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1. Introduction 

Over the past decades, carbon nanotubes (CNTs) have been actively explored as building 
blocks for next-generation electronics (Tans et al., 1998; Bachtold et al., 2001; Misewich et al., 
2003), optoelectronics, and sensors (Kong et al., 2000; Xia et al., 2003; T. Zhang, 2008), 
including flexible and transparent devices ( Ju et al., 2007) as well as stretchable devices (Xu 
et al., 2011). A critical step in constructing CNT-based devices is assembly of CNTs on a 
substrate or free-standing for device fabrication, which include alignment, density control, 
and transfer. Scalable and controlled assembly of CNTs synthesized with diverse methods 
(e.g., solution fabrication or solid-state fabrication methods) on diverse substrates (e.g., 
silicon, plastics, rubbers, etc) or free-standing presents a major fabrication challenge that 
must be overcome if CNTs are to be utilized in practical applications. For assembling CNTs 
into thin films (or called sheet, buckypaper), there are several different methods or processes 
in different conditions (e.g., solution or solid-state processes) (Hu et al., 2010). Solution 
processes start with the CNTs in powder form; the powder is dispersed in an appropriate 
solvent with or without functionalization. The CNT films (buckypapers) are usually made 
using versions of the ancient art of paper making, by typically long-time filtration of 
nanotubes dispersed in solvent and peeling the dried nanotubes as a layer from the filter 
(Rinzler et al., 1998; Endo et al., 2005). Buckypaper normally has a laminar structure with a 
random orientation of the bundles of the nanotubes in the plane of the film (Berhan et al., 
2004). Interesting variations of the filtration route provide ultra-thin nanotube sheets that 
are highly transparent and highly conductive (Wu et al., 2004; Hu et al., 2004). While 
filtration-produced sheets are normally isotropic within the sheet plane, sheets having 
partial nanotube alignment result from applying high magnetic fields during filtration 
(Fischer et al., 2003). In other important advances, nanotube films have been fabricated by 
Langmuir-Blodgett deposition (Y. Kim et al., 2003), casting from oleum (Sreekumar et al., 
2003), coating (Ago et al., 1999; Dan et al., 2009), and printing (Zhou et al., 2006; Unidym Inc, 
2007). The solid-state processes generally have two approaches. One is to synthesize CNTs 
by floating catalyst chemical vapor deposition (CVD), either to deposit CNTs on a substrate 
inside the CVD chamber or to collect the CNT aerogel outside of the chamber on a special 
substrate and then densify it into a film (Y. Li et al., 2004; Martin, 2010). The catalysts are 
with the CNTs and the CNTs in the film are usually disoriented. The optimized process 
control lowers the impurities to less than 5 wt% in the film and a 1.2 meter wide and 10 
meter long CNT film has been made (Nanocomp Tech. 2010). The other approach is to 
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synthesize CNTs from the catalysts fixed on substrate to form a array either parallel to the 
substrate (Kong et al., 1998) or perpendicular to the substrate (also called vertical aligned 
CNT forest) which are fabricated into the CNT films after the synthesis process by the 
“domino pushing effect” motion (Ding et al., 2008; Pevzner et al., 2010) or drawing CNTs 
out of the forest (M. Zhang et al., 2004 & 2005). The domino pushing of the CNT forest can 
efficiently ensure that most of the CNTs are aligned tightly in the film. Well aligned CNT 
sheets are obtained by drawing CNTs from the forest. 
For fabricating sheets that have close to single nanotube properties, long nanotubes are 
needed. Solution fabrication methods work only for short nanotubes since the ability to 
disperse nanotubes into a liquid and to fabricate oriented nanotube sheets from liquid 
dispersions decreases with increasing nanofiber length. Solid-state fabrication methods do 
not disturb the length of the nanotubes and are the methods that benefit from long 
nanotubes. In this chapter, two processes for assembling well aligned and super-thin CNT 
sheets are presented. One is to produce a drawable CNT forest, which has special topology, 
by CVD and then draw CNTs out of forest to form a free-standing CNT sheet. Another 
process involves synthesis of a patterned CNT array on substrate by CVD and then 
knocking them down to form an aligned CNT sheet on substrate with the help of the 
solvent. The CNT growth and the conditions for making drawable CNT forests are 
discussed. 

