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1. Introduction 

Since Iijima reported MWCNTs in 1991, CNTs have captured the intensive attention of 
researchers worldwide due to the combination of their expected structural perfection, small 
size, low density, high stiffness, high strength, and excellent electronic properties. CNTs 
have been widely adopted as microscopic probing tips (Dai et al., 1996; Hafner et al., 2001), 
nanocomposites reinforcements (Bower et al., 1998; Jin et al., 1998), nanotweezers (Kim & 
Lieber, 1999), and nanoactuators (Baughman et al., 1999; Fennimore et al., 2003) due to their 
slender and high aspect ratio structures. Meanwhile, nanotubes are also highly susceptible 
to buckling under compression, which is a structural instability. Once the buckling of CNTs 
occurs, the load-carrying capability would suddenly reduce and lead to possible 
catastrophic failure of the nanotubes, which significantly limit the loading strengths of the 
probing tips and compressive strengths of nanocomposite structures. Even the physical 
properties such as conductance of carbon nanotube can be influenced by the occurrence of 
buckling (Postma et al., 2001). Hence, it is crucial to understand the mechanism of nanotube 
buckling and even predict the onset of buckling in order to improve the nanotube 
applications.  
A review of the relevant literature shows that significant studies have employed both 
experimental (Falvo et al., 1997; Iijima et al., 1996; Thostenson & Chou, 2004; Waters et al., 
2004) and theoretical (Ru, 2000; Yakobson & Avouris, 2001) approaches to investigate the 
bucking behaviors of CNTs. However due to the difficulties encountered at nanoscale, the 
experimental investigation of the buckling behaviors of CNTs remains a challenging 
problem and individual factors that affect buckling could not be easily identified. In 
theoretical study, the CNTs are commonly treated as beams or thin-shell tubes with certain 
wall thickness and elastic constants and, thus, it is difficult to consider the chirality and size 
effects on buckling behavior of CNTs because the continuum assumption disregards the 
discrete nature of atomic structures (Ru, 2000; Yakobson & Avouris, 2001). Some researchers 
attempted to introduce the atomic-continuum method combining the atomic detail in the 
continuum description and examine the various properties of CNTs (Chang, 2004; Guo et 
al., 2008; Li & Chou, 2003a, 2003b). The atomic-continuum method could shorten the 
computational time in larger atomic system.    
As the fast development and rapid advancement of computers, molecular approaches have 
become important tools and are widely applied to study the factors that would influence the 
buckling of CNTs (Buehler et al., 2004; Cao & Chen, 2006a, 2006b; Huh & Huh, 2008; Liew et 
al., 2004; Ozaki et al., 2000). Although some researchers already discussed various aspects of 
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the CNT buckling behavior, systematic analysis on the effect of geometry (i.e. radius, length 
and length-to-radius ratio) and chirality (i.e. armchair, zigzag and chiral) on the buckling 
mechanism is still lacking to the best of our knowledge. Consequently, the present study 
employs MD simulations based on the Tersoff many-body potential function (Tersoff, 1986, 
1988, 1989) to perform a systematic and comprehensive investigation into the buckling 
behaviors of single-walled CNTs under uniaxial compressive displacement loading. Besides, 
the applicability of the continuum buckling theory, which has been well developed for thin 
tubes, on predicting the buckling behavior of the CNT will also be examined. 

2. Methodology 

Atomic model of the single-walled CNT with radius r and axial length L are illustrated in 
Fig. 1. All simulations are performed at room temperatures, 300K using a rescaling method 
and Newton’s equations of motion are solved using a fifth order Gear’s predictor-corrector 
algorithm. The empirical Tersoff many-body potential (Tersoff, 1986, 1988, 1989), which is 
commonly adopted in CNTs molecular simulation studies to provide quick estimation and 
significant insight into the thermo-mechanical behavior, is employed to describe the 
interatomic interaction between the carbon atoms. The force acting on an individual atom is 
obtained by summing the forces contributed by the surrounding atoms. The initial atomic 
models of CNT will be relaxed under NTP ensemble for 10000 time steps with a 1 fs step size 
to make sure the nanotubes reach their equilibrium states.  
 
