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1. Introduction 

Linear chromosome ends are capped with nucleoprotein complexes called telomeres. 
Telomeres are essential for the integrity of chromosomes, and loss of the capping function 
caused by telomere shortening or deficiency of a capping protein leads to detrimental 
consequences, including the formation of abnormal chromosomes, permanent cell cycle 
arrest (cellular senescence), and cell death (apoptosis). Telomeres are thought to play a 
major role in preventing normal chromosome ends from being recognized and processed as 
DNA double-strand breaks (DSBs). 
The replication of linear eukaryotic chromosomes suffers from an intrinsic problem called 
the “end-replication problem”, which in most cells is solved by the specialized enzyme 
telomerase. However, this telomerase-dependent mechanism is not the only solution to the 
end-replication problem in eukaryotic cells: a recombination-mediated mechanism has been 
found to participate in the maintenance of telomeres in several types of cells, including 
telomerase-defective yeast mutants, some immortalized tumor cells, and embryonic stem 
cells. Thus, it is now becoming clear that the regulation of telomere replication impacts on 
development and disease in higher eukaryotes. 
In this chapter, we highlight recent topics in telomere biology, notably the regulation of 
telomere replication and the response to telomere dysfunction. We focus on the molecular 
regulation of telomere replication during both the mitotic cell cycle and development, and 
discuss cellular responses to defects in telomere replication and their relationships with 
human diseases. 

2. The early days of telomere research 

The physiological importance of the telomere for chromosome maintenance has been known 
since the 1920s, when the abnormal behavior of chromosomes lacking telomeres was 
described by two prominent cytogeneticists, Muller and Mclintock (Muller, 1938; Mclintock, 
1941). Meanwhile, the significance of the telomere as a replication machinery of linear 
chromosomes became clear after the mechanism of DNA replication at the biochemical level 
was explained, around 1970. That the telomere solves the “end-replication problem”—the 
inability of the conventional DNA replication machinery to completely copy the ends of 
linear DNA—was independently proposed by Watson (1972) and Olovnikov (1973). 
However, the mechanism involved was still elusive at that time.  
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3. The structure of telomeric DNA 

Various models to explain the solution of the end-replication problem in eukaryotic 
chromosomes were proposed in the 1970s and 1980s, but determination of the structure of 
the telomere and sequence of telomeric DNA sequence was necessary to determine which 
model was correct. Using the ciliate Tetrahymena thermophila, Blackburn and Gall (1978) 
found that the terminal portion of minichromosomes consisted of simple, tandem repeats of 
short DNA sequences (TTGGGG/AACCCC). Later, it was shown that similar sequences, 
with a signature of tandem repeats containing a cluster of G residues, were commonly 
found at the chromosomal termini in most eukaryotes. 
The functional importance of the repeated sequence was proved in yeast by Szostak and 
Blackburn (1982). Usually, yeast plasmids replicate in a circular form; linearized plasmids 
cannot be maintained stably. However, when the terminal repeats of Tetrahymena were 
ligated to each end of a linear yeast plasmid, it was able to replicate in a linear form. This 
result indicated that the terminal fragments served a conserved function to protect the ends 
of linear DNA.  
The G-rich strand of the telomere repeat is oriented 5’ to 3’ toward the chromosome 

terminus. Telomeric DNA consists of a double-stranded region of telomeric repeats, which 

terminates as a 3’ single-stranded overhang called the “G-overhang” (Wright et al., 1997; 

McElligott & Welllinger, 1997). The conserved nature of telomeric repeats, both as double-

stranded DNA and single-stranded G-overhangs, is critical for the recruitment of proteins 

involved in the formation and function of telomeres.  

Because of its specific sequence, telomeric DNA displays unusual properties. Single-

stranded G-overhangs have the intrinsic ability to form a specialized structure called the “G-

quadruplex” at physiological salt concentrations (Williamson et al., 1989). The G-

quadruplex is a four-stranded helical structure composed of stacks of G-quartets that arise 

from the association of four guanines in a cyclic hydrogen-bonding arrangement. The 

existence of G-quadruplexes at telomeres has been confirmed in vivo, and their functional 

roles have begun to be explained (Smith et al., 2011). 

