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1. Introduction 

Sustainable energy systems are necessary to save the natural resources avoiding 

environmental impacts which would compromise the development of future generations. 

Delivering sustainable energy will require an increased efficiency of the generation process 

including the demand side. The architecture of the future energy supply can be 

characterized by a combination of conventional centralized power plants with an increasing 

number of distributed energy resources, including cogeneration and renewable energy 

systems. Thus efficient forecast tools are necessary predicting the energy demand for the 

operation and planning of power systems. The role of forecasting in deregulated energy 

markets is essential in key decision making, such as purchasing and generating electric 

power, load switching, and demand side management.  

This chapter describes the energy data analysis and the basics of the mathematical 

modeling of the energy demand. The forecast problem will be discussed in the context of 

energy management systems. Because of the large number of influence factors and their 

uncertainty it is impossible to build up an ‘exact’ physical model for the energy demand. 

Therefore the energy demand is calculated on the basis of statistical models describing the 

influence of climate factors and of operating conditions on the energy consumption. 

Additionally artificial intelligence tools are used. A large variety of mathematical methods 

and ideas have been used for energy demand forecasting (see Hahn et al., 2009, or Fischer, 

2008). The quality of the demand forecast methods depends significantly on the 

availability of historical consumption data as well as on the knowledge about the main 

influence parameters on the energy consumption. These factors also determine the 

selection of the best suitable forecast tool. Generally there is no 'best' method. Therefore it 

is very important to proof the available energy data basis and the exact conditions for the 

application of the tool. 

Within this chapter the algorithm of the model building process will be discussed including 

the energy data treatment and the selection of suitable forecast methods. The modeling 

results will be interpreted by statistical tests. The focus of the investigation lies in the 

application of regression methods and of neural networks for the forecast of the power and 

heat demand for cogeneration systems. It will be shown that similar methods can be applied 

to both forecast tasks. The application of the described methods will be demonstrated by the 

heat and power demand forecast for a real district heating system containing different 

cogeneration units. 
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2. Energy data management 

2.1 Energy data analysis 

Energy management describes the process of managing the generation and the 

consumption of energy, generally to minimize demand, costs, and pollutant emissions. 

The energy management has to look for efficient solutions for the challenges of  

the changing conditions of the international energy economy which are caused by the 

world wide liberalization of the energy market restricted by limited resources  

and increasing prices (Doty & Turner, 2009). Computer aided energy management 

combines applications from mathematics and informatics to optimize the energy 

generation and consumption process. Information systems represent the basis for 

controlling and decision activities. Because of the large number of relevant information an 

efficient data management is to be used. Therefore mathematical analyzing and 

optimizing methods are to be combined with energy data bases and with the data 

management of the energy generation process. The detailed analysis of the main input 

and output data of an energy system is necessary to improve its efficiency. Improving the 

efficiency of energy systems or developing cleaner and efficient energy systems will slow 

down the energy demand growth, make deep cut in fossil fuel use and reduce the 

pollutant emissions. 

Much of the energy generated today is produced by large-scale, centralized power plants 

using fossil fuels (coal, oil, and gas), hydropower or nuclear power, with energy being 

transmitted and distributed over long distances to the consumers. The efficiency of 

conventional centralized power systems is generally low in comparison with combined heat 

and power (CHP) technologies (cogeneration) which produce electricity or mechanical 

power and recover waste heat for process use. CHP systems can deliver energy with 

efficiencies exceeding 90%, while significantly reducing the emissions of greenhouse gases 

and other pollutants (Petchers, 2003). Selecting a CHP technology for a specific application 

depends on many factors, including the amount of power needed, the duty cycle, space 

constraints, thermal needs, emission regulations, fuel availability, utility prices and 

interconnection issues. The tasks and objectives of a local energy provider can be 

summarized as follows: 

 Supply of the power and heat demand of the delivery district (additionally supply of 

cool and other media as gas and water is possible) 

 Logistic management and provision of the primary fuels and of the support materials; 

dispose of the waste materials 

 Portfolio management (i.e. buying and selling power at the power stock exchange) 

 Customer relationship management 

 Power plant and grid operation 

Fig. 1 shows the relationship model of the main input data resources and the data flow of 

the energy data management. The energy database represents the heart of the energy 

information system. The energy data management provides information for the energy 

controlling including all activities of planning, operating, and supervising the generation 

and distribution process. A detailed knowledge of the energy demand in the delivery 

district is necessary to improve the efficiency of the power plant and to realize optimization 

potentials of the energy system. 
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Fig. 1. Energy data management  

2.2 Mathematical modeling 
With the help of an energy data analysis the relations between the main inputs and outputs 
of the energy system will be described by mathematical models. The process of the 
mathematical modeling is characterized by the following properties: 

 A mathematical model represents the mapping of a real technical, economical or natural 
system. 

