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1. Introduction 

Model predictive control (MPC) has made a significant impact on control engineering. It has 

been applied in almost all of industrial fields such as petrochemical, biotechnical, electrical 

and mechanical processes. MPC is one of the most applicable control algorithms which refer 

to a class of control algorithms in which a dynamic process model is used to predict and 

optimize process performance. Linear model predictive control (LMPC) has been 

successfully used for years in numerous advanced industrial applications. It is mainly 

because they can handle multivariable control problems with inequality constraints both on 

process inputs and outputs.  

Because properties of many processes are nonlinear and linear models are often inadequate 

to describe highly nonlinear processes and moderately nonlinear processes which have large 

operating regimes, different nonlinear model predictive control (NMPC) approaches have 

been developed and attracted increasing attention over the past decade [1-5]. 

On the other hand, since the incorporation of nonlinear dynamic model into the MPC 

formulation, a non-convex nonlinear optimal control problem (NOCP) with the initial state 

must be solved at each sampling instant. At the result only the first element of the control 

policy is usually applied to the process. Then the NOCP is solved again with a new initial 

value coming from the process. Due the demand of an on-line solution of the NOCP, the 

computation time is a bottleneck of its application to large-scale complex processes and 

NMPC has been applied almost only to slow systems. For fast systems where the sampling 

time is considerably small, the existing NMPC algorithms cannot be used. Therefore, solving 

such a nonlinear optimization problem efficiently and fast has attracted strong research 

interest in recent years [6-11]. 

To solve NOCP, the control sequence will be parameterized, while the state sequence can be 

handled with two approaches: sequential or simultaneous approach. In the sequential 

approach, the state vector is handled implicitly with the control vector and initial value 

vector. Thus the degree of freedom of the NLP problem is only composed of the control 

parameters. The direct single shooting method is an example of the sequential method. In 

the simultaneous approach, state trajectories are treated as optimization variable. Equality 

constraints are added to the NLP and the degree of freedom of the NLP problem is 

composed of both the control and state parameters. The most well-known simultaneous 

method is based on collocation on finite elements and multiple shooting.  
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Both single shooting method and multiple shooting based optimization approaches can then 
be solved by a nonlinear programming (NLP) solver. The conventional iterative 
optimization method，such as sequential quadratic programming (SQP) has been applied 

to NMPC. As a form of the gradient-based optimization method, SQP performs well in local 
search problems. But it cannot assure that the calculated control values are global optimal 
because of its relatively weak global search ability. Moreover, the performance of SQP 
greatly depends on the choice of some initialization values. Improper initial values will lead 
to local optima or even infeasible solutions. 
Genetic Algorithms (GAs) are a stochastic search technique that applies the concept of 
process of the biological evolution to find an optimal solution in a search space. The 
conceptual development of the technique is inspired by the ability of natural systems for 
adaptation. The increasing application of the algorithm has been proved to be efficient in 
solving complicated nonlinear optimization problems, because of their ability to search 
efficiently in complicated nonlinear constrained and non-convex optimization problem, 
which makes them more robust with respect to the complexity of the optimization problem 
compared to the more conventional optimization techniques. 
Compared with SQP, GAs can reduce the dimension of search space efficiently. Indeed, in 
SQP the state sequence is treated as additional optimization variables; as such, the number 
of decision variables is the sum of the lengths of both the state sequence and the control 
sequence. In contrast, in GAs, state equations can be included in the objective function, thus 
the number of decision variables is only the length of control sequence. Furthermore, the 
search range of the input variable constraints can be the search space of GA during 
optimization, which makes it easier to handle the input constraint problem than other 
descent-based methods. 
However, a few applications of GAs to nonlinear MPC [12][13] can partially be explained by 
the numerical complexity of the GAs, which make the suitable only for processes with slow 
dynamic. Moreover, the computational burden is much heavier and increases exponentially 
when the horizon length of NMPC increases. As a result, the implementation of NMPC 
tends to be difficult and even impossible.  
In this paper an improved NMPC algorithm based on GA is proposed to reduce the severe 
computational burden of conventional GA-based NMPC algorithms. A conventional NMPC 
algorithm seeks the exact global solution of nonlinear programming, which requires the 
global solution be implemented online at every sampling time. Unfortunately, finding the 
global solution of nonlinear programming is in general computationally impossible, not 
mention under the stringent real-time constraint. We propose to solve a suboptimal descent 
control sequence which satisfies the control, state and stability constraints in the paper. The 
solution does not need to minimize the objective function either globally or locally, but only 
needs to decrease the cost function in an effective manner. The suboptimal method has 
relatively less computational demands without deteriorating much to the control 
performance.  
The rest of the paper is organized as follows. Section 2 briefly reviews nonlinear model 
predictive control. Section 3 describes the basics of GAs, followed by a new GA-based 
computationally efficient NMPC algorithm. Section 4 analyses the stability property of 
our nonlinear model predictive control scheme for closed-loop systems. Section 5 
demonstrates examples of the proposed control approach applied to a coupled-tank 
system and CSTR. Finally we draw conclusions and give some directions for future 
research. 
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2. Nonlinear model predictive control 