The G-overhang also contributes to formation of a higher-order structure: the t-loop. The t-

loop was first identified by electron microscopic analysis of in vivo-cross-linked human 

telomeric DNA, which was formed by the insertion of the G-overhang into the double-

stranded region of telomeric DNA (Griffith et al., 1999). Subsequently, t-loop structures have 

been found in telomeres in other organisms, suggesting that it is the conserved feature of 

telomere structure.  

4. The discovery of telomerase 

The solution of the end-replication problem by the telomere was confirmed by the discovery of 
telomerase by Greider and Blackburn (1985). Telomerase was identified in Tetrahymena as a 
specialized enzyme that adds the telomeric G-rich sequence to the end of linear DNA. The 
addition of telomeric DNA by telomerase explained how the loss of terminal sequences caused 
by normal semi-conservative replication is counteracted. Telomerase is inactive in adult 
human cells, and telomere length gradually decreases during cellular senescence (de Lange et 
al., 1990). By contrast, telomerase is activated after immortalization (Counter et al., 1992).  
The telomerase enzyme was co-purified with an RNA moiety, telomerase RNA (TERC), 
which specifies the sequence of telomeric repeats (Yu et al., 1990). Its catalytic subunit, 
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identified by genetic screening in yeast (Lendvay et al., 1996) and biochemical purification 
from the ciliate Euplotes aediculatus (Lingner et al., 1996), contains the conserved motif for 
reverse transcriptase, and it was thus termed telomerase reverse transcriptase (TERT). 
Forced expression of TERT in mortal human cells can bypass senescence (Bodnar et al., 
1998), proving that replicative senescence is caused by lack of TERT expression. 
Other telomerase-associated proteins have been described. They are thought to be involved 
in the biogenesis of telomerase or to regulate the recruitment of telomerase to chromosome 
ends. For example, Est1 in budding yeast was identified as a protein whose deficiency 
reduced telomere length and cell viability after successive rounds of division (Lundblad & 
Szostak, 1989), and is now known to be involved in the loading of telomerase to telomeric 
DNA (Taggart et al., 2002).  

5. Components of the telomere 

5.1 Telomere binding proteins and the protein-counting model for telomere length 
control 

In both mammals and yeast, telomerase-positive cells maintain telomeres at a constant 
length. Newly formed short telomeres are elongated such that they reach the length that is 
characteristic of the particular cell type, while over-elongated telomeres shorten until they 
reach the normal length (Negrini et al., 2007; Marcand et al., 1999). These observations 
indicate that telomerase activity is regulated at individual ends, and is regulated so as to 
counteract the loss of telomeric repeats due to the end-replication problem. Recent studies 
have elucidated the regulatory mechanism that ensures length homeostasis at every 
telomeric end: the protein complex that binds at double-stranded telomeric DNA exerts an 
inhibitory effect on telomerase activity. 
In budding yeast, the telomere dsDNA-binding protein Rap1 serves to limit telomere length: 
the number of repeats at an individual telomere was reduced when hybrid proteins 
containing Rap1 were targeted there by a heterologous DNA-binding domain (Marcand et 
al., 1997). Through its C-terminal domain, Rap1 interacts with two proteins, Rif1 and Rif2. 
These two proteins act as telomerase inhibitors, andloss of either protein leads to telomere 
over-elongation (Hardy et al., 1992; Wotton and Shore, 1997). Thus, a model has been 
proposed to explain the regulation of telomere length: longer telomeres carrying numerous 
Rap1 binding sites, leading to the increased binding of telomerase inhibitors, which repress 
telomerase-dependent telomere elongation. Telomere length declines progressively with 
each replication cycle, causing the loss of telomere inhibitors at the ends of telomeres, 
allowing telomere repeat number to be restored by the action of telomerase. Consistent with 
this model, telomerase is not active at each telomere during every replication cycle, but is 
activated when the length of the repeat tract is reduced to a threshold level as a result of 
successive rounds of replication (Teixeira et al., 2004).  
In fission yeast, the double-stranded DNA-binding protein Taz1 recruits Rif1 and Rap1 
(Kanoh & Ishikawa, 2001; Chikashige & Hiraoka, 2001). Rap1 does not interact directly with 
Rif1 but, instead, interacts with Poz1, which serves as a negative regulator of telomere 
length (Miyoshi et al., 2008). In mammals, TRF1 and TRF2 bind to double-stranded 
telomeric DNA and exert cis-inhibitory effects on telomerase activity (Ancelin et al., 2002). 
They also recruit other proteins to assemble the six-protein shelterin complex 
(TRF1/TRF2/RAP1/TIN2/TPP1/POT1). All the components of shelterin have been shown 
to act as negative regulators of telomerase (Smogorzewska & de Lange, 2004).. 
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5.2 The CST complex  