 As in real systems generally many influence parameters are determining, the modeling 
process must condense and integrate them (section 3.1). 

 The mathematical modeling combines abstraction and simplification. 

 In the most cases the model is oriented to application, i.e., the model is built up for a 
special use. 

The demands for the modeling process can be summarized to the thesis: The model should 
be exact as necessary and simple as possible. A wide range of statistical modeling 
algorithms is used in the energy sector. They can be classified according to these three 
criteria: 

  type of the model function (linear / non-linear) 

  number of the influence variables (univariate / multivariate) 

  general modeling aspect (parametric / non-parametric) 
The separation between linear and non-linear methods depends on the functional 
relationship. A model is called univariate if only one influence factor will be regarded; 
otherwise it is of the multivariate type. Parametric models contain parameters besides the 
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input and output variables. The best known linear univariate parametric model is the 
classical single linear regression model (section 3.4). Non-parametric models as artificial 
neural networks (section 3.5) don't use an explicit model function.  
An explicit algebraic relationship between input and output can be described by the model 

 ( , )y F x p  (1) 

where the function F describes the influence of the input vector x on the output variable y. 
The function F and the parameter vector p determine the type of the model. Regarding (1) 
there are two typically used modeling tasks: 
Simulation: 

Calculate the outputs y for given inputs x and fixed parameters p, and compare the results. 
Parameter estimation (inverse problem): 
For given measurements of the input x and the output y calculate the parameters p so that 
the model fits the relation between x and y in a "best" way. 
The numerical calculation of the parameters of the regression model described in section 3.4 
represents a typical parameter estimation problem. 

2.3 Energy demand analysis 
The energy consumption of the delivery district of a power plant depends on many 
different influence factors (fig. 2). Generally the energy demand is influenced by seasonal 
data, climate parameters, and economical boundary conditions. The heat demand of a 
district heating system depends strongly on the outside temperature but also on 
additional climate factors as wind speed, global radiation and humidity. On the other side 
seasonal factors influence the energy consumption. Usually the power and heat demand is 
higher on working days than at the weekend. Furthermore vacation and holidays have a 
significant impact on the energy consumption. Last but not least the heat and power 
demand in the delivery district is influenced by the operational parameters of enterprises 
with large energy demand and by the consumer’s behavior. Additionally the power and 
heat demand follow a daily cycle with low periods during the night hours and with peaks 
at different hours of the day. 
The quality of the energy demand forecast depends significantly on the availability of 
historical consumption data and on the knowledge about the main influence parameters on 
the energy demand. The functional relationship is non-linear and there are more or less 
complex interactions between different data types. Because of the large number of influence 
factors and their uncertainty it is impossible to build up an ‘exact’ physical model for the 
energy demand. Therefore the energy demand is calculated on the basis of mathematical 
models simplifying the real relationships as described in the previous section. Since no 
simple deterministic laws that relate the predictor variables (seasonal data, meteorological 
data and economic factors) on one side and energy demand as the target variable on the 
other side exist, it is necessary to use statistical models. A statistical model learns a 
quantitative relationship from historical data. During this training process quantitative 
relationships between the target variables (variables that have to be predicted) and the 
predictor variables are determined from historical data. Training data sets must be provided 
for known predictor target variables. From these example data the mathematical model is 
determined. This model can then be used to compute the values of the target variables as a 
function of the predictor variables for periods for which only the predictor variables are 
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known. Using meteorological data as predictor variables forecasts for those meteorological 
variables are needed (Fischer, 2008).  
 

Climate Calendar

temperature saison

solar radiation weekday

humidity holidays

air velocity vacation

Energy demand

power

heat and cooling

hot water

others

Economics

tariffs, prices

user's behavior  

Fig. 2. Relationship model of the energy demand 

The analysis of the relationships between energy consumption and climate factors includes 
the following activities: 

 energy balancing (distribution of the demand) 

 analysis of the main influence factors (fig. 2) 

 design of the mathematical model 

 analysis and modeling of typical demand profiles 
The daily cycle of the power and heat consumption can be described by time series methods 
(see 3.3). For non-interval metered customers "Standard load profiles" (SLP) can be used. 
They describe the time dependent load of special customer groups, e.g. residential 
buildings, small manufactories, office buildings, etc. (VDEW, 1999).  

