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1. Introduction  

Since single-walled carbon nanotube (SWCNT) and multi-walled carbon nanotube 
(MWCNT) are found by Iijima (1991, 1993), these nanomaterials have stimulated extensive 
interest in the material research communities in the past decades. It has been found that 
carbon nanotubes possess many interesting and exceptional mechanical and electronic 
properties (Ruoff et al., 2003; Popov, 2004). Therefore, it is expected that they can be used as 
promising materials for applications in nanoengineering. In order to make good use of these 
nanomaterials, it is important to have a good knowledge of their mechanical properties. 
Experimentally, Tracy et al. (1996) estimated that the Young’s modulus of 11 MWCNTs vary 
from 0.4TPa to 4.15TPa with an average of 1.8TPa by measuring the amplitude of their 
intrinsic thermal vibrations, and it is concluded that carbon nanotubes appear to be much 
stiffer than their graphite counterpart. Based on the similar experiment method, Krishnan et 
al. (1998) reported that the Young’s modulus is in the range of 0.9TPa to 1.70TPa with an 
average of 1.25TPa for 27 SWCNTs. Direct tensile loading tests of SWCNTs and MWCNTs 
have also been performed by Yu et al. (2000) and they reported that the Young’s modulus 
are 0.32-1.47TPa for SWCNTs and 0.27-0.95TPa for MWCNTS, respectively. In the 
experiment, however, it is very difficult to measure the mechanical properties of carbon 
nanotues directly due to their very small size. 
Based on molecular dynamics simulation and Tersoff-Brenner atomic potential, Yakobson et 
al. (1996) predicted that the axial modulus of SWCNTs are ranging from 1.4 to 5.5 TPa (Note 
here that in their study, the wall thickness of SWNT was taken as 0.066nm); Liang & 
Upmanyu (2006) investigated the axial-strain-induced torsion (ASIT) response of SWCNTs, 
and Zhang et al. (2008) studied ASIT in multi-walled carbon nanotubes. By employing a 
non-orthogonal tight binding theory, Goze et al. (1999) investigated the Young’s modulus of 
armchair and zigzag SWNTs with diameters of 0.5-2.0 nm. It was found that the Young’s 
modulus is dependent on the diameter of the tube noticeably as the tube diameter is small. 
Popov et al. (2000) predicted the mechanical properties of SWCNTs using Born’s 
perturbation technique with a lattice-dynamical model. The results they obtained showed 
that the Young’s modulus and the Poisson’s ratio of both armchair and zigzag SWCNTs 
depend on the tube radius as the tube radius are small. Other atomic modeling studies 

www.intechopen.com



 
Carbon Nanotubes - Synthesis, Characterization, Applications 

 

220 

include first-principles based calculations (Zhou et al., 2001; Van Lier et al., 2000; Sánchez-
Portal et al., 1999) and molecular dynamics simulations (Iijima et al., 1996). Although these 
atomic modeling techniques seem well suited to study problems related to molecular or 
atomic motions, these calculations are time-consuming and limited to systems with a small 
number of molecules or atoms. 
Comparing with atomic modeling, continuum modeling is known to be more efficient from 
computational point of view. Therefore, many continuum modeling based approaches have 
been developed for study of carbon nanotubes. Based on Euler beam theory, Govinjee and 
Sackman (1999) studied the elastic properties of nanotubes and their size-dependent 
properties at nanoscale dimensions, which will not occur at continuum scale. Ru (2000a,b) 
proposed that the effective bending stiffness of SWCNTs should be regarded as an 
independent material parameter. In his study of the stability of nanotubes under pressure, 
SWCNT was treated as a single-layer elastic shell with effective bending stiffness. By 
equating the molecular potential energy of a nano-structured material with the strain energy 
of the representative truss and continuum models, Odegard et al. (2002) studied the 
effective bending rigidity of a graphite sheet. Zhang et al. (2002a,b,c, 2004) proposed a 
nanoscale continuum theory for the study of SWCNTs by directly incorporating the 
interatomic potentials into the constitutive model of SWCNTs based on the modified 
Cauchy-Born rule. By employing this approach, the authors also studied the fracture 
nucleation phenomena in carbon nanotubes. Based on the work of Zhang (2002c), Jiang et al. 
(2003) proposed an approach to account for the effect of nanotube radius on its mechanical 
properties. Chang and Gao (2003) studied the elastic modulus and Poisson’s ratio of 
SWCNTs by using molecular mechanics approach. In their work, analytical expressions for 
the mechanical properties of SWCNT have been derived based on the atomic structure of 
SWCNT. Li and Chou (2003) presented a structural mechanics approach to model the 
deformation of carbon nanotubes and obtained parameters by establishing a linkage 
between structural mechanics and molecular mechanics. Arroyo and Belytschko (2002, 
2004a,b) extended the standard Cauchy-Born rule and introduced the so-called exponential 
map to study the mechanical properties of SWCNT since the classical Cauchy-Born rule 
cannot describe the deformation of crystalline film accurately. They also established the 
numerical framework for the analysis of the finite deformation of carbon nanotubes. The 
results they obtained agree very well with those obtained by molecular mechanics 
simulations. He et al. (2005a,b) developed a multishell model which takes the van der Waals 
interaction between any two layers into account and reevaluated the effects of the tube 
radius and thickness on the critical buckling load of MWCNTs. Gartestein et al. (2003) 
employed 2D continuum model to describe a stretch-induced torsion (SIT) in CNTs, while 
this model was restricted to linear response. Using the 2D continuum anharmonic 
anisotropic elastic model, Mu et al. (2009) also studied the axial-induced torsion of 
SWCNTs. 
In the present work, a nanoscale continuum theory is established based on the higher order 
Cauchy-Born rule to study mechanical properties of carbon nanotubes (Guo et al., 2006; 
Wang et al., 2006a,b, 2009a,b). The theory bridges the microscopic and macroscopic length 
scale by incorporating the second-order deformation gradient into the kinematic 
description. Our idea is to use a higher-order Cauchy-Born rule to have a better description 
of the deformation of crystalline films with one or a few atom thickness with less 
computational efforts. Moreover, the interatomic potential (Tersoff 1988, Brenner 1990) and 
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the atomic structure of carbon nanotube are incorporated into the proposed constitutive 
model in a consistent way. Therefore SWCNT can be viewed as a macroscopic generalized 
continuum with microstructure. Based on the present theory, mechanical properties of 
SWCNT and graphite are predicted and compared with the existing experimental and 
theoretical data. 
The work is organized as follows: Section 2 gives Tersoff-Brenner interatomic potential for 
carbon. Sections 3 and 4 present the higher order Cauchy-Born rule is constructed and the 
analytical expressions of the hyper-elastic constitutive model for SWCNT are derived, 
respectively. With the use of the proposed constitutive model, different mechanical 
properties of SWCNTs are predicted in Section 5. Finally, some concluding remarks are 
given in Section 6.  