The proteins directly bound to the very ends of chromosomes are not only essential for 
protecting telomeres but are also involved in recruiting telomerase to chromosomes. A 
budding yeast cdc13 mutant, originally isolated as a cell division cycle mutant, displays G2 
arrest after transfer to the restrictive temperature (Hartwell et al., 1973). Cdc13 forms a 
complex with Stn1 and Ten1 in vivo (Grandin et al., 1997; Grandin et al., 2001). Each 
component of the Cdc13-Stn1-Ten1 heterotrimeric complex (CST complex) has a single-
stranded DNA binding motif, the OB-fold domain (Mitton-Fry et al., 2002). As a result, CST 
has a strong affinity for single stranded telomeric DNA, and thus localizes to the very ends 
of chromosomes (Taggart et al., 2002). Based on structural and functional similarities, CST 
has been proposed to be a telomere-specific replication protein A (RPA)-like complex (Gao 
et al., 2007). Cell cycle arrest in the cdc13 mutant is due to loss of telomere protection: when 
CST function is disrupted, capping is dysfunctional and chromosome ends suffer the same 
fate as DSBs (Garvik et al., 1995). Moreover, the CST complex contributes to telomere 
replication by directly interacting with the telomerase-associated protein Est1 and DNA 
polymerase ┙ (Qi and Zakian, 2000; Grossi et al., 2004). Cdc13 is phosphorylated at multiple 
sites by Cdk and Tel1 kinases (Li et al., 2009; Tseng et al., 2006). These modifications are 
thought to be important for recruitment of Est1 and telomerase to telomeres. 
Although the organization of DNA ends is well conserved, mammalian telomere ends are 
primarily protected by a Pot1-Tpp1 complex, part of the larger shelterin complex (Wang et 
al., 2007). Components of shelterin have also been found in fission yeast and plants 
(Baumann & Cech, 2001; Miyoshi et al., 2008; Shakirov et al., 2005). Budding yeast CST and 
shelterin components do not have sequence similarity, suggesting that budding yeast may 
have a unique mode of telomere capping. However, recent studies have revealed that 
mammals and plants have Stn1 and Ten1 homologs, and that the two proteins form a 
complex with another protein called Ctc1 (Miyake et al., 2009; Surovtseva et al.,  2009). The 
Ctc1-Stn1-Ten1 heterotrimeric complex associates with single-stranded DNA but with no 
sequence specificity. Human Ctc1 and Stn1 have been characterized as proteins that 
stimulate DNA polymerase ┙ activity (Casteel et al., 2009) and appear to play a role in 
replication of “difficult” sites, including telomeric repeats.  
 

 

Fig. 1. Telomere DNA structure and the binding proteins in model organisms 
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5.3 Proteins involved in telomere replication 
5.3.1 DNA repair proteins 

One critical function of the telomere is assumed to be the prevention of normal chromosome 

ends being recognized as a damaged DNA ends. This is mediated by the formation of a 

specialized nucleoprotein complex. Paradoxically, however, telomere length is reduced by 

mutations in DSB-detection machineries such as Tel1 and the MRX (Mre11-Rad50-Xrs2) 

complex, indicating that proteins involved in the recognition and repair of DNA damage are 

important for telomere homeostasis (Greenwell et al., 1995; Nugent et al., 1998) . Epistasis 

analysis has established that MRX and Tel1 act in the telomerase pathway of telomere 

maintenance (Ritchie & Petes, 2000), and that Mre11 and Tel1 are required for the 

recruitment of telomerase to telomeres (Goudsouzian et al., 2006). Therefore, these proteins 

are involved in telomere length control as components of the telomerase-dependent 

telomere elongation pathway. 