2.4 Energy controlling and optimization 
The power generation system of the provider generally consists of several power plants 
including distributed units as cogeneration systems, wind turbines, and others (fig. 3). The 
provider is faced with the task to find the optimal combination (schedule) of the different 
generation units to satisfy the power and heat demand of the customers. Because of the 
unbundled structure of the generation, distribution and selling of electricity a lot of technical 
relations and economical conditions are to be modeled.  
As the architecture of the future electricity systems can be characterized by a combination of 
conventional centralized power plants with an increasing number of distributed energy 
resources, the generation scheduling optimization becomes more and more important. The 
schedule selects the operating units and calculates the amount to generate at each online 
unit in order to achieve the minimum production cost. This generation scheduling problem 
requires determining the on/off schedules of the plant units over a particular time horizon. 
Apart from determining the on/off states, this problem also involves deciding the hourly 
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power and heat output of each unit. Thus the scheduling problem contains a large number 
of discrete (on/off status of plant units) and continuous (hourly power and heat output) 
variables.  
 

Energy
management

system

Energy
management

system

 

Fig. 3. Distributed energy system (Maegard, 2004) 

The objectives of the schedule optimization can be summarized as: 

 minimization of the fuel and operating costs 

 minimization of the distribution costs 

 reduction of CO2 emissions 

 optimization of the power trading 
The most important restrictions and boundary conditions of the optimization problem are 
given by (Schellong, 2006): 

 The generation system must satisfy the power and heat demand of the delivery district. 

 The power generation in a cogeneration system depends on the heat generation. The 
mathematical relations can be described in a similar way as described in 2.2.  

 There are a lot of boundary restrictions referring the capacity and the operating 
conditions of the generation units. 

 The operating schedule depends on the availability of the single generation units. 

 The system is influenced by constraints of the district heating network as well as of the 
electrical grid. 

 The generation system has to fulfill legal constraints referring emissions. 

 The optimization system is influenced by the delivery contracts and actual conditions of 
the energy trading at the energy stock exchange. 

Thus the related mathematical optimization model has a very complex structure. Following 
the ideas described in section 2.2 the generation scheduling problem can be solved as a 
mixed integer linear optimization problem. The optimization results in an optimal schedule 
of the generation units using an optimal fuel mix and satisfying all restrictions. To realize 

www.intechopen.com



 
Energy Demand Analysis and Forecast 

 

107 

this schedule the generation process must be supervised by the energy control system using 
the data management illustrated in fig. 1.  
It is obviously that these processes require the detailed knowledge of the energy demand of 
the delivery system. Especially for cogeneration systems it is important to know the 
coincidence of the power and heat demand. CHP units are only able to generate electricity 
efficiently, when the produced heat is simultaneously used on the demand side.  

3. Energy demand forecast methods 

3.1 General modeling aspects 
As described in the previous section the quality of the forecast methods mainly depends on 
the available historical data as well as on the knowledge about the factors influencing the 
energy demand. With the help of the energy data analysis (see 2.1) the necessary data for the 
training, test, and validation sets are provided to realize the modeling process (see 2.3).  The 
historical energy consumption data are divided into clusters depending on seasonal effects. 
Thus the modeling process must be specified for each cluster. Furthermore the time horizon 
of the forecast determines the type of the applied method. Short- term forecasting calculates 
the power demand for the period of the next view minutes. This task plays an important 
role for the generation process, but also for the implementation of peak shifting applications 
at the consumer's side. The forecast of the day-ahead and of the weekly energy demand will 
be realized by medium-term methods. Based on the day-ahead forecast the operation 
schedule of the power plant units will be optimized (see 2.4). Finally long-term forecast tools 
estimate the future demand for periods of several month or years. These methods are 
necessary for the portfolio management and for the energy logistic (fig. 1).  
 

P

t

Energy database

Mathematical

model

• Reference method

• Time series analysis

• Regression model

• Artificial neural network

Refreshing the data

P

t

Energy database

Mathematical

model

P

t

P

t

Energy database

Mathematical

model

• Reference method

• Time series analysis

• Regression model

• Artificial neural network

Refreshing the data

 

Fig. 4. Forecast methods 

Fig. 4 shows an overview of the most common used forecast methods which are described 
in this section. The methods can be divided into the following three branching pairs: 
empirical and model-based, extrapolation and causal, and static and dynamic (Fischer, 
2008). Empirical methods are useful when only few or no historical data are available, when 
the past does not significantly affect the future, or when explanation and sensitivity analysis 
are not required. A popular approach is that of historical analogies implemented in the 
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reference method (see 3.2). Model-based methods use well-specified algorithms to process 
and analyze data. Extrapolation and causal methods are included in this category. 
Extrapolation methods are numerical algorithms that help forecasters find patterns in time-
series observations of a quantitative variable. These are popular for short-range forecasting. 
This method is based on the assumption that a stable, systematic structure can describe the 
future energy demand. These models are characterized by the criteria described in section 
2.2. A static forecast is used to predict the energy demand into the near future on the basis of 
actual data for the variables in the past or the present. On the other hand, a dynamic forecast 
can be used to make long term projections considering changes of the framework conditions 
during the forecast period. 