2. Fabrication of CNT sheet  

Since the CNT sheets are fabricated directly from the forests, the synthesis of the CNT forest 
is an important step. In this chapter, the CNTs are multi-walled CNTs. The CNT forests 
were synthesized by catalytic CVD using hydrocarbon gas, acetylene or ethylene, as the 
carbon source (M. Zhang et al., 2004). The following is the basic process and conditions. The 
catalyst was a ~3 nm thick iron film, which was deposited on a silicon substrate by electron 
beam evaporation. The substrates were set in the center of a quartz tube furnace. After 
heating up to 680°C in helium at one atmospheric pressure, 5 molar percent acetylene in 
helium was introduced at the total flow rate of 580 sccm. Within a few minutes, the dense 
and vertically aligned CNT forests were grown on substrates. After removing the forest, the 
substrate is still catalytically active and can be used to grow new forest, indicating a root-
growth mode and the presence of the catalysts on the substrate. Based on scanning electron 
microscopy (SEM), transmission electron microscopy (TEM), and thermo-gravimetric 
analysis (TGA), the purity of the nanotube forests was very high ( more than 99% carbon in 
the form of CNTs), with less than 1 wt% iron and amorphous carbon, but more importantly, 
no carbon particles within the CNTs were observed. The CNT sheets are made from the 
CNT forests by two approaches, knocking down and drawing. 

2.1 Knocking down approach 
The schematic of the knocking down approach is shown in Fig. 1. The line arrays of thin Fe 
film was made by patterning the resist on Si substrate following the standard lithography 
process, depositing the catalyst thin film by electron beam evaporation and then the lifting 
off the resist mask. The Fe film cracked into nanoparticles as catalysts for CNT growth 
during the temperature ramp up in CVD process. The CNTs grew away from the catalyst 
particles and formed a thin wall array during the CVD process (Figs. 2a to 2c). The CNT 
wall is very thin, so it is transparent (Fig. 2a). The substrate with the array of CNT walls was   
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(a) (b) 

Fig. 1. Schematic experimental processes for making an aligned thin CNT film on substrate 
(a) and knocking down method (b). 

 

Fig. 2. SEM images show CNTs grown perpendicular to a substrate as a forest and a thin 
wall (a) and a thin wall array (b). (c) SEM image in high magnification shows the structure 
of the thin wall. The wall is so thin, it is transparent. (d), (e), and (f) show the thin wall array 
is “knocked” down and CNTs forms an aligned thin film on substrate. (g) and (h) show that 
the CNT thin films are etched into desired patterns. After removal of the photo resist, the 
CNTs have clean surface and keep the original structures. (f) and (i) show the detail of (e) 
and (h), respectively. The dark circle in (d), (e), and (g) is the shadow of the in-lens detector. 
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drawn through an acetone solution to horizontally redirect the vertical alignment and dried 
using nitrogen gas (Fig. 1b and Figs. 2d to 2f). The width of the patterned catalyst lines and 
the growth time of CVD determined the thickness and the height of the CNT walls. The 
walls do not shrink in height during flattening and drying. Figure 2e shows that a CNT 
sheet on substrate is formed from the CNT wall array in which the height of the wall is 
controlled to just 2 times the gap between two catalyst lines so that the CNT sheet on 
substrate has the thickness of two overlapping walls. The thickness of the CNT sheet could 
range from a few hundred nanometers to micrometers through the same process by using 
forest of different thicknesses, namely by controlling the width of the catalyst lines. 
Substrate-forest interaction and lateral CNT orientation guided densification only in wall 
thickness direction to essentially flatten the walls to the substrate with strong adhesion. It is 
because of the surface tension of the liquids and the strong van der Waals interactions that 
effectively close the CNTs together when liquids were introduced into the thin forest and 
dried. This self-assembly transformed CNT walls into highly densely packed CNT thin 
sheets. The CNT sheet was patterned into arbitrarily shaped CNT islands in desired 
positions by using standard lithographic processes. Figures 2g and 2h are the SEM images 
showing the patterned CNT sheet by lithography process. The CNT sheets were etched 
vertically by oxygen/argon reactive ion etching by using a resist as a mask. Figure 2i is the 
SEM image of Fig. 2h in high magnification. The surface of the CNTs is clean and the 
structures of the sheet remain the same, showing that the adhesion with the substrate is 
sufficient to withstand lithographic processes including heat treatment, immersion into 
liquids, and drying. The bright and parallel horizontal lines visible in the images are catalyst 
lines. These lines cannot be totally removed (Fig. 2g). The sheet has to be transferred to 
another substrate in order for the effects of these lines to be negligible for some applications. 