5.3.2 DNA polymerases 

A DNA polymerase α/primase complex is responsible for initiating de novo lagging strand 

DNA synthesis. In budding yeast, mutations in Pol┙ lead to telomerase-dependent telomere 

elongation and a telomerase-independent increase in G-overhang length during the S phase 

(Adams et al., 1996; Adams Martin et al., 2000). Moreover, Polα is essential for telomerase-

dependent addition of telomeric DNA to DSBs (Diede & Gottschling, 1999). 

The Pol┙ complex physically interacts with the CST complex in budding yeast, while an 

analogous association between the lagging strand replication machinery and telomerase has 

been observed in ciliate and fission yeast. Pol┙ is also implicated in telomere replication in 

higher eukaryotes: G-overhang length is increased in a mouse cell line with a temperature-

sensitive Pol┙ allele (Nakamura et al., 2005). As a mutation in replication protein C was also 

shown to lead to telomere elongation (Adams et al., 1996), it has been suggested that 

switching from polymerase ┙ to replication factor C during lagging strand synthesis is 

critical for the regulation of telomerase activity. 

5.3.3 Replication protein A  

Replication protein A (RPA) is a heterotrimeric complex that binds to and stabilizes single-

stranded DNA intermediates produced during various DNA metabolic processes, including 

DNA replication. RPA localizes to telomeres during the S phase (Schramke et al., 2004; 

Takata et al., 2005). Yeast cells harboring an RPA mutation were shown to have shortened 

telomeres (Ono et al., 2003).  

5.3.4 DNA helicase 

Telomeric DNA has the specialized structure described above, which may affect the 

progression of replication forks at the locus. Indeed, replication forks stall or pause at 

telomeres in yeast and human cells (Ivessa et al., 2002; Sfeir et al., 2009). Such difficulties 

seem to be overcome, at least partially, by some of the telomere-binding proteins. For 

example, in fission yeast, Taz1 contributes to the efficient replication of telomeres by 

preventing fork stalling (Miller et al., 2006). RecQ-type DNA helicases have been shown to 

facilitate telomere replication, probably by relieving the secondary DNA structure at 

telomeres (Sfeir et al., 2009).  
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6. Mechanism of telomerase recruitment during the cell cycle 

Consistent with the requirement for a free 3’ single-stranded DNA end as a substrate for in 
vitro telomerase assay, a 3’ overhang in the G-rich strand at the end of chromosomes is 
critical for telomerase action. In budding yeast, the single-strand overhangs are present 
throughout the cell cycle, but are relatively short (10-15 nucleotides) for most of the cycle. 
The length of the overhangs increases transiently in the late S phase, during which telomere 
replication takes place (Marcand et al., 2000; Larrivee et al., 2004). The cell cycle-dependent 
formation of G-overhangs is mediated by the cyclin-dependent kinase Cdk1 (Cdc28-Clb in 
budding yeast), which is activated in the S and G2/M phases (Frank et al., 2006; 
Vodenicharov & Wellinger, 2006).  
Telomerase activity is indispensable for G-overhang formation during the S phase in yeast 
and mammals. Nucleolytic end processing activity also contributes to G-overhang formation 
(Wellinger et al., 1996). MRX in budding yeast and its mammalian ortholog, MRN (Mre11-
Rad50-Nbs1), are important for G-overhang formation (Diede and Gottschling, 2001; Takata 
et al., 2005; Chai et al., 2006). Their activity is regulated by the associated protein Sae2, a 
target of Cdk1 (Huertas et al., 2008). However, at least in yeast, a redundant nucleolytic 
activity regulated by Sgs1 (RecQ) also controls end processing at telomeres (Bonetti et al., 
2009). Interestingly, the MRX complex only binds to leading-strand telomeres, and this 
binding is critical for the binding of the CST complex and telomerase to leading-strand 
telomeres (Faure et al., 2010). As described above, genetic analysis has shown that MRX and 
telomerase act in the same pathway. This suggests that telomere elongation probably occurs 
mainly at leading-strand telomeres, at least in yeast. The leading strand polymerase Pol┝ 
arrives at telomeres earlier than the lagging strand DNA polymerases Pol┙ and Pol├ (Moser 
et al., 2009). Thus, temporal regulation may contribute to the difference between the two 
strands. In mammalian cells, differences in the behaviors of leading- and lagging-strand 
telomeres have been also reported, such as the preferential occurrence of telomere-telomere 
fusions between leading-strand telomeres upon shelterin inactivation (Bailey et al., 2001). 