2. The interatomic potential for carbon 

In this section, Tersoff-Brenner interatomic potential for carbon (Tersoff, 1988; Brenner, 
1990), which is widely used in the study of carbon nanotubes, is introduced as follows. 

 ( ) ( ) ( )IJ R IJ IJ A IJV r V r B V r   (1) 

Where 

 2 ( ) 2/ ( )( ) ( ) , ( ) ( )
1 1

e esβ r r sβ r re e
R A

D D S
V r f r e V r f r e

S S

    
 

 (2) 

 

1

1
1

2

0

1

2 1

( )
( )

( )
r r

f r
r r

 
 

                  
 

1

1 2

2

r r
π

cos r r r

r r

 (3) 

 
( , )

1 ( ) ( )

δ

IJ IJK IK
K I J

B G θ f r





 
  
  

  (4) 

 
2 2
0 0

0 2 2 2
0 0

( ) 1
(1 )

c c
G θ a

d d θ
 

   
   cos

 (5) 

with the constants given in the following. 
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3. The higher order cauchy-born rule 

Cauchy-Born rule is a fundamental kinematic assumption for linking the deformation of the 
lattice vectors of crystal to that of a continuum deformation field. Without consideration of 
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diffusion, phase transitions, lattice defect, slips or other non-homogeneities, it is very 
suitable for the linkage of 3D multiscale deformations of bulk materials such as space-filling 
crystals (Tadmor et al., 1996; Arroyo and Belytschko, 2002, 2004a,b). In general, Cauchy-
Born rule describes the deformation of the lattice vectors in the following way:  
 

 
Fig. 1. Illustration of the Cauchy-Born rule 

  b F a  (6) 

where F  is the two-point deformation gradient tensor, a  denotes the undeformed lattice 
vector and b  represents the corresponding deformed lattice vector (see Fig. 1 for reference). 
In the deformed crystal, the length of the deformed lattice vector and the angle between two 
neighboring lattice vectors can be expressed by means of the standard continuum mechanics 
relations: 

  b a Ca  and cos
|| |||| ||


 



a Ca

b b
 (7) 

where   b F a  ( b and a  denote the neighboring deformed and undeformed lattice 
vector, respectively) and T C F F  is the Green strain tensor measured from undeformed 
configuration.   represents the angle formed by the deformed lattice vectors b  and b . 
Though the use of Cauchy-Born rule is suitable for bulk materials, as was first pointed out 
by Arroyo and Belytschko (2002; 2004a,b), it is not suitable to apply it directly to the curved 
crystalline films with one or a few atoms thickness, especially when the curvature effects are 
dominated. One of the reasons is that if we view SWCNT as a 2D manifold without 
thickness embedded in 3D Euclidean space, since the deformation gradient tensor F  
describes only the change of infinitesimal material vectors emanating from the same point in 
the tangent spaces of the undeformed and deformed curved manifolds, therefore the 
deformation gradient tensor F  is not enough to give an accurate description of the length of 
the deformed lattice vector in the deformed configuration especially when the curvature of 
the film is relatively large. In this case, the standard Cauchy-Born rule should be modified to 
give a more accurate description for the deformation of curved crystalline films, such as 
carbon nanotubes. 

 b F a  

a 
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In order to alleviate the limitation of Cauchy-Born rule for the description of the 
deformation of curved atom films, we introduce the higher order deformation gradient into 
the kinematic relationship of SWCNT. The same idea has also been shown by Leamy et al. 
(2003).  
 

Fig. 2. Schematic illustration of the higher order Cauchy-Born rule 

From the classical nonlinear continuum mechanics point of view, the deformation gradient 
tensor F  is a linear transformation, which only describes the deformation of an infinitesimal 
material line element dX  in the undeformed configuration to an infinitesimal material line 
element dx  in deformed configuration, i.e. 

 d d x F X  (8) 

As in Leamy et al. (2003), by taking the finite length of the initial lattice vector a  into 
consideration, the corresponding deformed lattice vector should be expressed as: 

 ( )d 
a

0
b F s s  (9) 

Assuming that the deformation gradient tensor F  is smooth enough, we can make a 
Taylor’s expansion of the deformation field at s 0 , which is corresponding to the starting 
point of the lattice vector a . 

 3( ) ( ) ( ) ( ) : ( ) / 2 (|| || )       F s F F s F s s s0 0 0 O  (10) 

Retaining up to the second order term of s  in (10) and substituting it into (9), we can get the 
approximated deformed lattice vector as:  

 
1

( ) ( ) : ( )
2

    b F a F a a0 0   (11) 

Comparing with the standard Cauchy-Born rule, it is obvious that with the use of this 
higher order term, we can pull the vector F a  more close to the deformed configuration 
(see Fig. 2 for an illustration). By retaining more higher-order terms, the accuracy of 

Tangent planar 

Current configuration 
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approximation can be enhanced. Comparing with the exponent Cauchy-Born rule proposed 
by Arroyo and Belytschko (2002, 2004a,b), it can improve the standard Cauchy-Born rule for 
the description of the deformation of crystalline films with less computational effort.  