3.2 Reference method 
The pure reference method works without a mathematical model. The basic idea of this 
simple method is to find a situation in an energy data base of historical data that is similar to 
the one that has to be predicted. A set of explanatory variables is defined and similarity 
between situations is measured by these variables. The method will be described by an 
example: To calculate the heat or power demand for a Monday, with a mean predicted 
temperature of +5 deg C the algorithm is simply looking in a data base for another Monday 
with a mean temperature close to +5 deg C. Thus the historical consumption data for that 
day are used as the prediction. For a long time this method has been the reference method 
for energy demand predictions especially for local energy providers, and surprisingly it is 
still widely used. The advantage of the method is that it is simple to implement. The results 
are easily to be interpreted. However the disadvantages are numerous. Although the 
implementation of the method seems to be straightforward, it becomes complicated if the 
number of criterions increases. If for instance hourly temperatures are used instead of daily 
mean temperature the measures of similarity are no longer so obvious. With an increasing 
number of explanatory variables, the probability to find no data set that is similar according 
to all criteria increases (Fischer, 2008). 
In practical applications the reference method is used in combination with some other 

adaptation criteria depending on the behavior of the energy consumption in the past. 

Additionally the reference method is supported by a regression model describing the 

climate influence factors and/or time dependent energy consuming impacts caused by 

production factors in industrial enterprises. On the other side the knowledge of the energy 

consumption of selected historical reference days can improve the quality of model based 

methods as will be described in section 4. 

3.3 Time series analysis 
This method belongs to the category of the non-causal models of demand forecasting that do 
not explain how the values of the variable being projected are determined. Here the variable to 
be predicted is purely expressed as a function of time, neglecting other influence factors. This 
function of time is obtained as the function that best explains the available data, and is 
observed to be most suitable for short-term projections. A time series is often the superposition 
of the following terms describing the energy demand as time dependent output y(t): 

 Long-term trend variation (T)  

 Cyclical variation (C) 

 Seasonal variation (S) 
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 Irregular variation (R） 

The trend variation T describes the gradual shifting of the time series, which is usually due 

to long term factors such as changes in population, technology, and economy. The cyclical 

component S represents multiyear cyclical movements in the economy. The periodic or 

seasonal variation in the time series is, in general, caused by the seasonal weather or by 

fixed seasonal events. The irregular component contains the residual of the time series if the 

trend, cyclical and seasonal components are removed from the time series. These terms can 

be combined to mixed time series model: 

Additive model:   y(t) = T(t) + S(t) + C(t) + R(t)  (2) 

Hybrid model: y(t) = T(t) x S(t) + R(t)  (3) 

In addition to the univariate time series analysis, autoregressive methods provide another 
modeling approach requiring only data on the previous modeled variable. Autoregressive 

models (AR) describe the actual output yt by a linear combination of the previous time series 
yt-1, yt-2, . . . , yt-p and of an actual impact at: 

 yt = 1yt-1 + 2 yt-2 + . . . + p yt-p + at  (4) 

The autoregressive coefficients have to be estimated on the basis of measurements. The AR-

models can be combined with moving average models (MA) to ARMA models which have 
been firstly investigated by Box and Jenkins (Box & Jenkins, 1976). 

The time series method has the advantage of its simplicity and easy use. It is assumed that 
the pattern of the variable in the past will continue into the future. The main disadvantage 

of this approach lies in the fact that it ignores possible interaction of the variables. 
Furthermore the climate impacts and other influence factors are neglected.  

3.4 Regression models 

Regression models describe the causal relationship between one or more input variable(s) 

and the desired output as dependent variable by linear or nonlinear functions. In the 
simplest case the univariate linear regression model describes the relationship between one 

input variable x and the output variable y by the following formula: 

 y = f(x,a0,a1) = a0 + a1x  (5) 

Thus geometrically interpreted a straight line describes the relationship between y and x. 

The shape of the straight line is determined by the so called regression parameters a0 and a1. 

For given measurements x1, x2, . . . , xn  and y1, y2, . . . , yn  of the variables x and y the 

parameters are calculated such that the mean quadratic distance between the measurements 

yi (i=1, . . . ,n) and the model values ŷi on the straight line is minimized. That means the 

following optimization problem is to be solved: 
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     (6) 

The calculated regression parameters represent a so called least squares estimation of the 

fitting problem (Draper & Smith, 1998).  
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The regression model can be extended to a multivariate linear relationship where the output 
variable y is influenced by p inputs x1, x2, . . . , xp : 

 y = f(x,a) = a0 + a1x1 + a2x2 + . . . + apxp    (7) 

We define the following notations: 

 

1

2

.

n

y

y
y

y

 
 
 
 
 
 

1

2

.

p

a

a
a

a

 
 
   
 
  

              

11 1

21 2

1

1 .