2.1 System 
Consider the following time-invariant, discrete-time system with integer k representing the 

current discrete time event: 

 ( 1) [ ( ), ( )]x k f x k u k+ =  (1) 

In the above, ( ) nxx k X R∈ ⊆ is the system state variables; ( ) nuu k U R∈ ⊆  is the system input 

variables; the mapping : nx nu nxf R R R× →  is twice continuously differentiable 

and (0,0) 0f = . 

2.2 Objective function 
The objective function in the NMPC is a sum over all stage costs plus an additional final 
state penalty term [14], and has the form: 

 
1

0

( ) ( ( | )) ( ( | ), ( | ))
P

j

J k F x k P k l x k j k u k j k
−

=

= + + + +   (2) 

where x(k+j|k) and u(k+j|k) are predicted values at time k of x(k+j),u(k+j). P is the prediction 

horizon. In general, ( ) TF x x Qx=  and ( , ) T Tl x u x Qx u Ru= + . For simplicity, 0Q >  defines a 

suitable terminal weighting matrix and Q≥0,R>0. 

2.3 General form of NMPC 
The general form of NMPC law corresponding to (1) and (2) is then defined by the solution 

at each sampling instant of the following problem: 

 
( | ), ( 1| ),..., ( 1| )

min ( )
u k k u k k u k P k

J k
+ + −

 (3a)  

 . . ( 1| ) ( ( | ), ( | ))s t x k i k f x k i k u k i k+ + = + +   (3b) 

  ( | ) , ( | ) , 0,1,..., 1x k i k X u k i k U i P+ ∈ + ∈ = −   (3c) 

 ( | ) Fx k P k X+ ∈   (3d) 

where XF is a terminal stability constraint, and u(k)=[u(k|k) ,…,u(k+P-1|k)] is the control 
sequence to be optimized over. 
The following assumptions A1 - A4 are made: 

A1: XF ⊂ X, XF closed, 0∈ XF 

A2: the local controller κF(x)∈ U, ∀x∈ XF 

A3: f(x, κF(x)) ∈ XF, ∀ x∈ XF 

A4: F(f(x, κF(x)))-F(x)+l(x, κF(x)) ≤ 0, ∀x∈ XF 

Based on the formulation in (3), model predictive control is generally carried out by solving 

online a finite horizon open-loop optimal control problem, subject to system dynamics and 

constraints involving states and controls. At the sampling time k, a NMPC algorithm 

attempts to calculate the control sequence u(k) by optimizing the performance index (3a) 
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under constraints (3b) (3c) and terminal stability constraint (3d). The first input u(k|k) is 

then sent into the plant, and the entire calculation is repeated at the subsequent control 

interval k+1. 

3. NMPC algorithm based on genetic algorithm 

3.1 Handling constraints 
An important characteristic of process control problems is the presence of constraints on 
input and state variables. Input constraints arise due to actuator limitations such as 
saturation and rate-of-change restrictions. Such constraints take the form: 

 u min ≤ u(k) ≤u max                             (4a) 

 ∆u min ≤∆u(k) ≤∆umax                           (4b) 

State constraints usually are associated with operational limitations such as equipment 
specifications and safety considerations. System state constraints are defined as follows: 

 xmin ≤x (k) ≤xmax                             (4c) 

where ∆u(k)=[u(k|k)-uk-1 ,…, u(k +P-1|k)- u(k +P-2|k)], x(k)=[x(k+1|k),…,x(k+P|k)]. 
The constraints (4a) and (4b) can be written as an equivalent inequality: 

      

max

min

max 1

min 1

u

u
u( )

u

u
k

k

I

I
k

I S cu

I S cu
−

−

   
   
− −   ≤
   Δ +
   
− − Δ −   

                    (5) 

where  

1 0 0 0

1 1 0 ...