4. The hyper-elastic constitutive model for SWCNT 

With the use of the above kinematic relation established by the higher order Cauchy-Born 
rule, a constitutive model for SWCNTs can be established. The key idea for continuum 
modeling of carbon nanotube is to relate the phenomenological macroscopic strain energy 
density 0W  per unit volume in the material configuration to the corresponding atomistic 
potential.  
 

 
Fig. 3. Representative cell corresponding to an atom I 

Assuming that the energy associated with an atom I  can be homogenized over a 
representative volume IV  in the undeformed material configuration (i.e. graphite sheet, see 
Fig. 3 for reference), the strain energy density in this representative volume can be expressed 
as: 
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And 
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where IJR  and IJr  denote the undeformed and deformed lattice vectors, respectively. IV  is 
the volume of the representative cell. ij i jF F e e  and ijk i j kG    G F e e e are the first 
and second order deformation gradient tensors, respectively. Note that here and in the 
following discussions, a unified Cartesian coordinate system has been used for the 
description of the positions of material points in both of the initial and deformed 
configurations. 

I 
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Based on the strain energy density 0W , as shown by Sunyk et al. (2003), the first Piola-
Kirchhoff stress tensor P , which is work conjugate to F  and the higher-order stress tensor 
Q , which is work conjugate to G  can be obtained as: 
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where IJf  is the generalized force associated with the generalized coordinate IJr , which is 
defined as: 
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The corresponding strain energy density can also be rewritten as: 

 0 / 2 IW W V  (17) 
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denotes the total energy of the representative cell related to atom I  caused by atomic 
interaction. IJV  is the interatomic potential for carbon introduced in Section 2.  
We can also define the generalized stiffness IJIKK  associated with the generalized 

coordinate IJr  as: 
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where the subscripts I , J  and K  in the overstriking letters, such as f , r ,R  and K , denote 
different atoms rather than the indices of the components of tensors. Therefore summation 
is not implied here by the repetition of these indices.  
From (14) and (15), the tangent modulus tensors can be derived as: 
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where [ ]ijkl ik jlA B A B , [ ]ijkl il jkA B A B . Compared with the results obtained by Zhang et 
al. (2002c), four tangent modulus tensors are presented here. This is due to the fact that 
second order deformation gradient tensor has been introduced here for kinematic 
description. Therefore, from the macroscopic point of view, we can view the SWNT as a 
generalized continuum with microstructure. 
Just as emphasized by Cousins(1978a,b), Tadmor (1999), Zhang (2002c), Arroyo and 
Belytschko (2002a), since the atomic structure of carbon nanotube is not centrosymmetric, 
the standard Cauchy-Born rule can not be used directly since it cannot guarantee the inner 
equilibrium of the representative cell. An inner shift vector η  must be introduced to achieve 
this goal. The inner shift vector can be obtained by minimizing the strain energy density of 
the unit cell with respect to η : 
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Substituting (21) into 0( )W F , G , η , we have: 
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Then the modified tangent modulus tensors can be obtained as: 
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where 21  is the second order identity tensor. The symbols used in the above expressions are 
defined as: 
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5. Mechanical properties of SWCNTs 

It is usually thought that SWCNTs can be formed by rolling a graphite sheet into a hollow 
cylinder. To predict mechanical properties of SWCNTs, a planar graphite sheet in 
equilibrium energy state is here defined as the undeformed configuration, and the current 
configuration of the nanotube can be seen as deformed from the initial configuration by the 
following mapping:   
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where , 1,2iX i   is Lagrange coordinate associated with the undeformed configuration 
(here is a graphite sheet) and , 1,2,3ix i   is Eulerian coordinate associated with the 
deformed configuration. R  is the radius of the modeled SWCNT, which is described by a 
pair of parameters ( , )n m . The radius R  can be evaluated by 2 2 / 2R a m mn n π    with 

0 3a a , where 0a  is the equilibrium bond length of the atoms in the graphite sheet.   
represents the rotation angle per unit length, and parameters 1  and 2  control the 
uniform axial and circumferential stretch deformation, respectively.  

5.1 The energy per atom for graphene sheet and SWCNTs 

First, based on the present model, the energy per atom of the graphite sheet is calculated 
and the value of -1.1801 2 2/Kg nm s  is obtained. It can be found that the present value 
agrees well with that of -7.3756 eV ( 191 1.6 10eV Nm  ) given by Robertson et al. (1992) 
with the use of the same interatomic potential.  
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Fig. 4. The energy (relative to graphite) per atom versus tube diameter 

The energy per atom as the function of diameters for armchair and zigzag SWNTs relative to 
that of the graphene sheet is shown in Figure 4. The trend is almost the same for both 
armchair and zigzag SWNTs. The energy per atom decreases with increase of the tube 
diameter with 2( ) ( ) (1 )E D E O D   , where ( )E   represents the energy per atom for 
graphite sheet. 
For larger tube diameter, the energy per atom approaches that of graphite. On the whole, it 
can be shown that the energy per atom depends obviously on tube diameters, but does not 
depend on tube chirality. For comparison, the results obtained by Robertson et al. (1992) 
with the use of both empirical potential and first-principle method based on the same 
interatomic potential are also shown in Figure 4. It can be found the present results are not 
only in good agreement with Robertson’s results, but also with those obtained by Jiang et al. 
(2003) based on incorporating the interatomic potential (Tersoff-Brenner potential) into the 
continuum analysis. 
Figure 5 shows the energy per atom for different chiral SWCNTs ((2n, n), (3n, n), (4n, n), (5n, 
n) and (8n, n)) as a function of tube radius relative to that of the graphene sheet. As is 
expected, the energy per atom of chiral SWCNTs decreases with increasing tube radius and 
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the limit value of this quantity is -7.3756 eV when the radius of tube is large. From Figure 5, 
it can be clearly found again that the strain energy per atom depends only on the radius of 
the tube and is independent of the chirality of SWCNTs, which is similar to armchair and 
zigzag SWCNTs. 
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Fig. 5. The strain energy relative to graphite (eV/atom) as a function of tube radius. 