2.2 Drawing approach 
In drawing approach, the catalyst thin film covers all surface of the Si substrate (Fig. 3). The 
CNTs are synthesized on top of silicon substrate as a vertically aligned forest by CVD and 
the transparent nanotube sheets were drawn directly from CNT forests. Draw was initiated 
using an adhesive strip, like that on a 3M Post-it® Note, or using a blade by cutting into the 
forest to contact CNTs teased from the forest sidewall. Five-centimeter wide, meter long 
transparent sheets were made at a meter per minute by hand drawing (M. Zhang et al., 
2005). 
 

 

Fig. 3. Schematic experimental processes for fabrication of the free-standing CNT sheet. 
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Despite a measured areal density of only 3 g/cm2, these 500 cm2 sheets were self-
supporting during drawing. Figure 4 shows side-view and top view SEM micrographs of 
forest and sheet. It indicates that the nanotubes in the forest transition from the highly 
ordered forest state to a rather disordered intermediate state immediately in front of the 
forest sidewall, and finally to the highly oriented aerogel state. By taking sequential 
micrographs through a SEM to form a movie, the process in which the forest nanotubes 
rotate by about 90° in going from nanotube orientation in the forest to that of the highly 
oriented state is captured (Kuznetsov et al., 2011).  
 

 

Fig. 4. SEM images show that a CNT sheet is drawing from a forest. (a)-(c) Side view of the 
forest and the sheet close to the forest. (b) and (c) show the details in (a) and (b), 
respectively. (d) and (e) Top view of the forest and the CNT sheet. 

The forest-drawn CNT sheets can easily be stacked or conveniently assembled into biaxially 
reinforced sheet arrays. They can be used as conducting layers on non-planar surfaces (Figs. 
5a to 5d). These highly anisotropic aerogel sheets can be applied and easily densified into 

highly oriented sheets having a thickness of 50 nm and a density of 0.5 g/cm3. We obtain  
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Fig. 5. (a)-(d) SEM images show a CNT sheet covers a substrate with sharp turns. (b) and (d) 
are the SEM images in higher magnification of the images in (a) and (c), respectively. (e) A 
photo image shows cross stacked sheets cover a metal plane with a 2.5 cm-diameter hole 
after liquid densification. The detail structure is shown in (f). 

this 360-fold density increase by simply adhering by contact the as-produced sheet to a 
planar substrate (e.g. glass, many plastics, silicon, gold, copper, aluminum, and steel), 
vertically immersing the substrate with attached CNT sheet into a liquid (e.g. ethanol) along 
the nanotube alignment direction, and retracting the substrate from the liquid. Surface 

tension effects during ethanol evaporation shrink the aerogel sheet thickness to 50 nm. 
SEM micrographs taken normal to the sheet plane suggest a decrease in nanotube 
orientation as a result of densification (Fig. 4e). This observation is deceptive – the collapse 

of 20 m sheets to 50 nm sheets without changes in lateral sheet dimensions means that 
out-of-plane deviations in nanotube orientation become in-plane deviations that are 
noticeable in the SEM micrographs. The aerogel sheets can be effectively glued to a substrate 

(a) (b)

(c) (d)

