
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



2 

Carbon Nanotubes Engineering 
Assisted by Natural Biopolymers 

Luhua Lu, Ying Hu, Chunrui Chang and Wei Chen 
i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences 

China 

1. Introduction 

For the application of carbon nanotubes (CNTs), there are many practical problems to be 
solved. Large scale as-produced CNT especially single-walled CNTs (SWCNTs) inevitably 

contain impurities that produced in their growth process (Huo, et al. 2008) As-produced 
SWCNTs normally are of different chirality (Kataura, et al. 1999) Untreated CNTs are of 
high surface area and align into big bundles for their strong Van Der Waals attraction. The 
high aspect ratio and strong attraction between CNTs further leads to the physically 
entanglement of CNT ropes. The strong aggregation of CNTs gives rise to a highly complex 
network makes their uniformly dispersion into other substances hard to be achieved 
(Mitchell, et al. 2002). Engineering CNTs thus need variety of technologies to achieve CNT 
purification, separation, dispersion, stabilization, alignment, functionalization and 
organization (Baughman, et al. 2002). Many physical and chemical approaches have been 
developed to achieve these goals since the discovery of CNTs (Tasis, et al. 2006). On the 
route to the engineering of CNTs, biopolymer covalently and noncovalently 
functionalization of CNTs has been found to be promising way in highly effective 
realization these technologies. Initial great progress on dispersion of CNTs (Barisci, et al. 
2004), CNT liquid crystal phase formation (Badaire, et al. 2005) and selective chiral SWCNTs 
enrichment (Zheng, et al. 2003) assisted by biopolymer DNA reveal that biopolymers are 
promising agents for high quality CNT materials preparation, which has soon attracted 
wide attentions on biopolymers assisted CNT engineering. Now widely obtainable, large 
scale production and low price agent polysaccharides have been found to be easier and 
commercially acceptable for achieving such goals. High concentration CNTs single 
dispersion and stabilization could be simply achieved by varieties of polysaccharides such 
as chitosan (Zhang, et al. 2007), gellan gum (Panhuis, et al. 2007), hydraulic acid (Moulton,et 
al. 2007) and etc. Physical purification of CNTs by chitosan funcitonalization has been 
approved to be easy processing and effective (Yang, et al. 2006). Aligning CNTs through 
liquid crystal phase of CNTs dispersed by polysaccharides has also been developed. The 
stable dispersed CNTs by biopolymers were further introduced into biomedical applications 
such as tissue engineering and drug delivery system, which broaden the application range 
of CNTs. For the bioactivity of biopolymers, their composites with CNTs provide excellent 
sensing performance. The biomimetic actuation based on CNT/biopolymer devices have 
also initially been shown to be of large and fast actuation displacement under low voltage 
electrical stimulation.  
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2. Supramolecular self-assembly of biopolymers onto CNT surface 

To engineering CNTs, such as dispersion CNTs into solution for further manipulation or 

preparing CNT composite materials, functionalization of CNTs is usually adopted. There 

are two approaches for CNT functionalization, covalent and noncovalent as illustrated in 

figure 1 (Hirsch, 2002). Prestine CNT surface could be chemically modified through 

oxidation and grafting processing or reversibly absorbing amphiphilic molecules. 

 

 

Fig. 1. Schematic illustration for the covalent end (1) and side wall (2) functionalization of 
CNTs by oxidation and grafting reaction and noncovalent (3) functionalization of CNTs by 
surface absorbing amphiphilic molecules. 

The covalent bond attaches functional groups on the side wall or end of CNTs to obtain 

desired functions. Covalent approach inevitably changes the intrinsic electrical, mechanical 

and thermal properties of CNTs, which are important for their variety of applications. 

However, the strong covalent bond between molecules and CNTs also has advantages in 

many aspects (Balasubramanian, et al. 2005; Dyke, et al. 2004; Banerjee, et al. 2005). For 

example, it could reinforce interfacial adhension between CNTs and composite matrix. 

Covalently functionalized CNTs could be used as stable nano-template for further 

supramolecular assemble of target molecules. Covalently functionalization of CNT could be 

controlled to adjust electrical performance of functionalized CNTs that may have higher 

sensitivity of target molecules.  

The noncovalent functionalization of CNTs based on the supramolecular chemistry theory 

(Lehn, 1985) studies the organization of molecules with CNTs through weak interactions 

that provide variety of functions without changing CNT properties. The weakly absorbed 

biopolymers could be removed by varying the solution environment, which favours the 

realization of CNT excellent electrical, mechanical, thermal and interfacial performances. 