... ... ... 0

1 ... ... 1

S

 
 
 =
 
 
 

, [ , ,..., ]Tc I I I= . 

3.2 Genetic algorithm 
GA is known to have more chances of finding a global optimal solution than descent-based 
nonlinear programming methods and the operation of the GA used in the paper is 
explained as follows. 

3.2.1 Coding 
Select the elements in the control sequence u(k) as decision variables. Each decision variable is 
coded in real value and nu*P decision variables construct the nu*P -dimensional search space. 

3.2.2 Initial population 
Generate initial control value in the constraint space described in (5). Calculate the 
corresponding state value sequence x(k) from (3b). If the individual (composing control 
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value and state value) satisfies the state constraints (4c) and terminal constraints (3d), select 
it into the initial population. Repeat the steps above until PopNum individuals are selected. 

3.2.3 Fitness value 
Set the fitness value of each individual as 1/(J+1). 

3.2.4 Genetic operators 
Use roulette method to select individuals into the crossover and mutation operator to 

produce the children. Punish the children which disobey the state constraints (4c) and 

terminal constraints (3d) with death penalty. Select the best PopNum individuals from the 

current parent and children as the next generation. 

3.2.5 Termination condition 
Repeat the above step under certain termination condition is satisfied, such as evolution 

time or convergence accuracy. 

3.3 Improved NMPC algorithm based on GA 
In recent years, the genetic algorithms have been successfully applied in a variety of fields 

where optimization in the presence of complicated objective functions and constraints. The 

reasons of widely used GAs are its global search ability and independence of initial value. In 

this paper GAs are adopted in NMPC applications to calculate the control sequence. If the 

computation time is adequate, GAs can obtain the global optimal solution. However, it 

needs to solve on line a non-convex optimization problem involving a total number of nu*P 

decision variables at each sampling time. To obtain adequate performance, the prediction 

horizon should be chosen to be reasonably large, which results in a large search space and 

an exponentially-growing computational demand. Consequently, when a control system 

requires fast sampling or a large prediction horizon for accurate performance, it becomes 

computationally infeasible to obtain the optimal control sequence via the conventional GA 

approach. There is thus a strong need for fast algorithms that reduce the computational 

demand of GA.  

The traditional MPC approach requires the global solution of a nonlinear optimization 

problem. This is in practice not achievable within finite computing time. An improved 

NMPC algorithm based on GA does not necessarily depend on a global or even local 

minimum. The optimizer provides a feasible decedent solution, instead of finding a global 

or local minimum.  The feasible solution decreases the cost function instead of minimizing 

the cost function. Judicious selection of the termination criterions of GA is the key factor in 

reducing the computation burden in the design of the suboptimal NMPC algorithm. To this 

end, the following two strategies at the (k+1)-th step are proposed.  

• The control sequence output at the k-th control interval in the genetic algorithm is 

always selected as one of the initial populations at the (k+1)-th control interval. 

Furthermore, some of the best individuals at the k-th control interval are also selected 

into the current initial population. Most of all, the elite-preservation strategy is 

adopted. Figure 1 shows one of the choices of the initial population per iteration. This 

strategy guarantees the quality of current population and the stability of the NMPC 

algorithm. 
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Fig. 1. the choice of initial population per iteration 

• Stopping criterions of GA are the key factor of decreasing the computation burden. GA 
is used to compute the control sequence. The objective value J(k+1) at the (k+1)-th 
control interval is computed and compared with J(k) that stored at the k-th control 
interval. If J(k+1) is smaller than J(k), that at the k-th control interval, then the control 
sequence u(k+1) is retained as a good feasible solution, and its first element u(k+1|k+1) 
is sent to the plant. Otherwise, if there does not exist a feasible value for u(k+1) to yield 
J(k+1) < J(k), then the best u(k+1) is chosen to decrease the objective function the most.  