7. Summary of telomeric DNA replication: an overview based on studies of 
budding yeast 

Figure 2 presents a current model for telomere replication. In this model, telomere integrity 

is thought to be maintained by an elegant mechanism. The switch from a protected state to 

an accessible state allows telomerase recruitment. As discussed previously, this is achieved 

in both a cell cycle-dependent manner and a telomere length-regulated manner.  

1. Replication fork progression. In yeast, telomeres replicate during the late S phase 
(Raghuraman et al., 2001). Replication is initiated from a replication origin located in 
the subtelomeric region, and the replication fork moves towards the chromosome 
terminus. In mammalian cells, the timing of telomere replication seems not to be 
restricted to the late S phase (Wright et al., 1999), and the direction of fork movement at 
telomeres is ambiguous. 

2. End processing. After the replication fork reaches the terminus, C-strand-specific 
resection takes place to produce the G-overhang. 

3. Recruitment of telomere proteins. Single-stranded DNA-binding complexes are 
recruited to the extended G-overhang. RPA may compete with CST or Pot1 for binding 
sites, but ultimately RPA is displaced by telomere-specific components. In mammalian 
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cells, telomeric repeat-containing RNA (TERRA) facilitates the RPA-to-Pot1 switch 
(Flynn et al., 2011).  

4. Recruitment of telomerase. Usually, recruitment of Tel1 to telomeres is inhibited by Rif1 
and Rif2 (Hirano et al., 2009). The conformation of short telomeres with reduced 
amounts of these two proteins changes to the accessible state, and Tel1 is thus recruited. 
Tel1 phosphorylates Cdc13 (and probably other proteins), thereby enabling it to interact 
with Est1 and permitting the telomerase to load to the ends of telomeres. It is not clear 
at present whether this regulatory mechanism is conserved among Tel1 orthologs in 
mammals and fission yeast.  

5. Telomere elongation and C-strand filling. G-overhangs are elongated by the action of 

telomerase. Then, CST recruits the Polα complex to coordinate the synthesis of the 
complementary C-strand. The replicated telomere now returns to the protected state. 

 

Fig. 2. Model for telomere replication in budding yeast. A: Fork movement towards the 
chromosome terminus. B: Telomerase-dependent telomere elongation. 

8. Alternative mechanisms that bypasses telomerase deficiency 

In budding yeast, telomerase-defective mutants gradually lose their proliferation capacity 
because of telomere shortening. However, a fraction of cells recovered viability without 
telomerase activity after prolonged periods of culturing. These “survivor” cells were found 
to acquire the potential to elongate chromosome ends through a recombination-mediated 
process (Lundblad & Blackburn, 1993). They are categorized as either type I or type II cells 
on the basis of their telomere composition and mode of maintenance (Teng & Zakian, 1999). 
Type I cells have a very short telomere repeat tract, but have amplified subtelomeric Y’ 
sequences. By contrast, type II cells have long heterogeneous telomere repeats. Telomere 
maintenance in both cell types requires the homologous recombination gene RAD52 (Le et 
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al., 1999). The change in the survivor cells is likely to be epigenetic, and both types of 
telomerase-independent telomere maintenance are inherited as a non-Mendelian trait that is 
dominant over senescence (Makovets et al., 2008), although the exact mechanism remains 
unknown. 
Similar mechanisms for escaping telomere dysfunction have also been observed in fission 
yeast. The genome of this organism consists of three chromosomes, and a population of cells 
can overcome the loss of telomerase by the recombination-mediated process (Nakamura et 
al., 1998). In addition, some survivor cells possess three circular chromosomes produced by 
end-to-end fusion between the arms of a chromosome. Cells harboring circular 
chromosomes can propagate normally by mitosis, but are unable to produce viable spores 
through meiosis (Naito et al., 1998; Nakamura et al., 1998). The requirement of chromosome 
linearity for normal chromosome segregation during meiosis has been discussed (Ishikawa 
& Naito, 1999). 
Some cancer cell lines grow in spite of a lack of telomerase activity. Such cell lines show high 
heterogeneity in telomere length (Murnane et al., 1994) and are thought to elongate telomere 
sequences via a telomerase-independent, alternative lengthening of telomere (ALT) 
mechanism. Involvement of recombination in ALT was subsequently confirmed (Dunham et 
al., 2000), although its exact mechanism is still being debated. 