5.2 Young’s modulus and Poisson ratio for graphene sheet and SWCNTs 

As shown by Zhang et al. (2002c), the Young’s modulus and the Poisson’s ratio of planar 
graphite can be defined from ˆ

FFM  by the following expressions: 
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For SWCNTs, we also use the above expressions to estimate their mechanical properties 
along the axial direction although the corresponding elasticity tensors are no longer 
isotropic as in planar graphite case. Note that all calculations performed here are based on 
the Cartesian coordinate system and the Young’s modulus E  is obtained by dividing the 
thickness of the wall of SWNT, which is often taken as 0.334nm in the literature. 
As for the graphite, the resulting Young’s modulus is 0.69TP (see the dashed line in Figure 
6a), which agrees well with that suggested by Zhang et al (2002c) and Arroyo and 
Belytschko (2004b) based on the same interatomic potential (represents by the horizontal 
solid line in Figure 6a). The Poisson’s ratio predicted by the present approach is 0.4295 (see 
the dashed line shown in Figure 6c), which is also very close to the value of 0.4123 given by 
Arroyo and Belytschko (2004b) using the same interatomic potential.  
As for armchair and zigzag SWCNTs, Figure 6a displays the variations of the Young’s 
modulus with different diameters and chiralities. It can be observed that the trend is similar 
for both armchair and zigzag SWNTs and the influence of nanotube chirality is not significant. 
For smaller tubes whose diameters are less than 1.3 nm, the Young’s modulus strongly 
depends on the tube diameter. However, for tubes diameters larger than 1.3 nm, the 
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dependence becomes very weak. As a whole, it can be seen that for both armchair and zigzag 
SWNTs the Young’s modulus increases with increase of tube diameter and a plateau is 
reached when the diameter is large, which corresponds to the modulus of graphite predicted 
by the present method. The existing non-orthogonal tight binding results given by Hernández 
et al.(1998), lattice-dynamics results given by Popov et al. (2000) and the exponential Cauchy-
Born rule based results given by Arroyo and Belytschko (2002b) are also shown in Figure 6a 
for comparison. Comparing with the results given by Hernández et al. (1998) and Popov et al. 
(2000), it can be seen that although their data are larger than the corresponding ones of the 
present model, the general tendencies predicted by different methods are in good agreement. 
From the trend to view, the present predicted trend is also in reasonable agreement with that 
given by Robertson et al. (1992), Arroyo and Belytschko (2002b), Chang and Gao (2003) and 
Jiang et al. (2003). As for the differences between the values of different methods, it may be 
due to the fact that different parameters and atomic potential are used in different theories or 
algorithms (Chang and Gao, 2003). For example, Yakobson’s (1996) result of surface Young’s 
modulus of carbon nanotube based on molecular dynamics simulation with Tersoff-Brenner 
potential is about 0.36TPa nm, while Overney’s (1993) result based on Keating potential is 
about 0.51 TP nm. Recent ab initio calculations by Sánchez-Portal et al.(1999) and Van Lier et al. 
(2000) showed that Young’s modulus of SWNTs may vary from 0.33 to 0.37TPa nm and from 
0.24 to 0.40 TPa nm, respectively. Furthermore, it can be found that our computational results 
agree well with that given by Arroyo and Belytschko (2002b) with their exponential Cauchy-
Born rule. They are also in reasonable agreement with the experimental results of 0.8 0.4 TP 
given by Salveta et al. (1999).   
Figure 6b depicts the size-dependent Young’s moduli of different chiral SWCNTs ((2n, n), 
(3n, n), (4n, n), (5n, n) and (8n, n)). It can be seen that Young’s moduli for different chiral 
SWCNTs increase with increasing tube radius and approach the limit value of graphite 
when the tube radius is large. For a given tube radius, the effect of tube chirality can almost 
be ignored. The Young’s modulus of different chiral SWCNTs are consistent in trends with 
those for armchair and zigzag SWCNTs. For chiral SWCNTs, the trends of the present 
results are also in accordance with those given by other methods, including lattice dynamics 

(Popov et al., 2000) and the analytical molecular mechanics approach (Chang & Gao, 2003) . 
From Figure 6c, the effect of tube diameter on the Poisson’s ratio is also clearly observed. It 
can be seen that, for both armchair and zigzag SWNTs, the Poisson’s ratio is very sensitive 
to the tube diameters especially when the diameter is less than 1.3 nm. The Poisson’s ratio of 
armchair nanotube decreases with increasing tube diameter but the situation is opposite for 
that of the zigzag one. However, as the tube diameters are larger than 1.3 nm, the Poisson’s 
ratio of both armchair and zigzag SWNTs reach a limit value i.e. the Poisson’s ratio of the 
planar graphite. For comparison, the corresponding results suggested by Popov et al. (2000) 
are also shown in Figure 6c. It can be observed that the tendencies are very similar between 
the results given by Popov et al. (2000) and the present method although the values are 
different. Moreover, it is worth noting although many investigations on the Poisson’s ratio 
of SWNTs have been conducted, there is no unique opinion that is widely accepted. For 
instance, Goze et al. (1999) showed that the Poisson’s ratio of (10,0), (20,0), (10,0) and (20,0) 
tubes are 0.275, 0.270, 0.247 and 0.256, respectively. Based on a molecular mechanics 
approach, Chang and Gao (2003) suggested that the Poisson’s ratio for armchair and zigzag 
SWNTs will decrease with increase of tube diameters from 0.19 to 0.16, and 0.26 to 0.16, 
respectively. In recent ab initio studies of Van Lier et al. (2000), even negative Poisson’s ratio 
is reported. 
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Fig. 6. Comparison between the results obtained with different methods (a) Young’s 
modulus and (b) Young’s moduli of chiral SWCNTs versus tube radius. (c)Poisson’s ratio. 
Open symbols denote armchair, solid symbols denote zigzag. Dashed horizontal line 
denotes the results of graphite obtained with the present approach and the solid horizontal 
line denotes the results of graphite obtained by Arroyo and Belytschko (2004b) with 
exponential mapping, respectively. 