The surpramolecular chemistry of CNTs for the noncovalent functionalization of CNT 

(Zhao, & Stoddart 2009) has thus been intensively studied for the CNT engineering. In this 
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field, of biopolymer noncovalent functionalization of CNT has attracted great attentions for 

their important roles in variety of CNT applications.  
Earlier than theoretical understanding the interaction mechanism between biopolymers and 
CNTs, helical crystallization of proteins on CNTs has been experimentally observed earlier 
in 1999 and attributed to order structure of hydrophobic CNT surface (Balavoine, et al. 
1999). Later researches have shown that CNTs are effective on reinforcing the crystallization 
of biopolymers such as bombyx mori silk, poly(L-lactide), poly(ε-caprolactone), 
polyhydroxyalkanoates and streptavidin. (Levi, et al. 2004; Ayutsede, et al. 2006; Yun, et al. 
2008; Wu, et al. 2006). To understand the mechanism of CNT induced biopolymer 
crystallization, FTIR online test method was adopted to analyze the influence of CNTs on 
the crystallization of biopolymer poly(L-Lactide) and reveal that CNT reinforced 
biopolymer crystallization is originated from surface induced biopolymer conformational 
order. (Hu, et al. 2009) A recent study also show that CNT could reinforce the piezoelectric 
actuation performance of regenerated cellulose while the reinforced crystalline is in 
agreement with it. (Yun, et al. 2007). 
The widely used polysaccharides amylose (Kim, et al. 2003), chitosan (Zhang, et al. 2007), 
hydraulic acid (Moulton, et al. 2007), gellan gum [Panhuis, et al. 2007] and cytlodextrin 
(Komatsu, et al. 2008) have been found to be helically wrapped on CNT surface. As has been 
shown in figure 2, the biopolymer chitosan helically wrapped on CNT surface, which favour 
CNT solubilisation in water. Some theoretical calculations prove the helical wrapping on 
CNTs is the optimal configuration for polymers of rigid molecular chains (Xie, et al. 2005; 
Gurevitch, et al. 2007). Recent experiment revealed that the absorption of biopolymer 
chitosan on CNT surface influence by the deacetylation degree of chitosan molecular chain 
(Iamsamai, et al. 2010). Low deacetylation degree provide more hydrophobic sections that 
favour the absorption of chitosan on CNT surface and results in better stability of CNT 
suspension in the experiment though high deacetylation degree provide higher electrostatic 
repulsive force that should favour the stabilization of CNTs as colloidal. This interesting 
solution behaviour of chitosan wrapped CNTs reveals that the interaction between 
biopolymer and CNT surface is more important for their stabilization than the traditional 
key issues that determine colloidal behaviours.  
 

     

Fig. 2. (A) Single helical and (B) double helical wrapped CNTs, scale bar 5 nm. 
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The interaction between DNA and CNT surface has been intensively studied (Johnson, et al. 

2010; Gao, et al. 2008; Shtogun, et al. 2007). DNA molecular chain composes of four bases 

adenine (A), cytosine (C), guanine (G), and thymine (T). They have been experimentally and 

theoretically approved to be of high affinity contact with CNT sidewalls. Very recent 

research compared the energy variation for the binding of four bases with CNT in water. 

The interactions of water-CNT, water-bases and base-CNT have been found to important for 

the binding free energy of the four bases with CNT in water separately. As a result the 

base’s affinity for CNT binding follows the trend G>A>T>C. Base–CNT interactions are 

dominated by π–π stacking interactions with solvent and entropic effects playing a minor. 

The sequence of DNA motifs further influences their absorption on CNT surface and their 

stability in water. 

3. Dispersion and stabilization of CNTs assisted by biopolymers 

The initially works on studying the cooperation of biopolymers with CNTs were to assist 

CNT dispersion (Kim, et al. 2003). To understand the dispersion and stabilization of CNTs 

in water by biopolymers, we should first study the interaction between CNTs and water for 

the assembly of biopolymer onto CNT surface is mostly achieved in water environment and 

the assembly indeed forms on the CNT-water interface of unpolar-polar interfacial 

inducement force. As we have mentioned above, pristine CNTs have the strong attendance 

to aggregate in water making their dispersion in water without surface treatment hard. In 

recent years there have been a lot of researches on understanding the mechanism of CNT 

aggregation in water. A typical molecular dynamic stimulation has theoretically attributed 

the aggregation of CNTs to the solvation interaction of polar water molecules around 

unpolar CNTs surface (Walther, et al. 2001). This solvation interaction causes the hydrogen 

atoms of water molecules point to the surface of CNTs, leading to higher orientation of 

water molecules around CNT surface than that in the bulk water. The orientated water 

molecules give a rise in the energy of those molecules around CNTs and force CNT 

aggregate into bundles to minimize the system energy rise. 