 
 

 
 
 

Fig. 1. The schematic presentation of the CNT under uniaxial compression.  

During the simulations, the nanotube is compressed uniaxially and incrementally along z 
direction by a uniform strain under NTV ensemble. The periodic boundary condition (PBC) 
is applied in the axial direction, which served as a loading mechanism to apply uniform 
displacements. Minimum image criterion is adopted to implement the periodic boundary 
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condition. In order to reduce the loading strain rate, additional MD steps are applied for the 
relaxation of the CNT after each stage of the compression. The equilibrated configuration 
will be used as the initial state for the next loading step. In this study, the applied strain 
increment is 0.5%, then the CNT atomic system is relaxed for the interval of 10 ps and the 
corresponding strain rate is 0.05% ps-1. The total energy, pressure and atomic configuration 
of the relaxed structure are monitored at each loading step to determine whether the 
buckling of the CNT occurs. Once a sudden jump in the total energy, as illustrated in Fig. 2, 
is observed, the atomic configuration of the nanotube would be inspected. Buckling strains 
(or called critical compressive strains) can be indicated from the jumps in the total energy 
and pressure. 
 

 
Fig. 2. The relation between the system energies and compressive strains for (5,5) CNT with 
length of 7.38Å. 

CNTs can be considered as a graphene sheet rolled into a cylindrical shell and three distinct 
types of nanotubes could be classified as armchair, zigzag and chiral according to the way of 
rolling-up. In order to assess the influence of geometry and chirality on the buckling 
behavior of the single-walled CNTs, various radii, lengths, length-to-radius ratios and 
helical types of CNTs would be simulated and elucidate the dependence of buckling strain. 

The length-to-radius ratio (or called slenderness ratio) is defined as . .
L

S R
r

= . The radius 

and translation length, which is the smallest periodic axial distance, of (m,n) CNTs can be 
calculated as 

2 23( )
2

a n m mn
r

π

+ +
=  

( , )
3

2m n
R

T r
d

π=  

where a is the interatomic C–C bond length, 1.42Å and Rd  is the greatest common divisor of 
2n + m and 2m + n. Since the periodic boundary condition is employed as a loading 
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mechanism, the simulated CNT length must be multiple of the translation length so that the 
complete six-membered ring structure of the CNT could be preserved. The geometric 
parameters, radius r and length L, for different chiralities of CNTs are listed in Table 1-3, 
respectively. Similar radius, length and slenderness ratio for armchair, zigzag and chiral 
CNTs are chosen, if possible, for the simulation. Since the translation lengths for (6,4), (9.6) 
and (12,8) chiral CNTs are 18.569 Å, the choices of slenderness ratios for chiral CNTs are 
more limited. 
 

 (m,n) (5,5) (8,8) (10,10) 
Radius(Å) 3.39 5.424 6.78 

Length(Å) / S.R.  7.38 / 2.18 
12.30 / 3.63 
36.89 / 10.88 
61.49 / 18.14 
86.08 / 25.39 

147.57 / 43.53 

12.3 / 2.27 
19.68 / 3.63 
59.03 / 10.88 
98.38 / 18.14 

137.73 / 25.39 
236.11 / 43.53 

14.76 / 2.18 
24.595 / 3.63 
73.79 / 10.88 
122.98 / 18.14 

172.165 / 25.39 
295.14 / 43.53 

Table 1. The radii and lengths of the modeled armchair CNTs 

 
(m,n) (9,0) (14,0) (17,0) 

Radius(Å) 3.523 5.48 6.655 
Length(Å) / S.R. 8.52 / 2.42 

12.78 / 3.63 
38.34 / 10.88 
63.9 / 18.14 

89.46 / 25.39 
153.36 / 43.53 

12.78 / 2.33 
21.3 / 3.89 

59.64 / 10.88 
97.98 / 17.88 
140.58 / 25.65 
238.56 / 43.53 

17.04 / 2.56 
25.56 / 3.84 

72.42 / 10.88 
119.28 / 17.92 
170.4 / 25.60 
289.68 / 43.53 

Table 2. The radii and lengths of the modeled zigzag CNTs 

 
(m,n) (6,4) (9,6) (12,8) 