Popov 

Present 

Popov

Hernández

Presen

Arroyo

Arroyo(a) 

(b) 

(c) 

www.intechopen.com



 
Study of Carbon Nanotubes Based on Higher Order Cauchy-Born Rule 

 

233 

It also can be seen from Figure 6c that the obtained Poisson’s ratio is a little bit high when 
tube diameter is less than 0.3nm. It may be ascribed to the fact that when tube diameter is 
less than 0.3nm, because of the higher value of curvature, higher order ( 2 ) deformation 
gradient tensor should be taken into account in order to describe the deformation of the 
atomic bonds more accurately. Another possible explanation is that for such small values of 
diameter, more accurate interatomic potential should be used in this extreme case. 

5.3 Shear modulus for SWCNTs 

As for the shear moduli of SWCNTs, to the best of our knowledge, only few works studied 
this mechanical property systematically since it is difficult to measure them with experiment 
techniques. Most of these works focus only on the armchair and zigzag SWCNTs.(Popov et 
al., 2000; Li & Chou, 2003) Thus, the shear moduli of achiral (i.e., armchair and zigzag) 
SWCNTs are firstly investigated and compared with the existing results (Li & Chou, 2003) 
for validation of the present model. Then the shear modulus of SWCNTs with different 
chiralities including (2n, n), (3n, n), (4n, n), (5n, n) and (8n, n) are studied systematically. For 
determining the shear modulus of SWCNT, it is essential to simulate its pure torsion 
deformation which can be implemented by incrementally controlling   but relaxing inner 
displacement η , parameters 1  and 2  in Equation (42). The shear modulus of SWCNTs 
can be obtained by the U (strain energy density) and  (twist angle per unit length). Similar 
to Young’s modulus, shear modulus is defined with respect to the initial stress free state. 
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Fig. 7. (a) Shear moduli of armchair and zigzag SWCNTs versus tube radius, (b) Effect of 
tube radius on normalized shear moduli of armchair and zigzag SWCNTs.  

Figure 7a shows the variations of the shear modulus of achiral SWCNTs with respect to the 
tube radius. It can be found that shear modulus of armchair and zigzag SWCNTs increase 
with increasing tube radius and approach the limit value 0.24 TPa when the tube radius is 
large. It is also observed that, similar to the results given by Li & Chou (2003) and Xiao et al. 
(2005), the present predicted shear moduli of armchair and zigzag SWCNTs hold similar 
size-dependent trends and the chirality-dependence of shear moduli is not significant. 
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Figure 7b shows the normalized shear moduli obtained with different methods. The 
normalization is achieved by using the values of 0.24 TPa and 0.48 TPa which are the 
limiting values of graphite sheet obtained by the present approach and molecular structural 
mechanics (Li & Chou, 2003), respectively. Although there is a discrepancy in limit values, it 
can be found that the size effect obtained by the present study is in good agreement with 
that of Li and Chou (2003). The difference among the limit values may be attributed to the 
different atomistic potential and/or force field parameters used in the computation model. 
The size-dependent shear modulus of different chiralities SWCNTs are displayed in Figure 
8. It is observed that, similar to achiral SWCNTs, the shear moduli of chiral SWCNTs 
increase with increasing tube radius and a limit value of 0.24 TPa is approaching when the 
tube radius (also n) is large. For (2n, n) SWCNT, the maximum difference of shear modulus 
is up to 42%. The dependence of tube chirality is not obvious for chiral SWCNTs. With 
reference to Figure 7a and Figure 8, it can be found that, at small radius (<1nm), the shear 
modulus of SWCNTs are sensitive to the tube radius, while at larger radius (>1nm), the size 
and chirality dependency can be ignored. 
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Fig. 8. Shear moduli of chiral SWCNTs versus tube radius. 

5.4 Bending stiffness for graphene sheet and SWCNTs 
In present study, the so-called bending stiffness for graphene sheet refers to the resistance of 
a flat graphite sheet or the curved wall of CNT with respect to the infinitesimal local 
bending deformation. The bending stiffness for SWCNTs refers to the bending resistance of 
the cylindrical tube formed by rolling up graphite sheet with respect to the infinitesimal 
global bending deformation (see Figure 9 for reference). It should be pointed out that for the 
first definition, the bending stiffness is an intrinsic material property solely determined by 
the atomistic structure of the mono-layer crystalline membrane. The second definition, 
however, is a structural property which is determined not only by the bending stiffness of the 
single atom layer crystalline membrane, but also by the geometry dimensions, such as the 
diameter of the tube. Unfortunately, these two issues are not well addressed in the past 
literatures (Kudin et at., 2001; Enomoto et al., 2006). 
Based on the higher order Cauchy-Born rule and Equation (42), the strain energy per atom 
(energy relative to a planar graphite sheet) as a function of the radius of bending curvature can 
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Fig. 9. (a) Bending of a flat graphite sheet; (b) Bending of a single-walled carbon nanotube 

be obtained. By fitting the data of the strain energy and the bending curvature radii with 
respect to the equation 2

0/ 2membraneU D R , one can obtain that the bending stiffness membraneD  
of the graphite sheet is 2.38 eVÅ2/atom, which is almost independent of its rolling direction. 
This indicates that the flat graphite sheet is nearly isotropic with regard to bending. The 
current result agrees well with the effective bending stiffness of graphite sheet 2.20 eVÅ2/atom 
reported by Arroyo and Belytschko (2004a) with membrane theory and the same interatomic 
potential under the condition of infinitesimal bending. It is also in good agreement with the 
result of 2.32 eVÅ2/atom obtained by Robertson et al. (1992) with atomic simulations. 
To explore the effective bending stiffness of carbon nanotube based on the higher order 
Cauchy-Born rule, the following map is used to describe the pure bending deformation of 
the tube 

 
1 1 2

2
2 1 2

3 2 1

sin( ) sin( )sin

sin ( ) 2 sin( )cos
cos( ) ( arctan( ))

x X R X R

x X R X R

x R X R X

  

  
 

 

 
 