Some very initially works has been done to solve this problem by the chemical modification 

of CNT surface, transferring hydrophobic unpolar CNT surface into hydrophilic polar one. 

However, the chemical modification of CNT create large amount of defects on CNT surface, 

leading to the variation of intrinsic CNT electronic structure, which changes the electric 

performance of CNTs and limits the application of CNTs in variety of fields (Robinson, et al. 

2006). 

For comparison, physical approach that is called noncovalent functionalization has been 

found to be a promising method for the preservation of intrinsic CNT surface structure and 

their variety of properties. This approach was initially proposed in 2001 for the PVP assisted 

dispersion of CNT in water (O'Connell, et al. 2001). The supramolecular self assembly of 

small molecules such as lipid derivatives on CNT surface has been detailed studied in 2003 

(Richard, et al. 2003). The CNT-water interface direction the ordered structure of lipid 

derivatives onto CNT surface could lower the system energy. After that, non-covalent 

functionalization of CNTs by supramolecular self-assembly of biopolymers on CNT surface 

has been found to be of excellent effect for CNT dispersion. Gum Arabia, the ancient 

biopolymer dispersant was introduced to stabilize SWCNTs. The dispersion could be 
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concentrated into suspension of SWCNT concentration as high as 150 mg/mL, the highest 

concentration for SWCNTs (Bandyopadhyaya,et al. 2002). The Hyaluronic acid 

functionalized CNTs at high concentration of 10mg/mL shows anisotropic birefringence 

phenomenon, indicating the liquid crystal phase of biopolymer functionalized CNTs.  

Within all those biopolymers functionalized CNTs, Chitosan wrapped CNT is one of most 

important one for their potential application in variety of fields, such as drug delivery, 

tissue engineering, electrochemical sensing and actuation. Chitosan wrapped CNTs could be 

directly dispersed at concentration of 3mg/mL (Lynam, et al. 2007). However, chitosan 

wrapped CNT could only stabilized in acidic solution. In year 2007 Zhang et al. investigate 

solution behaviours of chitosan wrapped CNTs (Zhang, et al. 2007). To reveal the influence 

of electrostatic interaction on the stabilization of chitosan wrapped CNT, derivates of 

chitosan has been used as shown in figure 3. The groups that containing -NH2 and –COOH 

would only be charged in acidic and basic environment separately while the group 

CH2CHOHCH2CN(CH3)3+Cl- charges in the whole pH range.  

 

 

Fig. 3. Molecular structure of chitosan and its derivates 

The comparative characterization indicates that electrostatic repulsive force of the charged 
chitosan and its derivate molecular chains could stabilize their wrapped CNTs. The 
aggregation of chitosan and its derivate wrapped CNTs happens when they were 
discharged by changing the pH value of their suspension. When the pH value of suspension 
for chitosan wrapped CNTs is higher than 6.59, the -NH3+ group deprotonated into -NH2 
and precipitate could be observed. The CNTs functionalized by chitosan derivates that 
contains COOH group deprotonate in acidic environment of pH lower than 4.66 aggregate. 
The chitosan derivate containing group CH2CHOHCH2CN(CH3)3+Cl- show no aggregation 
in whole pH range. But the aggregation mechanism has not been fully understood. 
Amylase, which has very similar structure of chitosan and no charge group on its molecular 
chain, can also stabilize CNT in water. As has been mentioned above, the impact of 
deacelytation degree on CNT stabilization reveals the electrostatic force is not the dominant 
fact for chitosan wrapped CNT stabilization. Some research found that the ammonia group 
in chitosan molecular chain has strong affinity to CNT surface (Long, et al. 2008). Previous 
research has also shown that the interaction between chitosan and CNT are chiral 
dependant. Considering chitosan itself aggregates in water in the neutral and basic pH 
range while chitosan oligosaccharide, which has the same molecular structure of chitosan 
but shorter chain length, could be solubilized in neutral and basic solution, the molecular 
chain length should also has impact on chitosan wrapped CNT stabilization. Thus the full 
image of chitosan wrapped CNTs stabilization mechanism is still complicated and unclear. 
Further investigation is needed.  
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4. Purification and selective enrichment SWCNTs by biopolymers 

Commercially available CNTs large scale produced by either arc discharge or chemical 

vapor deposition methods inevitably contain carbonaceous impurities as shown in figure 4. 

Those impurities not only largely lower the performance of CNTs and their composite 

materials but also invalid the manipulation of CNTs as micro system devices. To remove 

those impurities, purification of CNTs has been studied for more than ten years. Though lots 

of chemical approach has been widely studied for multi-walled CNTs and few-walled 

CNTs, purification of SWCNTs is still a problem for the chemical durability of SWCNT is 

too weak to be remained when the carbonaceous impurity removed. 