Radius(Å) 3.413 5.119 6.825 
Length(Å) / S.R. 18.569 / 5.44 

37.138 / 10.88 
55.707 / 16.32 
92.845 / 27.20 
148.55 / 43.52 

18.569 / 3.62 
55.707 / 10.88 
92.845 / 18.14 
129.982 / 25.39 
222.83 / 43.53 

18.569 / 2.72 
74.276 / 10.88 
129.982 / 18.92 
167.712 / 24.57 
297.10 / 43.53 

Table 3. The radii and lengths of the modeled chiral CNTs 

3. Results 

MD approaches are utilized to simulate the uniaxial compression test of CNTs with different 
geometries and chiralities. The size and chirality effects on buckling behaviors are studied 
and systematically compared through the critical compressive strains. It is noticed that two 
distinct types of buckling configurations are commonly observed as shown in Fig. 3 (a) and 
(b). One is shell wall buckling with kinks on the wall with the tube’s centerline remaining 
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straight, which is a local instability and the other is column buckling, which buckle as a 
whole. Moreover, there is another intriguing type of initial buckling configuration, which 
starts with a bump on the wall as shown in Fig. 3(c), and the CNT will eventually turn into 
column or shell wall buckling. It is also observed that the buckling kinks or bends appear 
mostly near the middle of the nanotubes, which indicates the loading mechanism does not 
impose any extra constraint on the two ends. Unlike the velocity controlled loading (Jeng et 
al, 2004), the drastic deformation starts from the imminent places near the ends due to 
Poisson’s effect. Hence, it is difficult to separate the boundary constraint effect from the 
other investigating factors. It is also noted that the radial distribution function before and 
after buckling is quite similar as shown in Fig. 4, which implies that the bond structures do 
not change due to buckling. 
 

   
        (a)        (b)      (c) 

Fig. 3. The buckled shapes of CNTs. (a) shell wall, (b) column and (c) bump on the wall. 
 

 
 

Fig. 4. The radial distribution functions before and after buckling. 

The buckling strains for different chirality and slenderness ratio of CNTs are shown in Fig. 
5, 6 and 7, respectively. The filled marks indicate column buckling and the empty one 
indicate shell wall buckling. In general, the nanotube’s buckling behavior transits from shell 
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wall type for a short tube to column type for a long tube of the same radius irrespective to 
the chirality of the CNTs. For slender nanotubes ( . . 20S R ≥ ), axial compression results in 
“global buckling” while the nanotubes undergo “local buckling” for stout nanotubes 
( . . 10S R ≤ ). It is noticed that the slenderness ratio has strong influence on the buckling 
strains and the buckling strains decrease rapidly with the increase of slenderness ratio 
particularly for CNTs with smaller radii. Under similar length-to-radius ratio, it is noted that 
the buckling strain decreases as the radius of the CNT increases especially for CNTs with 
smaller slenderness ratios. It is observed that the chirality of the CNTs does not affect the 
buckling behaviors and buckling strains significantly.   
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Fig. 5. The relationship between the buckling strain and slenderness ratio for armchair 
CNTs. ˒ˑ: (5,5), ○●: (8,8), ːˏ: (10,10) CNT. 
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Fig. 6. The relationship between the buckling strain and slenderness ratio for zigzag CNTs. 
˒ˑ: (9,0), ○●: (14,0), ːˏ: (17,0) CNT. 
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Fig. 7. The relationship between the buckling strain and slenderness ratio for chiral CNTs. 
˒ˑ: (6,4), ○●: (9,6), ːˏ: (12,8) CNT. 

4. Analysis and discussion 

From current simulation results, it is very difficult to deduce a clear relationship between 
the critical compressive buckling strain and the CNT geometry and helical type, not to 
mention predicting the buckling type. In continuum mechanics, there already exist theories 
to calculate the buckling strain of thin shell tube depending on the buckling type in 
macroscopic scale. However, the applicability of continuum buckling theory in nanoscale is 
still an unsolved question. Hence, the continuum predictions on the buckling strains and the 
simulation results will be compared in order to examine the applicability.  
By using Euler-Bernoulli beam theory, the critical buckling strain of a tube with both ends 
clamped displaying the column-like buckling behavior can be described as (Landau et al., 
1986)  