1 .

. . . .

1 .

p

p

n np

x x

x x
X

x x

 
 
   
 
  

  (8) 

where the vector y contains the measurements of the output variable, a represents the vector 
of the regression parameters, and the matrix X contains the measurements xij of the ith 
observation of the input xj. Thus the least squares estimation of the multivariate linear 
regression problem will be obtained by solving the minimization task: 
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            (9) 

The least squares estimation of the regression parameter vector a represents the solution of 
the normal equation system referring to the minimization problem (9): 

 T TX Xa X y   (10) 

Regarding the special structure of this linear system, adapted methods like Cholesky or 
Housholder procedures are available to solve (10) using the symmetry of the coefficient 
matrix (Deuflhard & Hohmann, 2003). The model output can be described as 

 ˆ ˆy Xa                 (11) 

where the vector ŷ contains the model output values ŷi (i=1, . . . , n) and â represents the 
vector of the estimated regression coefficients aj (j=1, . . . , p) as the solution of (10). 
The results of the regression analysis must be proofed by a regression diagnostic. That 
means we have to answer the following questions: 
 Does a linear relationship between the input variables x1, x2, . . . , xp and the output y  

really exist? 

 Which input variables are really relevant? 
 Is the basic data set of measurements consistent or are there any "out breakers"? 
With the help of the coefficient of determination B we can proof the linearity of the 
relationship. 
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where ˆ
i

y  represent the calculated model values given by (11) and y is the arithmetic mean 

value of the measured outputs yi. B ranges from 0 to 1. Values of B in the near of 1 indicate, 
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that there exists a linear relationship between the regarded input and output. To identify the 

most significant input variables the modeling procedure must be repeated by leaving one of 

the variables from the model function within an iteration process. The coefficient of 

determination and the expression s² = SSR/(n-p-1) indicate the significance of the left 

variable. s² represents the estimated variance of the error distribution of the measured 

values of y. Finally the analysis of the individual residuals ˆ
i i i

r y y  gives some hints for the 

existence of "out breakers" in the basic data set. 
Multivariate linear regressions are widely used in the field of energy demand forecast. They 

are simple to implement, fast, reliable and they provide information about the importance of 

each predictor variable and the uncertainty of the regression coefficients. Furthermore the 

results are relatively robust. Nonlinear regression models are also available for the forecast. 

But in this case the parameter estimation becomes more difficult. Furthermore the nonlinear 

character of the influence variable must be guaranteed. Regression based algorithms 

typically work in two steps: first the data are separated according to seasonal variables (e.g. 

calendar data) and then a regression on the continuous variables (meteorological data) is 

done. That means a regression analysis must be done for each seasonal cluster following the 

algorithm: 

Step 1. Analysis of the available energy data 

Step 2. Splitting the historical energy consumption data into seasonal clusters 

Step 3. Identifying the main meteorological factors on the energy demand as described in 

 section 2.3 

Step 4. Regression analysis as described above 

Step 5. Validation of the model (regression diagnostic) 

Step 6. Integration of the sub models  

The application of regression methods to the heat demand forecast for a cogeneration 

system will be described in section 4. 

3.5 Neural networks 

Neural networks (NN) represent adaptive systems describing the relationship between 

input and output variables without explicit model functions. NN are widely used in the 

field of energy demand forecast (Schellong & Hentges, 2007). The basic elements of neural 

networks (NN) are the neurons, which are simple processing units linked to each other with 

directed and weighted connections. Depending on their algebraic sign and value the 

connections weights are inhibiting or enhancing the signal that is to be transferred. 

Depending on their function in the net, three types of neurons can be distinguished: The 

units which receive information from outside the net are called input neurons. The units 

which communicate information to the outside of the net are called output neurons. The 

remaining units are called hidden neurons because they only send and receive information 

from other neurons and thus are not visible from the outside. Accordingly the neurons are 

grouped in layers. Generally a neural net consists of one input and one output layer, but it 

can have several hidden layers (fig. 5).  

The pattern of the connection between the neurons is called the network topology. In the 

most common topology each neuron of a hidden layer is connected to all neurons of the 

preceding and the following layer. Additionally in so-called feedforward networks the 

signal is allowed to travel only in one direction from input to output (Fine, 1999).  
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Fig. 5. Structure of a neural network 

 

 

Fig. 6. Structure of a neuron 

To calculate its new output depending on the input coming from the preceding units (or 

from outside) a neuron uses three functions (Galushkin, 2007): First the inputs to the neuron 

j from the preceding units combined with the connection weights are accumulated to yield 

the net input. This value is subsequently transformed by the activation function fact, which 

also takes into account the previous activation value and the threshold j (bias) of the 

neuron to yield the new activation value of the neuron. The final output oj can be expressed 

as a function of the new activation value of the neuron. In most of the cases this function fout 

is not used so that the output of the neurons is identical to their activation values (fig. 6). 