 (45) 

where R  is the radius of the modeled SWCNT and   is the radius of curvature of the 
bending tube (curvature of the neutral axis). With the use of this mapping and taking the 
inner-displacement relaxation into consideration, the strain energy of the bending tube can 
be computed. 
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Fig. 10. Comparison of the strain energy of (10,0) SWCNT as a function of the bending angle 
for HCB( ) and MD( ) simulation. Herein and after, HCB refers to the continuum 
theory based on a higher-order Cauchy-Born rule and MD refers to molecular dynamics 

Figure 10 show the bending strain energy of zigzag (10,0) SWCNT as a function of bending 
angle. Here the bending strain energy is defined as the difference between the energy of the 
deformed tube and that of its straight status. It can be found that the present results 
obtained with much less computational effort are in good agreement with those of MD 
simulations. 
where L  denotes the length of the tube. It can be seen clearly from Equation (46) that the 
effective bending stiffness of CNTs can be defined as the second derivative of the elastic 
energy per unit length with respect to the curvature of the neutral axis under pure bending 
(i.e. constant curvature). Its dimension is eV nm . Figure 11 shows the bending stiffness of 
different chiral SWCNTs as a function of the tube radius. It can be found that the bending 
stiffness is almost independent on the chirality of SWCNTs and increases with the 
increasing of tube radius. Furthermore, using a polynomial fitting procedure, we can 
approximate the bending stiffness over the considered range of tube radii by the following 
analytical expression  
Once the bending strain energy U  is known, the effective bending stiffness of carbon 
nanotube can be obtained by numerical differentiation based on the following formula 

 2 2tubeU D L  (46) 

Just like the derivation of the bending stiffness of the flat graphite sheet, here no 
representative thickness of the tube is required to obtain the effective bending stiffness of 
CNTs.  

 
2 3 3 2 2( ) 5583.956( ) ( ) 9.225( ) ( )

32.418( ) ( ) 1.517( )
tubeD eV nm eV nm R nm eV nm R nm

eV R nm eV nm

  
  

 (47) 
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Fig. 11. Variation of bending stiffness with tube radius for different chiral SWCNTs 

6. Conclusion 

In this charpter, a higher order Cauchy-Born rule has been constructed for studying 
mechanical properties of graphene sheet and carbon nanotubes. In the present model, by 
including the second order deformation gradient tensor in the kinematic description, we can 
alleviate the limitation of the standard Cauchy-Born rule for the modeling of nanoscale 
crystalline films with less computational efforts. Based on the established relationship 
between the atomic potential and the macroscopic continuum strain energy, analytical 
expressions for the tangent modulus tensors are derived. From these expressions, the hyper-
elastic constitutive law for this generalized continuum can be obtained.  
With the use of this constitutive model and the Tersoff-Brenner atomic potential for carbon, 
the size and chirality dependent mechanical properties (including strain energy, Young’s 
modulus, Poisson’s ratio, shear modulus, bending stiffness) of graphene sheet and carbon 
nanotube are predicted systematically. The present investigation shows that except for 
Poisson’s ratio other mechanical properties (such as Young’s modulus, shear modulus, 
bending stiffness and so on) for graphene sheet and SWCNTs are size-dependent and their 
chirality-dependence is not significant. With increasing of tube radius, Young’s modulus 
and shear modulus of SWCNTs increase and converge to the corresponding limit values of 
graphene sheet. As for Poisson’s ratio, it can be found that it is very sensitive to the radius 
and the chirality of SWCNTs when the tube diameter is less than 1.3 nm. The present results 
agree well with those obtained by other experimental, atomic modeling and continuum 
concept based studies.  
Besides, the present work also discusses some basic problems on the study of the bending 
stiffness of CNTs. It is pointed out that the bending stiffness of a flat graphite sheet and that 
of CNTs are two different concepts. The former is an intrinsic material property while the 
later is a structural one. Since the smeared-out model of CNTs is a generalized continuum 
with microstructure, the effective bending stiffness of it should be regarded as an 
independent structural rigidity parameter which can not be determined simply by 
employing the classic formula in beam theory. It is hoped that the above findings may be 
helpful to clarify some obscure issues on the study of the mechanical properties of CNTs 
both theoretically and experimentally. 
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It should be pointed out that the present method is not limited to a specific interatomic 
potential and the study of SWCNTs. It can also be applied to calculate the mechanical 
response of MWCNTs. The proposed model can be further applied to other nano-film 
materials. The key point is to view them as generalized continuum with microstructures.  

7. Acknowledgment 

This work was supported by the National Natural Science Foundation of China (10802076), 
the Nature Science Foundation of Zhejiang province (Y6090543), China Postdoctoral Science 
Foundation (20100470072) and the Scientific Research Foundation of Zhejiang Ocean 
University. 

8. References 

Arroyo, M. & Belytschko, T. (2002). An atomistic-based finite deformation membrane for 
single layer crystalline films. Journal of the Mechanics and Physics of Solids, 50, 
1941-1977. 

Arroyo, M. & Belytschko, T. (2004a). Finite element methods for the non-linear mechanics of 
crystalline sheets and nanotubes. International Journal for Numerical Methods in 
Engineering, 59, 419-456. 

Arroyo, M. & Belytschko, T. (2004b). Finite crystal elasticity of carbon nanotubes based on 
the exponential Cauchy-Born rule. Physical Review B, 69, 115415-1-11. 

Bhattacharya, K. & James, R.D. (1999). A theory of thin films with applications to 
microstructures. Journal of the Mechanics and Physics of Solids, 47, 465-502. 

Brenner, D.W. (1990). Empirical potential for hydrocarbons for use in simulation the 
chemical vapor deposition of diamond films. Physical Review B, 42, 9458-9471. 

Chang, T.C. & Gao, H.J. (2003) Size-dependent elastic properties of a single-walled carbon 
nanotube via a molecular mechanics model. Journal of the Mechanics and Physics 
of Solids, 51, 1059-1074. 

Cousins, C.S.G. (1978a). Inner elasticity. Journal of Physics C: Solid State Physics, 11, 4867-
4879. 