(e) (f)
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by contacting selected regions with ethanol, and allowing evaporation to densify the aerogel 
sheet. Adhesion increases because the collapse of aerogel thickness increases contact area 
between the nanotubes and the substrate. 
The aerogel sheets can also be densified into super-thin and free-standing sheet. Figure 5e is 
a photo image showing that a densified CNT sheet covers a 2.5 cm diameter hole in a metal 
plane. The super-thin sheet is made by densifing two cross-stacked CNT sheets (Fig. 5f). The 
nanotube sheets, which combine high transparency with high electronic conductivity, are 
highly flexible and provide giant gravimetric surface areas. The measured gravimetric 
strength of orthogonally oriented sheet arrays exceeds that of a high-strength steel sheet 
(Alive et al., 2009; M. Zhang et al., 2005). These sheets have been used in laboratory 
demonstrations for microwave bonding of plastics and for making transparent, highly 
elastomeric electrodes; planar sources of polarized broad-band radiation; conducting 
appliqués; flexible organic light-emitting diodes; and solar cells (Alive et al., 2009; Ulbricht 
et al., 2006 & 2007; Williams et al., 2008; M. Zhang et al., 2005).  
Many real applications, such as field and thermionic emission electron sources (Kuznetzov 
et al., 2010; P. Liu et al., 2010; Y. Wei et al., 2008; Xiao et al., 2008; Y. C. Yang et al., 2010), 
loudspeakers (Alive et al., 2010; Kozlov et al., 2009; Xiao et al., 2008), CNT touch screens 
(Feng et al., 2010), high strength CNT yarns (Lima et al., 2011; K. Liu et al., 2010; M. Zhang et 
al., 2004; X. Zhang et al., 2006; Zhong et al., 2010), electrodes for batteries and 
supercapacitors (H. X. Zhang et al., 2009; R. F. Zhou et al., 2010), CNT/polymer composites 
(Q. F. Cheng et al., 2010; L. Chen et al., 2009; M. Zhang et al., 2005), and wrappers (Lima et 
al., 2011) were demonstrated. It is also demonstrated that the CNT sheets can be used as 
scaffolds for tissue engineering (Galvan-Garcia et al., 2007). It is no doubt that more 
applications will be developed and practiced. 

3. Making drawable CNT forest 

The CNT draw process does not work for all CNT forests. The experimental results show 

that the drawability depends strongly on the structural interconnections between CNTs and 

the network of interconnections between CNT bundles within the forest. The nanotubes in 

the forest should be intermittently bundled in order to be drawable (Fig. 6). In the forest 

height direction, this means that a nanotube switches many times from being bundled with 

a few neighboring nanotubes, to being unbundled, and then to being bundled with a few 

different neighboring nanotubes. Bundled nanotubes are simultaneously pulled from 

different elevations in the forest sidewall so that they join with bundled nanotubes that have 

reached the top and bottom of the forest, thereby minimizing breaks in the resulting fibrils 

(containing many bundled CNTs) (Figs. 4b and 4c). If there is too little lateral connectivity in 

the forest, the forest is undrawable because pulling on the forest sidewall just removes a few 

nanotubes rather than a continuous sheet. If there is too much inter-tube connectivity, only a 

chunk of forest is extracted before draw terminates. 

The interconnections between CNTs and CNT bundles are formed during CNT growth, 

which are determined by the synthesis process. The CNT synthesis process is a complex 

process, which is related to the substrate and supporting materials, catalyst materials and 

their amount, carbon sources and partial pressure (feedstock), carrier gas and gas as an 

etching agent, total flow rate (gas residual time), process temperature, temperature ramp-up 

rate and cool-down rate, process pressure, process steps, process time, and many other 
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details, such as history of reaction chamber, contamination, size of chamber and substrate, 

etc. CNT forests can be produced over a broad range of conditions. However, not every 

forest is suitable for solid-state fabrication of CNT sheets. This is because the forest needs to 

meet certain conditions to be a drawable CNT forest as described above. The drawable 

forest can be fabricated by just using C2H2/Ar (without H2, water or other agents) and Fe 

thin film on Si substrate (without buffer layers such as SiO2 and Al2O3). The buffer layers 

and other gases as well as their combinations are necessary to control the size and properties 

of CNTs. The drawable forests can be fabricated under different synthesis conditions. The 

CNT area density, height of forest, and purity of the CNTs are considered being the 

parameters for monitoring and controling the interconnections of CNTs in the forest. 

