent accessible surface area of the complex and the sum of solvent accessible surface 
areas of the protein and the SWCNT.  

The most abundant Tyr and Phe residues on the surface of BFg molecule can be attributed to 
the highest protein quantities binding to SWCNT. Interestingly, the r-cation interactions are 
also found to play a role, though smaller, in the BFg-SWCNT binding. The average Arg and 
Lys residues in contact with SWCNT (ACRN-Arg, ACRN-Lys) are found to be about ~1.3 
and ~3.5, respectively (out of the total ~94 ACRN above). The other three proteins Ǆ-Ig, Tf, 
and BSA show similar results, with the (ACRN-Arg, ACRN-Lys) having values of (0.0, 0.2), 
(1.4, 3.2), (0.1, 2.4), respectively. These findings are consistent with a previous report by 
Kagan and coauthors, where they found that the interactions between human 
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myeloperoxidase (hMPO) and the carboxylated nanotubes involved both arginine (π–π-
cation interaction) and tyrosine (π–π interaction) residues [94]. Our current simulations 
show that the π–π stacking" interactions are the driving forces for the competitive binding of 
human serum proteins onto SWCNTs.  
Finally, it should be noted that carbon nanotubes often exist in much longer lengths in in 

vitro experiments as compared to our simulation lengths, which are typically a few to a few 
tens of nanometers. However, there are recent studies showing that the enzyme horseradish 
peroxidase (HRP) can biodegrade SWCNTs into very small fragments [95]. Therefore short 
SWCNTs may exist in the living body and studying SWCNTs with relatively short lengths 
might be of significant importance to human health as well. 

3. Conclusion 

We had investigated the effect of the CNTs on the conformation and function of proteins by 
using the large scale molecular dynamics simulations. WW domain, SH3 domains were used 
as examples to illustrate our ideas that the CNTs can affect the function of the proteins by 
either disrupting the structure of active site or shielding the active site from competing ligands. 
In the simulation of the SWCNT and the WW domain, it was found that the SWCNT can plug 
into the hydrophobic core of WW domain to form a stable protein-SWCNT complex. This 
insertion of the SWCNT broke the scaffold which used to bind the proline rich motifs (PRM), 
and thus reduced the possibility of the direct binding between the PRM and the WW domain. 
In the case of SH3 domain, we studied a three-way binding competition among the SWCNT, 
the PRM ligand, and the SH3 domain, and found that the SWCNT had a very high probability 
occupying the binding pocket of the ligand in the SH3 domain, with about 0.6 kcal/mol more 
favorable binding affinity than the original PRM ligand. Moreover, in most of the simulation 
trajectories, the ligand will be adsorbed onto the SWCNT, which may further reduce the 
possibility of the correct binding for the ligand onto the active site of the SH3 domain. These 
adverse effects of the SWCNTs on proteins, including both the disruption of the active sites 
and the competitive binding with the ligands, might seriously damage the original functions of 
proteins, suggesting the potential nanotoxicity of the SWCNT. The interactions between the 
SWCNTs and the hydrophobic residues, particularly the aromatic residues (r/r stacking 
interactions), are found to play a key role in both the insertion of the SWCNT and the 
competitive binding with ligands. Moreover, we also simulated much larger systems, with 
human serum proteins interacting with SWCNTs, and found a competitive binding among all 
these serum proteins, with the adsorption capacity in an order of BFg > Ǆ-Ig > Tf > BSA, in 
good agreement with experimental findings. Again, the π–π stacking" interactions are found to 
be the driving forces for the competitive binding of human serum proteins onto SWCNTs. 
These findings might have shed some light to the general mechanism of the interactions 
between hydrophobic nanoparticles and proteins.  

4. Computational method 

Modeling WW domain and SWCNT 

The protein YAP65 WW domain was prepared from the Protein Data Bank (PDB code: 
1JMQ, truncated to include residues 15-40), and modeled by AMBER03 force field [96]. The 
lengths of all those SWCNTs are 19.54 Å. The carbon atoms of the SWCNTs were modeled 
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as uncharged Lennard–Jones particles with a cross-section of σcc = 3.40 Å, and a depth of the 
potential well of εcc= 0.36 kJ/mol [56, 57]. The interactions between these carbon atoms of 
SWCNT and other atoms were generated by the AMBER03 force field [96]. The combined 
systems were then solvated in a rhombic dodecahedral periodic box with the distance 
between the solutes and box boundary at least 8 Å. The numbers of water molecules were 
2694, 2709 and 2735 for the system with the SWCNT of m = 4, 5, and 6, respectively. And a 
Cl- was added into solution to neutralize the system. 