 

 

Fig. 4. Scanning electron microscopic image for raw SWCNTs, scale bar 100 nm. 

Impurities and CNTs are of different elements, structure, size, density, which lead to their 

different chemical and colloidal behaviours. The surface properties of impurities should also 

be different from that of CNTs especially the interaction with biopolymers. In this aspect, 

biopolymers show incomparable efficiency. In year 2002, amylose functionalized SWCNTs 

could be purified for the better affinity of amylose to SWCNTs than carbonaceous 

impurities. (Star, et al. 2002). In our experiment, as shown in figure 5, we also found that 

gellan gum functionalized SWCNTs could also be separated from carbonaceous impurities 

by centrifuging their co-suspension (Lu, & Chen, 2010). 

 

 

Fig. 5. Purification of CNTs by the stonger affinity of biopolymer onto CNTs (the upper 
suspended units) than that of impurities (the bottom aggregated units)  
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Beside the removal of carbonaceous impurity, further purification of SWCNTs requires 

sorting SWCNTs of different chiralities. Biopolymers are not only capable of separating 

SWCNT from carbonaceous impurities but also show high efficiency on selective enriching 

specific chiral SWCNTs. As we know that metallic and semiconducting SWNTs are different 

in several aspects, in addition to their obvious differences in electrical conductivity, 

including static polarizability and surface characteristics, chemical reactivity, and so forth. 

They are also associated with SWNTs of different diameters.  

In year 2003 Zheng et al found that anionic exchange column could separate ssDNA 
wrapped metallic SWCNTs from that of semiconductive ones (Zheng, et al. 2003). It was 
attributed to the different polarizability of metallic and semiconductor SWCNTs, which 
results in their different interaction of negative charged ssDNA that wrapped on them. 
Further detailed design of ssDNA sequence, selective harvesting of 12 major single-chirality 
SWCNT could be achieved through ion-exchange chromatography (Tu, et al. 2009). 
Separation of chiral SWCNTs could also be achieved by polysaccharides. Chitosan was 
found to have ability for the enrichment of small-diameter semiconducting SWNTs by 
preserve the as-dispersed suspension overnight without centrifugation or any other physical 
treatment (Yang, 2006). After that, another polysaccharide agarose were introduced to 
separate metallic and semiconducting SWCNTs (Tanaka, et al. 2009; Tanaka, December 
2009; Tanaka, et al. 2010; Liu, et al. 2010). The suspension of single dispersed SWCNTs by 
surfactant SDS was mixed with agarose gel for gelation. The gel containing SDS-dispersed 
SWCNTs was frozen, thawed, and squeezed to yield a solution of enriched (70%) metallic 
SWCNTs. The semiconducting SWCNTs (95%) were left in the gel (Tanaka, & Suga, 2009). 
The same separation was later demonstrated on column based gel chromatography (Tanaka, 
& Nishide, 2009). The mechanism for agarose assisted separation of chiral SWCNTs is 
unclear. Some very recent involvement found that the separation effect originated from two 
main factors, the unique interaction of semiconductor SWCNTs with agarose gel and 
exfoliation of SDS molecules from SDS functionalized SWNT entities which may cause the 
precipitation of semiconductor SWCNTs in the gel (Li, et al. 2010). Thus understanding the 
role of SDS in the separation, it is possible to further optimize the purification of each 
fraction and develop a more effective and low-cost separation strategy. This method is more 
amenable to scaling up than the density gradient ultracentrifugation or ion-exchange 
chromatography.  

5. Formation of CNT liquid crystal phase assisted by biopolymers 

Single CNT is anisotropic unit for the high aspect ratio of cylindrical graphene 
nanostructure. The excellent performance such as electrical, mechanical and thermal 
performance of CNTs refers to the performance in axis direction. However, the bulk 
materials of CNTs show no anisotropic performance for their disordered structure. Thus the 
alignment of CNTs is of great value to obtain high performance CNT bulk materials. 
Though aligned CNT arrays could be obtained by CVD method, they are normally 
perpendicular to that of membrane surface. And a more important fact is that the large-scale 
macroscopic membrane is hard to obtain, which seriously limits the realization of their full 
potential. In recent years, aligning CNTs by processing disordered CNTs (Jin, et al. 1998; 
Safadi, et al. 2002; De Heer, et al. 1995, Casavant, 2003; Vigolo, et al. 2000) with external 
forces, such as electrical force, mechanical force, and liquid flow, has been widely studied. In 
this field, we have (Chen, et al. 2005) explored the method of aligning CNTs in polyurethane 
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by solvent-polymer interaction. Using this method, the Young’s modulus of composite 
material has been obviously increased. But the weight fraction of CNTs in the polymer 
matrix is so low that the anisotropic performances of CNTs are still not well embodied.  
 