9. Regulation of telomeres and telomerase during development and 
reprogramming 

Telomerase activity is tightly regulated during vertebrate development, being high in male 
germ cells, low in mature oocytes and cleavage stage embryos, and high in blastocysts 
(Hiyama & Hiyama, 2007). In spite of the low telomerase activity during early cleavage 
development, telomeres in zygotes are remarkably long at the first cell division. 
Interestingly, telomere lengthening at this stage was observed in parthenote embryos 
derived from telomerase-null mice, indicating that it depends on factors of maternal origin 
and does not require telomerase (Liu et al., 2007). The recombination protein Rad50 is 
localized at telomeres during the early cleavage cycle, suggesting that telomere lengthening 
following fertilization is recombination-dependent. Recently, Zscan4, a protein that is 
expressed specifically in the two-cell stage embryo, was shown to be involved in this 
process (Zalzman et al., 2010). Activity of this alternative telomere maintenance mechanism 
decreases before the blastocyst stage, during which the telomerase-dependent mechanism is 
reestablished. Expression of telomerase is maintained in the stem cell compartment of 
several adult tissues, although telomerase levels in these tissues are not sufficient to prevent 
progressive telomere shortening with age in either humans or mice (Flores et al., 2008). 
Embryonic stem (ES) cells and undifferentiated embryonal carcinoma (EC) cells display high 
levels of telomerase activity and TERT expression, both of which are rapidly downregulated 
during differentiation (Armstrong et al., 2005). Telomere length is elongated during the 
establishment of induced pluripotent stem (iPS) cells (Marion et al., 2009), which is 
associated with induction of the TERT gene. These observations suggest that acquisition of 
the capacity for indefinite self-renewal may be linked to the regulation of telomerase 
activity. Interestingly, in spite of their high telomerase activity, ES cells also express Zscan4. 
Knockdown of Zscan4 in ES cells shortens telomeres, increases karyotype abnormalities, and 
consequently reduces cell proliferation (Zalzman et al., 2010). Thus, a unique mode of 
telomere maintenance may operate in ES cells. 

www.intechopen.com



 
Control of Telomeric DNA Replication: Genetics, Molecular Biology, and Physiology 

 

313 

10. Consequences of telomere shortening 

During replicative senescence in human somatic cells, dysfunction caused by telomere 
shortening is sensed by DNA damage signals that induce cell cycle arrest via the p53 
pathway (d'Adda di Fagagna et al., 2003). In cells in which p53 is mutated, dysfunctional 
telomeres promote genome instability and progression to cancer, indicating that replicative 
senescence contributes to the suppression of tumorigenesis (Chin et al., 1999). Moreover, 
increasing evidence implicates telomere dysfunction in age-related pathogenesis, such as 
progressive atrophy and functional decline in high-turnover tissues (Sahin and Depinho, 
2010). 
Although the hallmark of senescent cells is irreversible growth arrest, several responses 
besides those related to the cell cycle have been observed. Senescent cells develop an 
enlarged morphology, upregulate senescence-associated ┚-galactosidase (SA-┚gal) activity, 
and show changes in metabolism, chromatin organization, and gene expression (Dimri et al., 
1995; Funayama et al.,2006; Sahin et al., 2011). Moreover, senescent cells display a 
senescence-associated secretory phenotype (SASP), which is associated with increased 
secretion of cytokines and matrix metalloproteinases (Coppe et al., 2008). The mechanisms 
underlying the induction of these diverse phenotypes are largely unknown, although 
p38MAPK has been suggested to be involved (Freund et al., 2011). 
Using telomerase-defective budding yeast cells as a model, mechanisms underlying the 
cellular responses to telomere shortening have been extensively studied. Genome-wide 
analysis of changes in gene expression showed that telomere-shortened cells have a unique 
transcriptional profile that shares features of DNA damage responses and environmental 
stress responses, and that is characterized by up-regulation of energy production genes 
(Nautiyal et al., 2002). Telomere shortening induces an increase in cell size, which is 
mediated by the DNA damage checkpoint kinase Mec1. Cell size expansion is associated 
with the enlargement of a vacuole that serves as a prominent lytic compartment in yeast. As 
a deficiency in vacuolar morphogenesis reduces the viability of telomere-shortened cells 
(Matsui & Matsuura, 2010), vacuolar function(s) may contribute to senescence-associated 
physiology.  