 

2 2
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where t is the thickness of the tube. If t r<< , the equation could be rewritten as  
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It is noticed that the critical compressive buckling strain decreases as the inverse square of 
the slenderness ratio for column-type buckling. On the other hand, the critical compressive 
buckling strain of the tube displaying the shell-like buckling behavior is (Libai & Simmonds, 
1998; Timoshenko & Gere, 1961) 
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The Poisson’s ratio, ν, of the CNTs is chosen as 0.19 (Yakobson et al. 1996). It is noted that 
the critical compressive strain of shell-like buckling depends only on the tube thickness and 
radius, but is independent of the tube length.   
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Fig. 8. The comparisons between the continuum predictions and molecular simulation 
results for CNTs. ˒ˑ:(5,5), ○●:(9,0) and ːˏ:(6,4) 
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Fig. 9. The comparisons between the continuum predictions and molecular simulation 
results for CNTs. ˒ˑ:(8,8), ○●:(14,0) and ːˏ:(9,6)  

Fig. 8, 9 and 10 illustrate the comparisons between the continuum predictions on the 
buckling strains and the simulation results for respective set of similar radii. One of the 
uncertainties of the continuum model is the effective nanotube thickness. Here in this 
research, the effective nanotube thickness is chosen as 0.66Å (Yakobson et al. 1996), which is 
roughly the atomic radius of carbon, instead of the commonly used CNT wall thickness, 3.4 
Å. Since the nanotube thickness is not negligible as compared to the radius, Eq. (1) is 

S.R. 

Bu
ck

lin
g 

st
ra

in
(%

) 

S.R. 

Bu
ck

lin
g 

st
ra

in
(%

) 

www.intechopen.com



 
Structural Instability of Carbon Nanotube 

 

287 

adopted in the comparison. The dash lines illustrate the continuum prediction of shell-like 
buckling while the solid lines depict the prediction based on Euler-Bernoulli beam theory. It 
is observed that the buckling resistance does not show obvious dependence on the CNT 
chirality under similar radii. The continuum prediction of shell-like buckling can serve as an 
upper bound for predicting the shell wall buckling but significantly overestimate the 
buckling strains for nanotubes with higher length-to-radius ratio irrespective to the 
nanotube chirality. As the slenderness ratio becomes higher, the continuum prediction 
based on Euler-Bernoulli beam theory could capture the trend of column type buckling but 
also overestimate the buckling strains for nanotubes with smaller length-to-radius ratio. It is 
observed that those buckling strain which deviate significantly from the continuum 
prediction are at the intersection region of the two continuum theories. It is speculated that 
the difference in buckling strain between the continuum theories and simulation results at 
the transition region could be due to the competition between two buckling mechanisms. 
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Fig. 10. The comparisons between the continuum predictions and molecular simulation 
results for CNTs. ˒ˑ: (10,10), ○●: (17,0) and ːˏ: (12,8) 

5. Conclusion 

In this work, molecular dynamics approach is employed to study the buckling behaviors of 
single-walled carbon nanotubes with different geometric sizes and chiralities under room 
temperature. Based on the MD simulation results, it is observed that the nanotube’s 
buckling behavior transits from shell wall type for a short tube to column type for a long 
tube of the same radius irrespective to the chirality of the CNTs. Moreover, the buckling 
strain is getting smaller as the CNT becomes slender for most nanotubes, which implies that 
the slender nanotubes have lower buckling resistance. Under similar length-to-radius ratio, 
it is noted that the buckling strain decreases as the radius of the CNT increases especially for 
CNTs with smaller slenderness ratios. From the comparison with the prediction made by 
continuum buckling theories, it is concluded that the corresponding buckling strain and 
buckling type predicted by the continuum theory could agree reasonably well with MD 
simulations of the CNTs under compression except at the transition region. From the 
findings of this paper, it is suggested that the continuum buckling theory with proper choice 
of parameters, i.e., wall thickness and Poisson’s ratio, could capture the trend of the 
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buckling strain on the length-to-radius ratio disregarding to the helical types (i.e., armchair, 
zigzag and chiral) of the nanotubes and, hence, could serve as a primitive guideline in 
predicting the buckling strain of the CNTs.  
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