 

Fig. 6. Schematic illustration of CNT phase transition from isotropic (left) to anisotropic 
(right) phase 

Since the discovery of CNT alignment in liquid crystal phase in 2003 (Song, et al. 2003), the 
formation of CNTs liquid crystal phase has been extensively studied. CNT liquid crystal is 
lytropic, which caused by the volume effect of high aspect ratio CNTs as illustrated in figure 
6 (Zhang, et al. 2006). To obtain CNT liquid crystal phase, high CNT concentration is needed 
and has been obtained by dispersion CNTs in super strong acid solution (Davis, et al. 2009; 
Davis, et al. 2004; Rai, et al. 2006). However, those solutions are not suitable for composite 
material preparation, which the mild solution processing is required. 
For biopolymer could disperse CNT at high concentration, the anisotropic birefringence 
phenomenon of liquid crystal phase was earlier found in 2005 for DNA stablized CNTs 
(Badaire, et al. 2005). Later the spontaneous nematic phase separation of CNTs stabilized in 
aqueous biological hyaluronic acid solutions was also observed (Moulton, et al. 2007).The 
initially obtained SWNT dispersion is isotropic single-phase. Over time, the uniform isotropic 
phase separated into dispersions containing birefringent nematic domains in equilibrium with 
an isotropic phase. The time required for phase separation to occur depends on the 
concentration of SWNT and hyaluronic acid. The attractive interactions between the SWNT 
and HA shifts the onset of the phase separation toward lower concentration. This phase 
separation is accompanied by an increase in the dispersion viscosity with this increase 
qualitatively matching the degree of phase separation. The further development in 2008 has 
shown that mechanical shearing could uniformly align lyotropic nematic aqueous suspensions 
in thin cells (Zamora-Ledezma, et al. 2008) by drying the nematic CNT suspension, 
homogeneous anisotropic CNT thin films can be prepared. To quantitatively estimate the 
dichroic ratio of CNTs, optical transmission between parallel or crossed polarizers was 
characterized and analyzed. The order parameter for the anisotropic thin film was measured 
using polarized Raman spectroscopy and found to be quite weak. It was attributed to the 
possible entanglement of the CNTs and the intrinsic viscoelastic behavior of the CNT 
suspensions. In our very recent work, we found that the purity of CNTs is crucially important 
for CNT alignment (Lu, & Chen, 2010). Highly purified CNTs showed dominant nematic 
phase of domains as large as hundred micrometers as shown in figure 7a. The mechanical 
shearing treatment for the CNT liquid crystal phase could further obtain wavy aligned CNTs 
of typical band structure of polarizing microscope image as shown in figure 7b. The ordered 
parameter for this aligned was found to be as high as 0.88. The anisotropic electrical 
performance was characterized. The calculated resistivity in the parallel direction is as low as 
1.477 ×10-4 Ωm, about one fourteenth of resistance in perpendicular direction.  
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Fig. 7. Polarizing bireflection microscopic images for solid state composite membrane 
obtained from (a) unsheared and (b) sheared condensed gellan gum/CNT suspension 
between cross polarizers (scale bar 200 μm) 