Three sigmoid (S-shaped) activation functions are usually applied: the logistic, hyperbolic 

tangent and limited sine function. The formulas of the functions are given by: 
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A neural network has to be configured such that the application of a set of inputs produces 

the desired set of outputs. This is obtained by training, which involves modifying the 

connection weights. In supervised learning methods, after initializing the weights to 

random values, the error between the desired output and the actual output to a given input 

vector is used to determine the weight changes in the net. During training, input pattern 

after input pattern is presented to the network and weights are continually adapted until for 

neuron 

weighted  

connection 
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any input the error drops to an acceptable low value and the network is not overfitted. In 

the case that a network has been adjusted too many times to the patterns of the training set, 

it may in consequence be unable to accurately calculate samples outside of the training set. 

Thus by overlearning the neural network loses its capability of generalization. One way to 

avoid overtraining is by using cross-validation. The sample set is split into a training set, a 

validation set and a test set. The connection weights are adjusted on the training set, and the 

generalization quality of the model is tested, every few iterations, on the validation set. 

When this performance starts to deteriorate, overlearning begins and the iterations are 

stopped. The test set is used to check the performance of the trained neural network 

(Caruana et al., 2001). The most widely used algorithm for supervised learning is the 

backpropagation rule. Backpropagation trains the weights and the thresholds of 

feedforward networks with monotonic and everywhere differentiable activation functions.  

 
 

 

Fig. 7. Backpropagation learning rule 

Mathematically, the backpropagation rule (fig. 7) is a gradient descent method, applied on 
the error surface in a space defined by the weight matrix. The algorithm involves changing 
each weight by the partial derivative of the error surface with respect to the weight 
(Rumelhart et al., 1995). Typically, the error E of the network that is to be reduced is 
calculated by the sum of the squared individual errors for each pattern of the training set. 
This error depends on the connection weights: 
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where Ep is the error for one pattern p, tpj is the desired output from the output neuron j and 
opj is the real output from this neuron. 
The gradient descent method has different drawbacks, which result from the fact that the 
method aims to find a global minimum with only information about a very limited part of 
the error surface. To allow a faster and more effective learning the so-called momentum 
term and the flat spot elimination are common extensions to the backpropagation method. 
These prevent, for example, the learning process from sticking on plateaus where the slope 
is extremely slight, or being stuck in deep gaps by oscillation from one side to the other 
(Reed et al., 1998). 
Although the algorithm of NN is very flexible and can be used in a wide range of 
applications, there are also some disadvantages. Generally the design and learning process 
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of neural networks takes a large amount of computing time. Due to the capacity of 
computational time it is in most cases not possible to re-train a model in operational mode 
every day. Furthermore it is difficult to interpret the modeling results. 
In order to use neural networks for the energy demand forecast the following algorithm 
must be realized: 
Step 1. Preliminary analysis of the main influence factors on the energy demand as 

 described in section 2.3 
Step 2. Design of the topology of the NN 
Step 3. Splitting the basic data into a training set, a validation set and a test set  
Step 4. Test and selection of the best suitable activation function 
Step 5. Application of the backpropagation learning rule with momentum term and flat 

 spot elimination 
Step 6. Validation and comparison of the modeling results  
Step 7. Selection of the best suitable network  
The application of neural networks to the heat and power demand forecast for a 
cogeneration system will be described in section 4. 

4. Heat and power demand forecast for a cogeneration system 

4.1 The cogeneration system 
The cogeneration system consists of two cogeneration units and two additional heating 
plants (fig. 8). The first cogeneration unit represents a multi-fuel system with hard coal as 
primary input. Additionally gas and oil are used. The second unit works as incineration 
plant with waste as primary fuel. The heating plants use mainly gas as fuel. The 
cogeneration system provides power and heat for a district heating system. The heating 
system consists of 3 sub networks connected by transport lines. About 3.000 customers from 
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Fig. 8. Cogeneration system  
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industry, office buildings, and residential areas are delivered by the system. Thus the 
consumption behavior is characterized by a mixed structure. But the main part of the heat 
consumption is used for room heating purposes. The annual heat consumption amounts to 
about 460 GWh, and the power consumption to 6.700 GWh (Schellong & Hentges, 2007). 
Thus the power demand can not be completely supplied by the cogeneration plant. The 
larger part of the demand must be bought from other providers and at the European energy 
exchange (EEX). Therefore the forecast tool for the power demand is not only necessary for 
the operating of the cogeneration plant but also for the portfolio management. 
Generally the power plant of a district heating system is heat controlled, because the heat 
demand of the area must completely be supplied. Although in the system a heat 
accumulator is integrated, the heat demand must be fulfilled more or less 'just in time'. But 
as in the cogeneration plant 3 extraction condensing turbines are involved (fig. 8), the 
system is also able to follow the power demand. 