The traditional MPC approach requires the global solution of a nonlinear optimization 
problem. This is in practice not achievable within finite computing time. An improved 
NMPC algorithm based on GA does not necessarily depend on a global or even local 
minimum. The optimizer provides a feasible decedent solution, instead of finding a global 
or local minimum.  The feasible solution decreases the cost function instead of minimizing 
the cost function. Judicious selection of the termination criterions of GA is the key factor in 
reducing the computation burden in the design of the suboptimal NMPC algorithm. To this 
end, the following two strategies at the (k+1)-th step are proposed.  
With the above two strategies, the computational complexity of the control calculation is 
substantially reduced. Summarizing, our proposed improved NMPC algorithm performs 
the following iterative steps: 
Step 1. [Initialization]:  
choose parameters P, XF, Q, R, Q’ and model x(k+1) = f(x(k),u(k)); initialize the state and 
control variables at k = 0; compute and store J(0). 
Step 2. [modified Iteration]:  

• at the k-th control interval, determine the control sequence u(k) using GA satisfies 
constraints (3b) (3c), terminal stability constraint (3d) and J(k) < J(k-1). The first input 
u(k|k) is then sent into the plant. 

• store J(k) and set k = k+1; 

•  if there does not exist a feasible value for u(k) to yield J(k) < J(k-1), then the best u(k) is 
chosen to decrease the objective function the most.  

Step 3. [Termination]  
The entire calculation is repeated at subsequent control interval k+1 and goes to Step 2.  
Though the proposed method does not seek a globally or locally optimal solution within 
each iteration step, it may cause little performance degradation to the original GA due to its 
iterative nature, which is known to be capable of improving suboptimal solution step by 
step until reaching near-optimal performance at the final stage. Besides its near-optimal 
performance, the proposed algorithm possesses salient feature; it guarantees overall system 
stability and, most of all, leads to considerable reduction in the online computation burden. 
Finding a control sequence that satisfies a set of constraints is significantly easier than 
solving a global optimization problem. Here it is possible to obtain the suboptimal control 
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sequence via GA for practical systems with very demanding computation load, that is, 
systems with a small sampling time or a large prediction horizon. 

4. Stability of nonlinear model predictive control system 

The closed-loop system controlled by the improved NMPC based on GA is proved to be 
stable. 
Theorem 1: For a system expressed in (1) and satisfying the assumption A1-A4, the closed-
loop system is stable under the improved NMPC framework. 
Proof: Suppose there are an admissible control sequence u(k) and a state sequence x(k) that 
satisfy the input, state and terminal stability constraints at the sampling time k. 
At the sampling time k, the performance index, which is related to u(k) and x(k), is described 
as  

 *( ) ( ;u( ),x( ))J k J k k k=   (6) 

In the closed-loop system controlled by the improved NMPC, define the feasible input and 
state sequences for the successive state are x+=f(x, u(k|k)). 

 
u ( 1) [ ( 1| ),..., ( 1| ), ( ( | )) ]

x ( 1) [ ( 1| ),..., ( | ), ( ( | ), ( ( | ))) ]

T T T T
F

T T T T
F

k u k k u k P k K x k P k

k x k k x k P k f x k P k K x k P k

+

+

+ = + + − +

+ = + + + +
  (7) 

The resulting objective function of u(k+1) and x(k+1) at the (k+1)-th sampling time is  

 ( 1) ( 1;u( 1),x( 1))J k J k k k+ + = + + +  (8) 

If the optimal solution is found, it follows that 

 
* * *( 1) ( ) ( 1) ( )

( , ( )) ( ( , ( ))) ( ) ( , ( ))P F F

J k J k J k J k

l x K x F f x K x F x l x K x

++ − ≤ + −

= − + − +
  (9) 

From A4, the following inequality holds 

  * *( 1) ( ) ( , ( ))PJ k J k l x K x+ − ≤= −  (10) 

Or using the improved NMPC algorithm, it follows that 

 * * *( 1) ( ) ( 1) ( ) 0J k J k J k J k++ − ≤ + − ≤   (11) 

Thus the sequence *( )J k i+ over P time indices decreases. As such and given the fact that the 

cost function ( , )l x u  is lower-bounded by zero, it is evident that *( )J k i+  converges. Taking 

the sum, we obtain 

 * *

1

( ) ( ) [ ( ( ), ( ))]
P

i

J k P J k l x k i u k i
=

+ − ≤ − + +   (12) 

Also, because the sequence *( )J k i+ is decreasing, then as N → ∞ ,we have 

( ( ), ( )) 0l x k i u k i+ + →  and 0x → . Hence, the closed-loop system is stable. 
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5. Simulation and experiment results 

5.1 Simulation results to a continuous stirred tank reactor plant 
5.1.1 Model of continuous stirred tank reactor plant 
Consider the highly nonlinear model of a chemical plant (continuous stirred tank reactor-
CSTR). Assuming a constant liquid volume, the CSTR for an exothermic, irreversible 
reaction, A→B, is described by  

   

/( )
0

/( )
0

( )

( ) ( )

E RT
A Af A A

E RT
f A C

P P

q
C C C k e C

V
q H UA

T T T k e C T T
V C V Cρ ρ

−

−

= − −

−Δ
= − + + −




              (13) 

where CA is the concentration of A in the reactor, T is the reactor temperature and Tc is the 
temperature of the coolant stream. The parameters are listed in the Table 1. 
 