  

 
(a)     (b) 

Fig. 6. SEM images show the side views of a drawable CNT forest (a) and its structure in 
high magnification (b). 

3.1 Structures of CNT forest 
A single nanotube naturally curves (in bending status) during growth if no external forces 

exist. The bending stress can come from the nanotube’s own weight, interaction with 

neighbor nanotubes, or limited growing space. As shown in Fig. 7a, a single tube keeps 

growing straight for a limited length: it falls down to the substrate and turns its growth 

direction many times during CVD process. A group of CNTs can form a randomly oriented 

CNT mat or well-aligned CNT arrays, depending on the density of catalyst and their 

activities under the same synthesis conditions. Figures 7b to 7d show the effects of the 

number of catalyst particles with similar area density on the formation of a CNT thin sheets 

array. Figure 7b shows CNT walls that were grown from 0.1 m wide and 40 m long 

catalyst lines patterned by e-beam lithography. There were no external forces during CNT 

growth. The walls bend when their height is over a certain level. The bending directions and 

angles depend on each wall’s morphologies. The nanotubes within each wall confine the 

nearest neighbors and attract the outermost nanotubes to their neighbors via van der Waals 

forces, thereby producing oriented growth. However, the CNTs in such thin walls present 

random curvatures and are tangled (Fig. 7b) because of the weak confinement in thickness 

direction. As the thickness of the wall increases, the alignment of the CNTs is improved due 

to the crowding effect. Figure 7c shows ~100 m high CNT wall array grown from a 0.5 m 
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wide and 40 m long catalyst lines in which nanotubes were better aligned (Fig. 7d). In a 

forest, the CNTs can have different growth rates, which lead to the structure of the forest. 

Figure 8 shows three typical structures. In Fig. 8f, more than 80% of the CNTs are not 

straight: they periodically bend within fixed intervals throughout their entire length. As a 

result of this regular bending, a wavy structure resulted. It is believed that the wavy 

structure is formed because there are roughly two groups of catalysts uniformly distributed 

on substrate: one is more active and results in higher CNT growth rate than the other. Due 

to van der Waals forces, which stick nanotubes together whenever they touch, the growth 

rate of the array is limited by the nanotubes with relatively slow growth rate when catalysts 

stay on the surface of substrate. The nanotubes with higher growth rate are forced to bend 

periodically. The period of the wave is related to the ratio of growth rates of these two 

groups (Fig. 8c). When the distribution of the catalyst activity is relatively narrow and the 

density is high (Fig. 8a), the forest will have the morphology as shown in Fig. 8d. When the 

distribution of the catalyst activity results in the distribution of growth rate as shown in Fig. 

8b and the density is high, the forest will be formed by the straight CNTs which form 

bundles while the waved CNTs switch between different bundles as the morphologies show 

in Figs. 6b and 8e. Such structure is believed to be important for assembling CNT sheets by 

drawing CNTs directly from the forest. 

 

 

Fig. 7. SEM image of CVT walls grow on patterned (a) very thin, (b) 0.1 m wide and 40 m 

long, and (c) 0.5 m wide and 40 m long catalyst lines. (d) SEM image of the CNTs in a 
wall in (c).  

)b()a(

)d()c(

1 μm 

20 μm 

20 μm 

1 μm 

 

www.intechopen.com



 
Electronic Properties of Carbon Nanotubes 12

 

Fig. 8. (a) to (c) Schematic of the population of the CNTs related with the growth rate and (d) 
to (f) typical SEM images of the CNT forests. (d), (e), and (f) are in the same scale and they 
are corresponding to (a), (b), and (c), respectively. 