Cousins, C.S.G. (1978b). The symmetry of inner elastic constants. Journal of Physics C: Solid 
State Physics, 11, 4881-4900. 

Enomoto, K.; Kitakata, S.; Yasuhara, T.; Ohtake, N.; Kuzumaki, T. & Mitsuda, Y. (2006) 
Measurement of Young's modulus of carbon nanotubes by nanoprobe 
manipulation in a transmission electron microscope. Applied Physics Letters, 88, 
153115-1-3. 

Garstein, Y.N.; Zakhidov, A.A. & Baughman, R.H. (2003) Mechanical and electromechanical 
coupling in carbon nanotube distortions. Physical Review B, 68, 115415. 

Govindjee, S. & Sackman, J.L. (1999). On the use of continuum mechanics to estimate the 
properties of nanotubes. Solid State Communication, 110, 227-230. 

Goze, C.; Vaccarini, L.; Henrard, L.; Bernier, P.; Hernándz, E. & Rubio, A. (1999). Elastic and 
mechanical properties of carbon nanotubes. Synthetic Metals, 103, 2500-2501. 

Guo, X.; Wang, J.B. & Zhang, H.W. (2006) Mechanical properties of single-walled carbon 
nanotubes based on higher order Cauchy-Born rule. International Journal of Solids 
and Structures, 43(5), 1276-1290. 

He, X.Q.; Kitipornchai, S. & Liew, K.M. (2005a). Buckling analysis of multi-walled carbon 
nanotubes: a continuum model accounting for van der Waals interaction. Journal of 
the Mechanics and Physics of Solids, 53, 303-326. 

www.intechopen.com



 
Study of Carbon Nanotubes Based on Higher Order Cauchy-Born Rule 

 

239 

He, X.Q.; Kitipornchai, S.; Wang, C.M. & Liew K.M. (2005b). Modeling of van der Waals 
force for infinitesimal deformation of multi-walled carbon nanotubes treated as 
cylindrical shells. International Journal of Solids and Structures, 42, 6032-6047. 

Hernándz, E.; Goze, C.; Bernier, P. & Rubio, A. (1998). Elastic properties of C and BxCyNz 
composite nanotubes. Physical Review Letters, 80, 4502-4505 

Iijima, S. (1991). Helical microtubules of graphitic carbon. Nature, 354, 56-58.  
Iijima, S. & Ichlhashi T. (1993). Single-shell carbon nanotubes of 1-nm diameter. Nature, 363, 

603-605.  
Iijima, S.; Brabec, C.; Maiti, A. & Bernholc, J. (1996). Structural flexibility of carbon 

nanotubes. Journal of Chemical Physics, 104, 2089-2092. 
Jiang, H.; Zhang, P.; Liu, B.; Huang, Y.; Geubelle, P.H.; Gao, H. & Hwang K.C. (2003). The 

effect of nanotube radius on the constitutive model for carbon nanotubes. 
Computational Materials Science, 28, 429-442. 

Krishnan, A.; Dujardin, E.; Ebbesen, T.W.; Yianilos, P.N. & Treacy, M.M.J. (1998). Young’s 
modulus of single-walled nanotubes. Physical Review B, 58, 14013-14019. 

Kudin, D.; Scuseria, G. & Yakobson, B. (2001). C2, BN, and C nanoshell elasticity from ab 
initio computations. Physical Review B, 64, 235406 

Leamy, M.J.; Chung, P.W. & Namburu, R. (2003). On an exact mapping and a higher-order 
Born rule for use in analyzing graphene carbon nanotubes. Proceedings of the 11th 
Annual ARL-USMA Technical Symposium, November 5. 

Li, C.Y. & Chou, T.W. (2003). A structural mechanics approach for analysis of carbon 
nanotubes. International Journal of Solids and Structures, 40, 2487-2499. 

Liang, H.Y. & Upmanyu, M. (2006) Axial-strain-induced torsion in single-walled carbon 
nanotubes. Physical Review Letters, 96, 165501. 

Mu, W.H.; Li, M.; Wang, W. & Ou-Yang, Z.C. (2009) Study of axial strain-induced torsion of 
single-wall carbon nanotubes using the 2D continuum anharmonic anisotropic 
elastic model. New Journal of Physics, 11, 113049. 

Odega, G.M.; Gates, T.S.; Nicholson, L.M. & Wise, K.E. (2002). Equivalent-continuum 
modeling of nano-structured materials. Composites Science and Technology, 62, 
1869-1880. 

Popov, V.N.; Van Doren, V.E. & Balkanski, M. (2000). Elastic properties of single-walled 
carbon nanotubes. Physical Review B, 61, 3078-3084. 

Popov, V.N. (2004). Carbon nanotubes: properties and application. Materials Science and 
Engineering R, 43, 61-102 

Robertson, D.H.; Brenner, D.W. & Mintmire, J.W. (1992). Energy of nanoscale graphitic 
tubules. Phyical Review B, 45, 12592-12595. 

Ru, C.Q. (2000a). Effective bending stiffness of carbon nanotubes. Physical Review B, 62, 
9973-9976. 

Ru, C.Q. (2000b). Elastic buckling of single-walled carbon nanotube ropes under high 
pressure. Physical Review B, 62, 10405-10408 

Ruoff, R.S.; Dong, Q. & Liu, W.K. (2003). Mechanical properties of carbon nanotubes: 
theoretical predictions and experimental measurements. Comptes Rendus 
Physique, 4, 993-1008. 

Sánchez-Portal, D.; Artacho, E. & Soler, J.M. (1999). Ab initio structural, elastic, and 
vibrational properties of carbon nanotubes. Physical Review B, 59, 12678-12688. 

Sunyk, R. & Steinmann, P. (2003). On higher gradients in continuum-atomic modeling. 
International Journal of Solids and Structures, 40, 6877-6896. 