11. The pathology of telomerase disorders 

Several human disorders have been directly linked to reduced telomerase activity. 

Dyskeratosis congenita (DC) is an inherited disorder characterized by the degeneration of 

multiple tissues, including bone marrow. The mutations that cause DC have been 

implicated in telomere metabolism. X-chromosome-linked DC is caused by mutations in the 

DKC1 gene, which encodes dyskerin, an RNA-binding protein that stabilizes TERC (Mitchell 

et al., 1999). Causative mutations for other DC subtypes of DC have been mapped to TERT 

and TERC itself. Cells from DC patients have shorter telomeres and display premature 

senescence (Westin et al., 2007). The pathology of DC demonstrates the critical importance 

of telomerase in humans, especially in the maintenance of stem cells (Kirwan & Dokal, 

2009). 

The Werner syndrome (WS) is a premature aging syndrome. Fibroblasts from WS patients 
show accelerated telomere attrition, while the gene responsible for WS, WRN, encodes a 
DNA helicase involved in DNA replication, especially at telomeres (Crabbe et al., 2004). 
Ataxia telangiectasia (AT) is another premature aging syndrome that is characterized by 
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marked telomere attrition. The gene responsible for AT, ATM, is the ortholog of the budding 
yeast gene TEL1 and plays key roles in DNA damage signaling (Varizi, 1997).  
The causal link between telomere shortening and the aging phenotype at the organism level 
was demonstrated in a series of genetic studies performed using mouse models. 
Experimental mice usually have extremely long telomeres, and Wrn- and Atm-knockout 
mice do not display a premature aging phenotype. However, if they are subjected to 
telomere-limiting conditions by crossing with telomerase-null mice, they exhibit an 
accelerated aging phenotype (Chang et al., 2004: Wong et al., 2003). This observation 
suggests that telomere shortening is rate-limiting for the pathogenesis of premature aging 
syndromes.  

12. Extra-telomeric roles of telomerase 

Mice with modifications in genes encoding telomerase components have demonstrated the 
role of telomere length in maintaining stem cells (Jaskelioff et al., 2011). In contrast, Tert 
overexpression has an anti-aging effect in mice. This effect is not seen in Terc-deficient mice 
(Tomas-Loba et al., 2008), indicating that telomerase activation is the main mechanism 
underlying it.  
There is evidence that telomerase has extra-telomeric functions in stem cell maintenance, 
acting as a transcriptional modulator of the Wnt-┚-catenin pathway (Park et al., 2009). It also 
exhibits RNA-dependent RNA polymerase activity as a complex with the RNA component 
of mitochondrial RNA processing ribonuclease (RMRP) (Maida et al., 2009). It is still not 
known whether these extra-telomeric functions are conserved in telomerase enzymes from 
other species. 

13. Conclusion 

Extensive studies using unicellular organisms have revealed that a wide variety of proteins 
are involved in telomere homeostasis, and it becomes evident that coordination between 
their actions contributes to the regulation of telomere replication. The emerging evidence 
now suggests that the regulatory mechanism is linked directly with development and 
pathogenesis of mammals. Further dissection of the regulatory network may shed light on 
novel strategies for the management of telomere-related physiologies such as aging and 
cancer.  
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