Modeling SH3 domain, Ligand and SWCNT 

The SH3 domain and the ligand were prepared from the Protein Data Bank (PDB code: 
1CKB [85], residues 134-190 for the SH3 domain, and residue 1-8 for the ligand), and 
modeled by AMBER03 force field [96]. The carbon atoms of the SWCNT were also modeled 
as uncharged Lennard–Jones particles with a cross-section of σcc = 3.40 Å, and a depth of the 
potential well of εcc = 0.36 kJ/mol [56, 57]. Two three-way (SWCNT + ligand + protein) 
binding complex systems were set up. In the first system, the initial separations of the 
geometric centre of the SWCNT and the ligand from that of the SH3 domain were both set 
as 30 Å, a distance long enough to avoid the starting point bias. The initial orientations of 
the SWCNT and the RPM ligand versus the SH3 domain were set at different directions. The 
resulting complex was then solvated in a rhombic dodecahedral periodic box, with the 
distance between the solutes and the boundary of the box at least 10 Å. The final complex 
system size is 12,378 atoms. For the second complex system, a similar procedure was 
followed, but with the SWCNT and ligand swapped in space (thus in the opposite 
orientations when compared to the first system) for effective sampling. The final system size 
is 13,367 atoms. The TIP3P [97] water model was used for the salvation, and three Na+ were 
added into solution to neutralize each system. 

WW domain and SH3 domain MD simulations 

The MD simulations were performed by using the Gromacs package 4.0 [98].  In the 
simulations, the covalent bonds involving H atoms were constrained by the LINCS 
algorithm [99], allowed a time step of 2 fs. The long range electrostatic interactions were 
treated with the particle-mesh Ewald method (PME) with a grid spacing of 1.2 Å [100]. The 
cutoff for the van der Waals interaction was set to 10 Å. After energy minimization, all the 
systems were equilibrated by MD simulations for 200 ps at a constant pressure of 1 bar and 
temperature of 298 K using Berendsen coupling [101]. Then the production simulations were 
performed in the NVT ensemble at 298 K.  

Human serum proteins interacting with SWCNT  

The human blood serum proteins simulated in this work were taken from the Protein 
Data Bank and Swiss-Model Repository as BFg with PDB ID: 1DEQ, i-Ig with  
PDB ID: 3HR5, Tf with PDB ID: 2HAV, and BSA with SWISS-MODEL ID: 
432779d395a52bfc9f6574bc3e98afcd_1. All SWCNTs used in the molecular dynamics (MD) 
simulations for the adsorption of CNT for proteins BFg, Ig, Tf, and BSA were armchair 
CNT (14, 14) with diameter as around 2.0 nm, which were consistent with the 
experimental ones. The geometrical coordinate parameters of CNT were generated by 
using Nanotube Modeler software (www.jcrystal.com/products/wincnt/). 
MD simulations were performed by NAMD [102] of version 2.6. The various blood proteins 
were modeled by CHARMM 32b1 force field [103]. Carbon atoms of SWCNTs were 
assumed to be type CA with Lennard-Jones parameters 0.0700ccg ? / kcal/mol, 
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min /2 1.9924R ? Å. The interaction between these carbon atoms of SWCNTs and other 
atoms were generated by CHARMM 32b1 force field. The various blood proteins were well-
separated from SWCNT with the minimum distances up to 40.0 Å initially. All systems were 
solvated in periodic TIP3P modeled water box, and neutralized by adding sodium and 
chloride ions with 0.2 M salt concentration as physiological condition, with system sizes up 
to 1,058,598 atoms (see Fig. 12 for one example of BFg).  
Simulations were performed at constant temperature of 310 K, and pressure of 1 atm, with 
the PME method for long-range electrostatic interactions and time step of 2 fs. The cutoff for 
the Van der Waals interaction was set to 12 Å. All systems were simulated in the NPT 
ensemble for more than 150 ns. Visual Molecular Dynamics (VMD 1.8.7.) graphics viewer 
software was utilized to illustrate the adsorption of proteins and SWCNT in different 
representations. 
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