6. Biopolymer/CNT hybrids for drug delivery 

CNTs especially SWCNTs are of surface area as high as 2600 m2/g, which is very suitable to 
be drug carrier for biomedical applications. Alberto Bianco initially introduced CNT as a 
template for presenting bioactive peptides to the immune system (Pantarotto, et al. 2003). B-
cell epitope of the foot-and mouth disease virus (FMDV) was covalently attached to the 
amine groups functionalized CNTs. As a result, the peptides around the CNT adopt the 
appropriate secondary structure due to the recognition by specific monoclonal and 
polyclonal antibodies. The immunogenic features of peptide–CNT conjugates were 
subsequently assessed in vivo (Pantarotto, et al. 2003). Immunisation of mice with FMDV 
peptide–nanotube conjugates elicited high antibody responses as compared with the free 
peptide. These antibodies were peptide-specific since antibodies against CNT were not 
detected. In addition, the antibodies displayed virus-neutralising ability. The use of CNT as 
potential novel vaccine delivery tools was validated by interaction with the complement 
(Salvador-Morales, et al. 2006). The complement is that part of the human immune system 
composed of a series of proteins responsible for recognising, opsonising, clearing and killing 
pathogens, apoptotic or necrotic cells and foreign materials. Pristine CNT activate the 
complement following both the classical and the alternative way by selective adsorption of 
some of its proteins. Because complement activation is also involved in immune response to 
antigens, this might support the enhancement of antibody response following immunisation 
with peptide–CNT conjugates. 
Kam et al. initially tried to deliver ssRNA into cells through functionalized CNTs in year 
2005 (Kam, et al. 2005). Later, researchers have found that functionalized CNTs can cross the 
cell membrane (Martin, et al. 2003; Pantarotto, et al. 2004). Carbon nanotubes can be used to 
facilitate delivery of DNA or any bioactive agent to cells. While they can be functionalized to 
attach either electrostatically or covalently to DNA and RNA, the remaining 
unfunctionalized and hydrophobic portions of the nanotubes can be attracted to the 
hydrophobic regions of the cells. Biotin functionalized carbon nanotubes were bound to 
fluorescent dyes were capable of intercellular transport of fluorescent streptavidin (Kam, et 
al. 2004). Besides heterogeneous functionalization, carbon nanotubes could provide 
localized delivery of therapeutic agents triggered by external sources. Previously, it was 
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shown that carbon nanotubes absorb NIR light at wavelengths that are optically transparent 
to native tissue. For example, irradiation with a 880nm laser pulses can induce local heating 
of SWNTs in vitro thereby releasing its molecular cargo without harming cells or can be 
internalized within a cancer cell and with sufficient heating kill the cell (Kam, et al. 2005). 
This could allow selective delivery of drugs to certain cell types, helping to control the 
distribution of such cells throughout the engineered tissue. Modulated release of 
dexamethasone from chitosan/CNT composite has been show to be faster than traditional 
method (Naficy, et al. 2009). 

7. Biopolymer/CNT composite as tissue scaffolds 

CNTs are famous filler for reinforcing the mechanical performance of polymer matrix. Thus 
the very important aspect in biomedical application of CNTs is for structural support. By 
dispersing a small fraction of CNTs into a polymer, significant improvements in the 
mechanical strength of the composite have been observed. For example, MWCNTs blended 
with chitosan showed significant improvement in mechanical properties compared with 

those of chitosan (Wang, et al. 2005). The composite composed of 2wt% MWNT shown more 
than doubled Young’s modulus and tensile strength compared to neat chitosan. Tuning of 
the mechanical properties of the polymer can be adjusted depending on CNT loading and 
with the need of very small amounts may counterbalance their high structure stability. In 
vitro work has shown that several different cells types have been successfully grown on 
CNT/biopolymer composites. MacDonald found that blends of SWNT with collagen 
support smooth muscle cell growth (MacDonald, et al. 2005). L929 mouse fibroblasts have 
been successfully grown on CNT scaffolds (Correa-Duarte, et al. 2004) Abarrategi et al. 
demonstrates the use of scaffolds composed of a major fraction of MWCNT (up to 89wt%) 
and a minor one of chitosan, and with a well-defined microchannel porous structure as 
biocompatible and biodegradable supports for culture growth. Cell adhesion, viability and 
proliferation onto the external surface of MWCNT/CHI scaffolds with C2C12 cell line 
(myoblastic mouse cell), which is a multipotent cell line able to differentiate towards 
different phenotypes under the action of some chemical or biological factors, has been 
evaluated in vitro and quantified by MTT assays. The evolution of the C2C12 cell line 
towards an osteoblastic lineage in presence of the recombinant human bone morphogenetic 
protein-2 (rhBMP-2) has also been studied both in vitro (e.g., following the appearance of 
alkaline phosphatase activity) and in vivo (e.g., by implantation of MWCNT/chitosan 
scaffolds adsorbed with rhBMP-2 in muscle tissue and evaluation of the ectopic formation of 
bone tissue) (Abarrategi, et al. 2008). 

8. Biopolymer/CNT composite sensor 

Tracking biological behaviours of cells, organs, blood and etc are of great value for the 
development of biomedical engineering. CNTs are of high. To monitor engineered tissues, 
we could use implantable sensors capable of relaying information extracorporeally. Such a 
sensor would provide real time data related to the physiological relevant parameters such as 
pH, pO2, and glucose levels. CNT/biopolymer composites are of excellent mechanical 
performance as has been mentioned above. The good biocompatibility with high electrical 
and electrochemical sensitivity is advantages for implantable biosensor application. The 
very initial research found that noncovalently functionalzed CNTs could detect serum 

www.intechopen.com



 
Carbon Nanotubes Engineering Assisted by Natural Biopolymers 

 