Tadmor, E.; Ortiz, M. & Phillips R. (1996). Quasicontinuum analysis of defects in solids. 
Philosophy Magazine A, 73, 1529-1563. 

www.intechopen.com



 
Carbon Nanotubes - Synthesis, Characterization, Applications 

 

240 

Tadmor, E.B.; Smith, G.S.; Bernstein, N. & Kaciras, E. (1999). Mixed finite element and 
atomistic formulation for complex crystals. Physical Review B, 59, 235-245. 

Tersoff, J. (1988). New empirical approach for the structure and energy of covalent systems. 
Physical Review B, 37, 6991-7000. 

Treacy, M.M.J.; Ebbesen, T.W. & Gibson, J.M. (1996). Exceptionally high Young’s modulus 
observed for individual carbon nanotubes. Nature, 381, 678-680. 

Van Lier, G.; Van Alsenoy, C.; Van Doren, V. & Geerlings P. (2000). Ab initio study of the 
elastic properties of single-walled carbon nanotubes and graphene. Chemical 
Physics Letter, 326, 181-185. 

Wang, J.B.; Guo, X.; Zhang, H.W.; Wang, L. & Liao, J.B. (2006a) Energy and mechanical 
properties of single-walled carbon nanotubes predicted using the higher order 
Cauchy-Born rule. Physical Review B, 73, 115428.  

Wang, J.B.; Guo, X. & Zhang, H.W. (2006b) Nonlinear extension of single-walled carbon 
nanotubes analyzed by a continuum model based on a higher-order Cauchy-Born 
rule. Journal of Computational and Theoretical Nanoscience, 3, 798–802.  

Wang, J.B.; Guo, X. & Zhang, H.W. (2009a) Higher Order Cauchy-Born Rule Based Study of 
Chiral Single-walled Carbon Nanotubes. Journal of Computational and Theoretical 
Nanoscience, 6(7), 1617-1621.  

Wang, J.B.; Guo, X. & Zhang, H.W. (2009b) A Revisit of the Bending Stiffness of Graphite 
Sheet and Single-Walled Carbon Nanotubes. Journal of Computational and 
Theoretical Nanoscience, 6(10), 2242-2246. 

Xiao, J.R.; Gama, B.A. & Gillespie Jr, J.W. (2005) An analytical molecular structural 
mechanics model for the mechanical properties of carbon nanotubes. International 
Journal of Solids and Structures, 42, 3075-3092. 

Yakobson, B.I.; Brabec, C.J. & Bernholc, J. (1996). Nanomechanics of carbon tubes: 
instabilities beyond linear response. Physical Review Letters, 76, 2511-2514. 

Yu, M.F.; Files; B.S.; Arepalli, S. & Ruoff, R.S. (2000a). Tensile loading of ropes of single wall 
carbon nanotubes and their mechanical properties. Physical Review Letters, 84, 
5552-5555. 

Yu, M.F.; Lourie, O.; Dyer, M.J.; Moloni, K.; Kelly, T.F. & Ruoff, R.S. (2000b). Strength and 
breaking mechanism of multiwalled carbon nanotubes under tensile load. Science, 
287, 637-640. 

Zhang, H.W.; Wang, L.; Wang, J.B.; Zhang, Z.Q. & Zheng, Y.G. (2008) Torsion induced by 
axial strain of double-walled carbon nanotubes. Physics Letters A, 372, 3488-3492. 

Zhang, P.; Huang, Y.; Gao, H. & Hwang, K.C. (2002a). Fracture nucleation in single-wall 
carbon nanotubes under tension: a continuum analysis incorporating interatomic 
potentials. Journal of Applied Mechanics, 69, 454-458. 

Zhang, P.; Huang, Y.; Geubelle, P.H. & Hwang, K.C. (2002b). On the continuum modeling of 
carbon nanotubes. Acta Mechanica Sinica, 18, 528-536. 

Zhang, P.; Huang, Y.; Geubelle, P.H.; Klein, P.A. & Hwang, K.C., (2002c). The elastic 
modulus of single-walled carbon nanotubes: A continuum analysis incorporating 
interatomic potentials. International Journal of Solids and Structures, 39, 3893-3906. 

Zhang, P.; Jiang, H.; Huang, Y.; Geubelle, P.H. & Hwang, K.C., (2004). An atomistic-based 
continuum theory for carbon nanotubes: analysis of fracture nucleation. Journal of 
the Mechanics and Physics of Solids, 52, 977-998. 

Zhou, G.; Duan, W.H. & Gu, B.L., (2001). First-principles study on morphology and 
mechanical properties of single-walled carbon nanotube. Chemical Physics Letters, 
333, 344-349.  

www.intechopen.com



Carbon Nanotubes - Synthesis, Characterization, Applications

Edited by Dr. Siva Yellampalli

ISBN 978-953-307-497-9

Hard cover, 514 pages

Publisher InTech

Published online 20, July, 2011

Published in print edition July, 2011

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

Carbon nanotubes are one of the most intriguing new materials with extraordinary properties being discovered

in the last decade. The unique structure of carbon nanotubes provides nanotubes with extraordinary

mechanical and electrical properties. The outstanding properties that these materials possess have opened

new interesting researches areas in nanoscience and nanotechnology. Although nanotubes are very promising

in a wide variety of fields, application of individual nanotubes for large scale production has been limited. The

main roadblocks, which hinder its use, are limited understanding of its synthesis and electrical properties which

lead to difficulty in structure control, existence of impurities, and poor processability. This book makes an

attempt to provide indepth study and analysis of various synthesis methods, processing techniques and

characterization of carbon nanotubes that will lead to the increased applications of carbon nanotubes.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Jinbao Wang, Hongwu Zhang, Xu Guo and Meiling Tian (2011). Study of Carbon Nanotube Based on Higher

Order Cauchy-Born Rule, Carbon Nanotubes - Synthesis, Characterization, Applications, Dr. Siva Yellampalli

(Ed.), ISBN: 978-953-307-497-9, InTech, Available from: http://www.intechopen.com/books/carbon-nanotubes-

synthesis-characterization-applications/study-of-carbon-nanotube-based-on-higher-order-cauchy-born-rule



© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.