4.2 Data analysis 
As described in section 2.3 the energy consumption of the district delivery system depends 
on many different influence factors (fig. 3). Generally the energy demand is influenced by 
seasonal data, climate parameters, and economical boundary conditions. The heat demand 
of the district heating system depends strongly on the outside temperature but also on 
additional climate factors as wind speed, global radiation and humidity. On the other side 
seasonal factors influence the energy consumption. As a result of a preliminary analysis, the 
strongest impact among the climate factors on the heat demand has the outdoor 
temperature. Additionally the temperature difference of two sequential days represents a 
significant influence factor, describing the heat storage effects of buildings and heating 
systems. Concerning the power forecast, the influence of the power consumption measured 
in the previous week proved to be an interesting factor. These influence factors represent the 
basis of the model building process. For the forecast calculations, the power and the heat 
consumption data are divided into three groups depending on the season:  

 winter 

 summer 

 transitional period containing spring and autumn 
In each cluster the consumption data of a whole year are separately modeled for working 
days, weekend and holidays. 

4.3 Heat demand forecast by regression models 
Following the modeling strategy of section 2.3 the heat demand Qth of a district heating 
system can be simply described by a linear multiple regression model (RM): 

 Qth = a0 + a1tout + a2Δtout                (15) 

where tout represents the daily average outside temperature and Δtout describes the 
temperature difference of two sequential consumption days.  
The model (15) can be extended by additional climate factors as wind, solar radiation and 
others. But in order to get a model based on a simple mathematical structure and because of 
the dominating impact of the outdoor temperature among the climate factors only the two 
regression variables are used in (15). The results of the regression analysis for each cluster 
depending on the season and on the type of the day are checked by the correlation 
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coefficients and by a residual analysis. Corresponding to the modeling aspects described in 
chapter 2.2 for each season and each weekday a regression model (see equation 1) is 
calculated. The models describe the dependence of the daily heat demand on the outdoor 
temperature and the temperature difference of two sequential days. In order to estimate the 
regression parameters of the model (15) the database of the reference year is split up into the 
training set and the test set. The regression parameters are calculated by solving the 
corresponding least squares optimization (see section 3.4) on the basis of the training set. 
The quality of the model is checked by the comparison between the forecasted and the real 
heat consumption for the test dataset.  
The correlation coefficients and the mean prediction errors (see table 1) are used as quality 
parameter. The mean error is calculated for each model by: 

 
1

| |1
100%

n
th real

reali

Q Q

n Q


   , where n represents the number of test data      (16) 

For the reference year the correlation coefficients range from 0.81 for the summer time to 
0.93 for the winter season. The quality of the regression models of the heat consumption 
strongly depends on seasonal effects. The modeling results show that the quality of the 
models for the summer and transitional seasons is worse in comparison with the winter 
time (Schellong & Hentges, 2007). The large errors in the summer and transitional periods 
are caused by the fact that during the 'warmer' season the heat demand does not really 
depend on the outside temperature. In this case the heat is only needed for the hot water 
supply in the residential areas. 
 

season summer transitional period winter 

day type workdays weekend workdays weekend workdays weekend 

 16.0 12.0 12.9 19.8 5.5 5.6 

Table 1. Mean errors for the daily heat demand forecast calculated by RM 

4.4 Heat and power demand forecast by neural networks 
4.4.1 Methodology 
In order to calculate the forecast of the heat and power demand, feedforward networks 
are used with one layer of hidden neurons connected to all neurons of the input and 
output layer. The applied learning rule is the backpropagation method with momentum 
term and flat spot elimination (see section 3.5). The optimal learning parameters are 
defined by testing different values and retaining the values which require the lowest 
number of training cycles. 
In order to find the most accurate model, several types of neural networks are trained and 
their prediction error for the test set is compared corresponding to formula (16). Networks 
with different numbers of hidden neurons are used with three sigmoid (S-shaped) activation 
functions: the logistic, hyperbolic tangent and limited sine function. Each neural net is 
trained three times up to the beginning overlearning phase and then the net with the best 
forecast is retained (Schellong & Hentges, 2011).  
Corresponding to the preliminary data analysis described in section 4.1 the power and the 
heat consumption data are divided into three groups depending on the season: winter, 
summer, and the transitional period. In each cluster the consumption data are separately 
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modeled for working and for holidays. Thus overall 18 networks have to be tested for the 
heat and power demand models. For each network the topology varies from 3 to 8 neurons 
in the hidden layer. 
Following the mathematical modeling strategies of section 2.2 such models are preferred 
which have a simple structure. Thus overlearning effects can be avoided, and the adaptation 
properties of the model will be better than for more complex structures. Furthermore 
computing time can be reduced. 