25 

proteins, including disease markers, autoantibodies, and antibodies. (Chen, et al. 2003) 
High-density nanotube device microarrays have been synthesized and fabricated for 
proteomics applications, aimed at detecting large numbers of different proteins inva 
multiplex fashion by using purely electrical transducers. These arrays are attractive because 
no labelling is required and all aspects of the assay can be carried out in solution phase. The 
bionanomultilayer biosensor of CNTs and horseradish peroxidase was prepared by layer-
by-layer assembly and can be successfully applied to detect hydrogen peroxide, which 
presented a linear response for hydrogen peroxide from 0.4 to 12.0 μM with a detection limit 
of 0.08 μM. The MWNTs in the biosensor provided a suitable microenvironment to retain 
HRP activity and acted as a transducer for improving the electron transfer and amplifying 
the electrochemical signal of the product of the enzymatic reaction exhibited a fast, sensitive 
and stable response. (Liu, et al. 2008) DNA aptamer is highly selective and has been used as 
molecular recognition elements to functionalize CNT preparing filed effect transistor, which 
has shown high effect detecting two important enzymes elastase and thrombin. The lowest 
detection limit of the sensor used in their work is around 10 nM. For the selective absorption 
of DNA on to CNT surface, the supramolecular structure of DNA and CNT could be made 
used for sensing DNA by it modified CNT electronic properties. The developed fully 
electronic DNA sensors based on CNT field effect devices has achieved and found to be a 
effective approach for further understanding of DNA/CNT interaction mechanism. (Tang, 
et al. 2006) 
An important composite biosensor is based on Chitosan/CNT. Chitosan is the only 
cationic biopolymer. For the solution sensitivity of positive charged amino groups in the 
chitosan molecular chain, it has variety important biological functions in tissue 
engineering, immune and drug delivery. (Rinaudo, et al. 2006) Chitosan/CNT composite 
material has been found to be of good biocompatibility for neutral cells growth. 
(Thompson, et al. 2009) Their suspension coated on glass carbon substrate could detect 
NaDH in a fast response time (t90%<5 s). The susceptibility of chitosan to chemical 
modifications has been made used for covalently immobilizing glucose dehydrogenase 
(GDH) in the chitosan/CNT films using glutaric dialdehyde (GDI). The stability and 
sensitivity of the GC/CNT/Chitosan/GDI/GDH biosensor allowed for the interference-free 
determination of glucose in the physiological matrix (urine). In pH 7.40 phosphate buffer 
solutions, linear least-squares calibration plots over the range 5-300 μM glucose (10 points) 
had slopes 80 mA M-1cm-2 and correlation coefficient 0.996. Its detection limit was 3 μM 
glucose. (Zhang, et al. 2004) A composite of MWCNTs-chitosan was used as a matrix for 
entrapment of lactate dehydrogenase onto a glassy carbon electrode in order to fabricate 
amperometric biosensor. (Tsai, et al. 2007) CNT-chitosan-lactate dehydrogenase 
nanobiocomposite film exhibits the abilities to raise the current responses, to decrease the 
electrooxidation potential of ǃ-nicotinamide adenine dinucleotide and to prevent the 
electrode surface fouling. The optimized biosensor for the determination of lactate shows a 
sensitivity of 0.0083 A M−1 cm−2 and a response time of about 3 s. The proposed biosensor 
retained 65% of its original response after 7 days. The immobilization of acetylcholinesterase 
(AChE) on CNTs/chitosan composite was also proposed. (Du, et al. 2007) Based on the 
inhibition of organophosphorous insecticide to the enzymatic activity of AChE, using 
triazophos as a model compound, the conditions for detection of the insecticide were 
explored. The inhibition of triazophos was proportional to its concentration in two ranges, 
from 0.03 to 7.8 μM and 7.8 to 32 μM with a detection limit of 0.01 μM. A 95% reactivation of 
the inhibited AChE could be regenerated for using pralidoxime iodide within 8 min. The 
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constructed biosensor processing prominent characteristics and performance such as good 
precision and reproducibility, acceptable stability and accuracy, fast response and low 
detection limit has potential application in the characterization of enzyme inhibitors and 
detection of toxic compounds against to enzyme. 