3.2 CNT area density 
As shown in Fig. 7, CNT area density (number of nanotubes per square centimeter) in the 
forest is a key factor to establishing the interconnections between CNTs in the forest and the 
drawability of the forest. The schematic illustration of drawability to the area density is 
shown in Fig. 9. If the area density is very low, CNTs will lay on the substrate randomly. 
The CNTs can grow in the out-of-plane direction and form a vertical aligned forest when its 
area density exceeds a threshold value. If the forest has very high density, the CNTs in the 
forest will form big bundles and the forest will not be drawable.  
 

 

Fig. 9. Schematic illustration showing the relationship between the forest drawability and 
the area density of CNTs. The dash line corresponds to the forest with higher height. 

Experimentally, the area density of the forest is calculated from counting the root of the 
nanotubes on substrate after removal the forest from the substrate. Figure 10 shows the 
surfaces of the substrates after removing the forest. Each circle dot in the images is the root 
of a nanotube. 
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(a)     (b) 

Fig. 10. SEM images show the surfaces of the substrate after removal CNT forests. (a) and (b) 
show the typical surfaces of the drawable forest and the un-drawable forest, respectively.  
Each circle in the image is a root of a CNT. The bright dots are the by-products of the CVD 
process. Two images are in the same scale. 

 

 

Fig. 11. SEM image of a drawable forest. There are holes with ~ 1 m diameter distributed in 
the forest. 

Drawable forests must have a high enough area density for CNTs in the forest to form 
interconnections. The required area density of the forest is related to the diameter of the 
nanotubes. When the forest is formed by CNTs with ~10 nm diameters, the well-drawn 
forest has the area density ~1011/cm2, and the undrawable forest has an area density of less 
than 1010/cm2.  The area density needs to be higher for the forest with thinner CNTs.   
The effect of area density can be compensated by adjusting the height of the forest (see 
section 3.4).  The area density can also be lowered by controlling the distribution of catalysts 
through patterning. Figure 11 shows the SEM image of a drawable forest. There are 
uniformly distributed holes due to the missing catalysts on the substrate. The less CNT 
interconnections in the holes results in the easy draw of the too densely packed CNT forest. 
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3.3 Purity of the CNTs 
Generally, the drawable forests need to be clean. Amorphous carbon (a-C) deposited on 

CNTs during CVD process might not be avoidable. A proper amount a-C might be helpful 

in CNT interconnections. However, too much a-C will increase the locking between CNTs 

and CNT bundles, which will cause the breaking of fibrils during sheet draw. The results of 

TGA measurement of the drawable forest and TEM observation of the CNT sheet are shown 

in Fig. 12.  

 

 
                                         (a)                                                                     (b) 

Fig. 12. (a) TGA data shows the thermal stability and the purity of the CNTs and (b) TEM 
image of a CNT sheet. 

3.4 Height of the forest 
As described above, the interconnections of CNTs in the forest play an important role in the 

drawability of the forest. The CNTs form small bundles, each consisting of a few nanotubes, 

in the forest with individual nanotubes moving in and out of different bundles. The three-

dimensional connectivity caused by intermittently switched bundling is believed to be 

important for the drawing process. The too-long and too-short CNT forests are not suitable 

for the solid-state process because the interconnections there either too much or too little for 

continuously pulling CNTs out of the forest. Figure 13a is the schematic relationship 

between drawability and length of the forest. CNTs can be drawn from a ~20 m high forest 

as shown in Fig. 13b. Experiments demonstrated that the good drawablity has been obtained 

in up to 500 m high forests formed by nanotubes 10 nm in diameter. Two-millimeter high 

forests formed by tubes 30~50 nm in diameter are demonstrated to be drawable  Inoue, 

2011.  

Since the drawability is determined by the interconnections of CNTs in the forest, the very-

short and very-high forests could be drawable by adjusting other parameters. For example, 

very-short forest could be drawable if the area density is high enough and relatively more 

interconnections occur along their length. For high forests, lowering the area density and the 

interconnections between CNTs and their bundles along their length will create the same 

effect (Fig. 9). 
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                                             (a)                                                                    (b) 

Fig. 13. (a) Schematic of the possible relationship between drawability and forest height. (b) 

SEM image shows that the CNTs can be drawn continuously from a 20 m high CNT forest. 