Variables Meaning Value Unit 

q the inlet flow 100 l/min 

V the reactor liquid volume 100 l 

CAf the concentration of inlet flow 1 mol/l 

k0 reaction frequency factor 7.2*1010 min-1 

E/R  8750 K 

E activation energy   

R gas constant 8.3196*103 J/(mol K) 

Tf the temperature of inlet flow 350 K 

∆H the heat of reaction -5*104 J/mol 

ρ the density 1000 g/l 

CP the specific heat capacity of the fluid 0.239 J/(g K) 

UA  5*104 J/(min K) 

U the overall heat transfer coefficient   

A the heat transfer area   

Table 1. List of the model parameters 

5.1.2 Simulation results 
The paper present CSTR simulated examples to confirm the main ideas of the paper. The 
nominal conditions, CA = 0.5mol/l, T = 350K, Tc = 300K, correspond to an unstable operating 
point. The manipulated input and controlled output are the coolant temperature (Tc) and 
reactor temperature (T). And the following state and input constraints must be enforced: 

 

{ }

2|0 1,280 370

|280 370

A
A

C C

C
C T

T

T T

   
= ∈ ≤ ≤ ≤ ≤  
   

= ∈ ≤ ≤

X R

U R

                 (14) 

The simulation platform is MATLAB and simulation time is 120 sampling time. The 
sampling time is Ts = 0.05s, mutation probability is Pc =0.1, population size is 100, maximum 
generation is 100, and the fitness value is 1/(J+1). 
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Fig. 2. comparative simulation between the conventional NMPC algorithm and the 
suboptimal NMPC algorithm 

 

method settling time, min percent overshoot,% 

NMPC algorithm based on GA 0.75 1 

Suboptimal NMPC algorithm based on GA 2.5 0 

Table 2. Performance comparisons of simulation results 
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Fig. 3. The time consumptions of the two methods 
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For comparison, the same simulation setup is used to test both the conventional NMPC 
algorithm based GA and the suboptimal NMPC algorithm. The resulting control values are 
depicted in Fig 2. Table 2 compares the performance of the two algorithms using the metrics 
settling time and percent of overshoot. The conventional NMPC algorithm has a faster 
transient phase and a smaller percentage of overshoots.  
When the population sizes or the maximum generation is relatively large, the time 
consumption of the two methods is compared in Fig 3. 
From Fig 2 and Table 2, it is apparent that the control performance of the two methods is 
almost same. But from Fig 3, it is evident that the suboptimal NMPC algorithm based on GA 
has a considerably reduced demand on computational complexity. 

5.2 Simulation results to a coupled-tank system 
5.2.1 Model of coupled-tank system 
The apparatus [15], see Fig.4, consists of two tanks T1 and T2, a reservoir, a baffle valve V1 and 
an outlet valve V2. T1 has an inlet commanded through a variable pump based on PMW and 
T2 has an outlet that can be adjusted through a manually controlled valve only. The outlets 
communicate to a reservoir from which the pumps extract the water to deliver it to the tank. 
The two tanks are connected through the baffle valve, which again can only be adjusted 
manually. The objective of the control problem is to adjust the inlet flow so as to maintain 
the water level of the second tank close to a desired setpoint. 
The water levels h1 and h2, which are translated through the pressure transducer into a DC 
voltage ranging from 0V to 5V, are sent to PC port via A/D transition. The tank pump 
control, which is computed by the controller in PC with the information of the water level h1 
and h2, is a current level in the range 4mA to 20mA, where these correspond to the pump not 
operating at all, and full power respectively. 
 

 

Fig. 4. Coupled-tank apparatus 
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The dynamics of the system are modeled by the state-space model equations: 

 

1
12

2
12 20

input

dh
A Q Q

dt
dh

A Q Q
dt

= −

= −

                              (15) 

where the flows obey Bernoulli’s equation[16], i.e. 