9. Biopolymer/CNT composite actuator 

Biopolymer/CNT composite actuators were initially found to play important role for smart 
drug delivery. A novel gelatin-CNTs hybrid hydrogel was synthesized. [Li, December 2003] 
Cooperation with CNT could maintain the stability of the hybrid hydrogel without cross-
linking at 37.8 oC. It have also been noticed that the novel hybrid hydrogel with or without 
crosslinking can be used in protein separating. Silk fibroin in the sol state can interact with 
nanotubes through hydrophobic interactions. (Kim, et al. 2009) The pH-sensitive properties 
of the CNTs dispersed with silk fibroin has been investigated and believed to have potential 
value for the preparation of novel biomaterials for cancer detection and treatment. 
Composite gel of chitosan/CNT has also been found to be of improved actuation 
performance under pH and electrical field stimulation. (Ozarkar, et al. 2008) Modulated 
release of dexamethasone from their composite has been show to be faster than traditional 
method (Naficy, et al. 2009). Electrochemical investigation has shown that the 
chitosan/CNT composite electrodes can foster prolific L929 cell growth and stimulate the 
cells growth. (Whitten, et al. 2007; Lynam, et al. 2009) In the history of piezoelectric material 
development, the first discovered piezoelectric polymer is biopolymer cellulose by testing 
the piezoelectricity of wood. (Fukada, et al. 1955) Lately, the piezoelectricity has also been 
found in the invertebrate exoskeletons, including crap shell, and bone. (Zilberstein, et al. 
1972; Yamashiro, et al. 1989; Fukuda, et al. 1957) Molecular level research approved that the 
those piezoelectricity comes from biopolymers such chitin, collagen, DNA, which reveals 
that piezoelectricity is a fundamental properties of biological tissues and may comes from 
the directed dipole of chemical bond in their ordered structure. (Fukada, 1964 &1975; Ando, 
1976; Shamos, 1967). A recent study also show that CNT could reinforce the piezoelectric 
actuation performance of regenerated cellulose while the reinforced crystalline is in 
agreement with it. (Yun, et al. 2007) For the structure of biopolymer near CNT surface is 
directed, single units of biopolymer/CNT at nanoscale could be obtained, which could be 
further developed as important electromechanical actuator and sensor as nano-electro-
mechanical-system for implant biomedical devices. As has been mentioned above, chitosan 
is a mutifuctional biopolymer involved in variety of biological tissues’ formation and 
functions. It has been widely studied not only as sensor but also actuator for variety of 
usages.  
Because chitosan is a very effective agent for stabilization of CNTs, we have initially 
constructed a high speed, highly stable, full solid chitosan/CNT bimorph electrochemical 
composite actuator. (Lu, & Chen, 2010) For the high weight fraction of CNTs in uniform 
chitosan/CNT composite electrode, the conductivity of composite electrode could reach as 
high as 34.25 S.cm-1, which was made use for reinforcing the electrochemical charging and 
discharging ability of bimorph structure, as illustrated in figure 8. The bending actuation 
performance of 15mm long composite strip show 2 mm/s high speed actuation performance 
under a 3 V low voltage stimulation. This performance is higher than most of traditional 
IPMC actuator strip while no heavy metal element is needed, which is important for 
biomedical and harptic interface applications. 
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Fig. 8. Schematic illustration for the bending actuation mechanism of bimorph CNT 
composite, the applied voltage redistribute the cations and anions from the raw state (left) to 
a new balanced state (right). 

CNTs are of excellent electrical conductivity, thermal stability and conductivity. Their 

temperature could be periodically changed in wide frequency range by electrothermal 

energy transition under periodical electrical current control. CNTs temperature waving 

leads to the countering temperature waving of a very thin gas layer surrounded them, 

which can be achieved by the high frequency range thermal variation of CNTs for the low 

thermal conductivity of gas induced thermal energy accumulation in very short time. In the 

thermal actuation system, the periodical thermal accumulation induced equivalent adiabatic 

expansion and shrinkage of surrounded thin layer gas medium. This character gives birth to 

the nanoscale loudspeaker. (Xiao, et al. 2008) On realized that by replacing gas medium with 

chitosan that helically wrapped on CNTs, we could obtain an electrothermal stimulated 

macroscopic composite actuator. The electrothermal actuation performance of 

chitosan/CNT composite has thus been detailed studied (Hu, et al. 2010). Biopolymer 

chitosan functionalized CNTs uniformly distributed as a network in bulk material reversible 

actuating polymer matrix in the frequency lower than 10 Hz, which is close to organisms’ 

behaviors. The cyclic test shows that the reversible electrothermal actuation could be 

achieved for more than 3 thousand times. It is believed to be of great value for not only high 

sensitivity engineering actuation materials but also electrical current controllable drug 

release system that attached to skin. 

10. Conclusion 

In summary, the latest ten year progress on key topics for CNT engineering assisted by 

biopolymers has been reviewed. The dispersion, purification and specific chiral separation 

for CNTs assisted by biopolymers have been successful achieved. Moreover, their 

cooperation broaden the application range of CNTs into biomedical fields especially drug 

delivery and tissue engineering. The cooperation of biopolymers with CNTs provides 

impresive sensing and actuation performances that traditional materials can’t reach. 

Varieties of technologies for biopolymer assisted CNTs engineering have been developed 

and thus belived to be of great potential for further applications.  
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