The forest-sheet conversion rate and the thickness of as-produced sheet depend on the 

height and the density of the forest, as well as the bundling level of tubes in the forest. For 

forests having similar topology, the highest forests were easiest to draw into sheets – most 

probably because increasing nanotube length increases inter-fibril mechanical coupling 

within the sheets, and produce a higher forest-sheet conversion rate. A one centimeter 

length of 245 m high forest converts to about a three-meter-long free-standing CNT sheet. 

By adjusting the height and density of the forest; converting a one centimeter length forest 

to over a ten meter long sheet has been achieved. The thickness of the as-produced CNT 

sheet increased with increasing forest height and was 18 m in SEM images of a sheet 

drawn from a 245 m high forest.  

3.5 Process temperature 
Temperature is another important parameter, which determines other synthesis parameters 

for CNT growth and the quality of the CNTs. The intensity ratio of the G band (IG at ~1580 

cm-1) and D band (ID at ~1350 cm-1) in Raman spectra and the initial burning temperature of 

the CNTs obtained from the TGA are used to evaluate the quality of the CNTs. G band and 

D band were originated from the Raman active in-plane atomic displacement E2g mode and 

disorder-included features due to the finite particle size effect or lattice distortion, 

respectively (Tuinstra & Koenig, 1970). The increase of IG/ID indicates that the degree of 

long-range ordered crystalline perfection of the CNTs increases. The better the 

crystallization of the graphene layers of the CNTs, the higher the initial burning 

temperature of the CNTs. Maintaining a spatial homogeneous temperature during the 

growth process was demonstrated a critical factor for fabricating long CNTs with consistent 

electrical characteristics (X. Wang et al., 2009). Many researches show that the quality of the 

CNTs becomes better as the growth temperature increases (Y. T. Lee et al., 2002; C. J. Lee et 

al., 2001; K. Kim et al., 2005; X. Feng et al., 2009). However, other parameters for CNT 

growth must be optimized if increasing temperature since the temperature increase has 

direct influences on the formation and the activity of the catalysts and the feedstock of the 

carbon atoms. The partial pressure of the hydrocarbon gas usually needs to be lowered at a 

higher process temperature.  
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Fig. 14. SEM image of large amount of helically coiled carbon nanostructures. Each coil 
grows with its own diameter and pitch. 

4. Conclusion 

Individual carbon nanotubes are like minute bits of string, and many trillions of these 

invisible strings must be assembled together to make useful macroscopic articles. This 

chapter presents the fabrication processes to making CNT sheets. The purity of the 

nanotubes, the height of the forest, the morphology of the forest, especially the 3D structure 

by self-assembly during CVD process, and the area density of the nanotubes are the main 

factors of the drawability of the forest. There are no inherent limitations on either sheet 

width or length, and no special difficulties arise in maintaining sheet quality during the 

draw. Currently, the sheets are drawn at up to 2 m/s from special CNT forests (Alive et al., 

2009; Lima, et al., 2011) and the width at up to 20 cm (C. Feng et al., 2010). This solid-state 

process is scalable for continuous, high-rate production. Extension of the technologies of 

solid-state sheet fabrication to longer CNTs, as well as to a few walled or single walled 

nanotubes, are important because longer nanotube lengths will enable properties 

improvements for active devices by means of enabling closer approach of sheet properties to 

those of individual nanotubes and the conductivity, transparency, and strength of the sheet 

could be improved by using thinner nanotubes. 

CNTs can also be in the coiled structure (Amelinckx et al., 1994 ; Dunlap, 1992; M. Zhang & 

J. Li, 2009).  Figure 14 shows the helically coiled CNTs grown on iron-coated indium tin 

oxide substrate by catalytic CVD (M. Zhang et al., 2000). More than 95% of the wires are in 

helical structures. The coils have various diameters and pitches. They grow out of the 

substrate and maintain their self-organization well during growth. If the coiled CNT forest 

is drawable, the sheet will have interesting properties that the straight CNTs could not 

provide. There is plenty of room to further improve the processes and properties of the CNT 

sheets. 

10 μμm
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