4.4.2 Heat demand model 
As analyzed in section 4.2 the heat demand depends strongly on the outside temperature. 
Additionally the temperature difference of two sequential days has an effect on the heat 
consumption. Thus the daily heat demand can be described by the network shown in fig. 9.    
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Fig. 9. Network for the daily heat demand 

For the daily heat forecast the comparison of the mean prediction error for the 6 categories 
in which the days are divided (workdays and weekend in winter, summer or in the 
transitional period) shows that neural nets with a logistic activation function and 6 neurons 
in the hidden layer deliver the best forecast results (Schellong & Hentges, 2007). As an 
example fig. 10 demonstrates the network for the heat demand of workdays in the winter 
period with calculated weights: 
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Fig. 10. Network for the daily heat forecast of workdays in winter 
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Table 2 contains the mean prediction errors corresponding to formula (16). For the winter 
period we achieve the same quality of modeling results in comparison with RM (table 1). 
 

season summer transitional period winter 

day type workdays weekend workdays weekend workdays weekend 

 16.1 12.0 15.0 15.8 5.6 5.7 

Table 2. Mean errors for the daily heat demand forecast calculated by NN 

4.4.3 Power demand model 
For the power forecast two different neural networks were used (Schellong & Hentges, 

2011). The first considered network receives as only information on one input neuron the 

coded time (quarter of an hour). The subsequently calculated forecasted power consumption 

is presented on one output neuron. The second considered network has two input neurons. 

Additionally to the coded time this network calculates the forecasted power consumption 

using the consumption measured in the previous week. If the considered day was a holiday 

the respective previous Sunday is used as comparative day. On the other hand if for a given 

working day the comparative day of the previous week was a holiday then the according 

day from the preceding week is used. The prediction accuracies of very small networks with 

1 neuron in the hidden layer up to bigger nets with 8 hidden neurons are compared. Fig. 11 

shows the structure of the second type of networks. 
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Fig. 11. Network for the power demand 

The optimal parameter values identified for the backpropagation learning rule with 

momentum term α and flat spot elimination term c are similar for both networks. For the 

power forecast without using a comparative day the analysis of the above defined 24 

networks (nets with 1-8 hidden neurons and 3 different activation functions) shows that nets 

with a logistic activation function and 4 hidden neurons yields the best forecast results. The 

corresponding comparison of the forecast results, using the power at previous week as 

additional input, demonstrates that networks with a logistic activation function and 5 

neurons in the hidden layer calculate the most accurate forecasts (see fig. 12). 

Fig. 13 shows the mean prediction error for the power demand forecast without (blue) and 

with (orange) comparative day corresponding to formula (16). 
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Fig. 12. Networks for the power demand of workdays in winter 
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Fig. 13. Mean prediction errors for the power demand  

5. Conclusion 

The analysis and the forecast of the energy demand represent an essential part of the energy 
management for sustainable systems. The energy consumption of the delivery district of a 
power plant is influenced by seasonal data, climate parameters, and economical boundary 
conditions. Within this chapter the algorithm of the model building process was discussed 
including the energy data analysis and the selection of suitable forecast methods. It was 
shown that the quality of the demand forecast tools depends significantly on the availability 
of historical consumption data as well as on the knowledge about the main influence 
parameters on the energy consumption. The energy data management must provide 
information for the energy controlling including all activities of planning, operating, and 
supervising the generation and distribution process. A detailed knowledge of the energy 
demand in the delivery district is necessary to improve the efficiency of the power plant and 
to realize optimization potentials of the energy system. 
In this chapter the application of regression methods and of neural networks for the forecast of 
the power and heat demand for a cogeneration system was investigated. It was shown that 
similar methods can be applied to both forecast tasks. Generally the energy consumption data 
must be divided into seasonal clusters. For each of them the forecast models were developed. 
The heat demand could be calculated by relatively simple regression models based on the 
outside temperature as the main impact. Involving the temperature difference between two 
sequential days into the model improved the quality of the forecast.  
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Additionally feedforward networks were used with one layer of hidden neurons connected 
to all neurons of the input and output layer in order to calculate the forecast of the heat and 
power demand. The backpropagation method with momentum term and flat spot 
elimination was applied as learning rule. Neural networks using the coded time and the 
consumption measured in the previous week as inputs produced good forecast results for 
the power demand. Thus the quality of the power and heat forecast could be improved by 
using information of the 'near' past. 
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