 1/2
12 1 1 2 1 2sgn( )(2 )Q S h h g h hµ= − −                        (16) 

 1/2
20 2 2(2 )Q S ghµ=                              (17) 

and 
1, 0

sgn( )
1, 0

z
z

z

≥
= 

− <
 is the symbol function of parameter z. 

The output equation for the system is  

 2y h=                                       (18) 

The cross-section areas, i.e. A and S, are determined from the diameter of the tanks and 

pipes. The flow coefficients, μ1 and μ2, have experimentally (from steady-state 

measurements) been determined. Table 3 is the meanings and values of all the parameters in 

Eqn.15 

 

Signal Physics Meaning Value 

A Cross-section area of tank 6.3585×10-3m2 

S Cross-section area of pipe 6.3585×10-5m2 

g acceleration of gravity 9.806m/s2 

μ1 flow coefficient 1 0.3343 

μ2 flow coefficient 2 0.2751 

Table 3. meanings and value of all the parameters 

Several constraints have to be considered. Limited pump capacity implies that values of  

inputQ  range from 0 to 50cm3/s. The limits for the two tank levels, h1 and h2, are from 0 to 

50cm. 

5.2.2 Simulation results 
The goal of the couple-tank system is to control the level of Tank 2 to setpoint. The initial 

levels of the two tanks, h1, h2, are 0cm. The objectives and limits of the tank system: Input 

constraint is 0≤u≤100%; State objectives are 0≤h1, h2≤0.5m, and the setpoint of Tank 2 is 0.1m. 

The simulation platform is MATLAB and simulation time is 80 sample time. In NMPC, 

select prediction horizon P=10, weighting parameters 8Q Q= = , R=1, sample time Ts=5s, 

mutation probability Pc=0.1, population size is 200, maximum generation is 100, the fitness 

value is 1/(J+1). 
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For the purpose of comparison the same simulation is carried out with the conventional 
NMPC algorithm based GA and the fast NMPC algorithm. The result is shown in Fig 5. The 
performance indexes of the two algorithms are shown in Table 4.  
 
 
 
 

 
 

Fig. 5. Compared simulation results based on conventional NMPC and fast NMPC 
algorithm 

 
 
 

method Settling time, s percent overshoot, % 

NMPC algorithm based on GA 70 3 

Fast NMPC algorithm based on GA 100 7 

 

Table 4. Performance index of simulation results 

When the population sizes or the maximum generation is relatively larger, the time 
consumptions of the two method is shown in Fig 6. 
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From Fig 5 and Table 4, it is apparent that the control performance of the two methods is 
almost same. But from Fig 6, the computation demand reduces significant when the fast 
NMPC algorithm based on GA is brought into the system. 

5.2.3 Experiment results 

The objectives and limits of the system: Input constraint is 0≤u≤100%; State objectives are 

0≤h1,h2≤0.5m, and the setpoint of Tank 2 is 0.1m. Select prediction horizon P=10, weighting 

parameters 8Q Q= = , R=1, sample time Ts=5s, mutation probability Pc=0.1, population size 

is 200, maximum generation is 100. 
The tank apparatus is controlled with the NMPC algorithm based on conventional GA, the 
experimental curve is shown in Fig 7 and performance index is shown in Table 5.  
 
 
 
 
 

 
 
 
 
 
 

Fig. 6. Time consumptions for two methods 
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Fig. 7. Experimental curve of NMPC based on GA 

 
 
 
 

Time, s 0-400 401-800 801-1200 

Setpoint, m 0.1 0.15 0.07 

Settling time, s 159 190 210 

Percent overshoot None None None 

 
 

Table 5. Performance index of experimental result with conventional NMPC 

The same experiment is carried out with fast NMPC algorithm based on GA. The result is 
shown in Fig 8 and performance index is shown in Table 5.  
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Fig. 8. Experimental curve of fast NMPC based on GA 

 

Time, s 0-400 401-800 801-1200 
Setpoint, m 0.1 0.15 0.07
Settling time, s 190 190 260
Percent overshoot None None None 

Table 6. Performance index of experimental result with fast NMPC 

6. Conclusions 

In this paper an improved NMPC algorithm based on GA has been proposed. The aim is to 
reduce the computational burden without much deterioration to the control performance. 
Compared with traditional NMPC controller, our approach has much lower computational 
burden, which makes it practical to operate in systems with a small sampling time or a large 
prediction horizon.  
The proposed approach has been tested in CSTR and a real-time tank system. Both 
computer simulations and experimental testing confirm that the suboptimal NMPC based 
on GA resulted in a controller with less computation time. 
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