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1. Introduction 

┚-thalassemia is one of the most common monogenic disease due to mutation or deletion in 
the ┚-globin gene on chromosome 11, inherited in an autosomal recessive fashion, with a 
global estimated annual birth incidence of 40,000/year1. The disease is particularly 
prevalent among Mediterranean peoples, Middle Eastern and Southeast Asians 1. 
The severity of the disease depends on the production of functional ┚-globin chain.  
Mutations of ┚-globin gene cause reduced ┚-chain synthesis (┚+) lead to ┚ thalassemia minor 
or intermedia, while mutations cause no ┚-chain synthesis (┚o) usually resulted in ┚- 
thalassemia major or Cooley's anemia2.  Lacking of ┚-chain causes ineffective production of 
oxygen-carrying protein haemoglobin, therefore results in anemia. The relative excess of ┙-
chains bind to the red blood cell membrane, undermine membrane, even form toxic 
aggregates, which aggravates anemia of patients. According to statistics, there are an 
estimated 80 million carriers of mutation of ┚-globin gene in the world3. The severe 
thalassemia is characterized by markedly ineffective erythropoiesis and severe anemia. 
The treatment for ┚-thalassemia major usually includes lifelong blood transfusion and 
allogeneic hematopoietic transplantation4. Chronic blood transfusion often causes iron 
overload, accumulated iron produces tissue damage in multiple organs, so that iron 
chelating treatment is required to prevent iron overload damage to the internal organs in 
patients.  To most of patients receiving the treatment, it is an expensive and inconvenience 
therapy for maintaining a long life. 
Bone marrow transplantation is the other effective therapy, which can eliminate a patient's 
dependence on blood transfusions5,6.  However, it is difficult to find the matching donors for 
the most of patients, which is only available for a minority of patients. 
Gene therapy is one potential novel therapeutic avenue for the treatment of inherited 
monogenic disorder.  It is a technology for correcting defective genes by introducing of the 
normal genes directly into patient’s cells.  This strategy mainly focuses on diseases caused 
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by single-gene defects, such as ┚-thalassemia.  For patients lacking a suitable bone marrow 
(BM) donor, gene therapy is not limited by the histocompatibility barrier and does not 
require immunosuppression.  
The general strategy for ┚-thalassemia gene therapy is to obtain hematopoietic stem cell 
(HSC) from patient’s bone marrow first, then, deliver a normal ┚-globin gene to patient’s 
HSC by recombinant viral vector in vitro, the transfected cells will be transplanted into 
patients, the exogenous normal ┚-globin gene would be expressed in erythroid lineage cells 
under the regulation of the promoter, the ratio of ┚-chain to ┙-chain in red cells will be 
corrected in eripheralcirculation system eventually7 (Fig1.). 
 
 

 

Fig. 1. The general strategy for ┚-thalassemia gene therapy. 

To get a persistent expression of ┚-globin gene, CD34+ cells are usually selected to be the 
target of gene transfer and transplantation. CD34 is considered as a maker for hematopoietic 
cells which possess self-renew and multiple lineage differentiation potentials, covering not 
only stem cells but also earlier multipotent progenitors and later lineage-restricted 
progenitors8.  The success of transfecting exogenous ┚-globin gene into CD34+ cells is the 
precondition of ┚-thalassemia gene therapy, which ensures the long term expression of the 
┚-globin gene due to CD34+ cells keeping differentiation into erythroid lineage cells, the 
erythroid lineage-specific expression of  ┚-globin gene will be induced and regulated in 
these cells9. 
Human ┚-globin locus is composed of five genes which includes ┚, ├, A┛, G┛, and ┝ globin 
gene, located on a short region of chromosome 11, arranged as the sequence of 5' –┝- G┛- A┛- 
├- ┚ - 3'.  Expression of all of these genes is controlled by single locus control region (LCR), 
and forms of hemoglobin expressed change during development.  Genes are expressed in 
the order in which they are arranged in the cluster10(Fig.2).  
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From Olivieri NF. The ぁ-thalassemias. The N Engl J Med╋1999╋341:99-109. 

Fig. 2. The ┚-Globin Gene Cluster on the Short Arm of Chromosome 11.  A, the し -globin–
like genes are arranged in the order in which they are expressed  during development.  
B, shows the timing of the normal developmental switching of human hemoglobin. 

2. Gene therapy for β-thalassemia 

As a classic gene model for human genetics,┚-globin gene has been extensively studied in 
the fields of gene structure, gene evolution, gene transcription and regulation.  Gene therapy 
for ┚-thalassemia was started in 1980’.  The retrovirus is the earliest and the most frequently 
used vector.  It was reported in 1988 that the retrovirus (RV) containing ┚-globin gene 
successfully transfected HSC, although the erythroid lineage-specific expression of ┚-globin 
gene was low, only 1% of normal expression level11.  It is generally considered in current 
studies that there is a therapeutic meaning only after the expression of exogenous ┚-globin 
gene reaches 10-20% of normal endogenous expression level.  The discovering of the locus 
control region (LCR) in the range of 20 kb upstream of ┝-gene greatly improved the 
erythroid lineage-specific expression of ┚-globin. LCR is composed of a series of 
hypersensitivities (HS) including HS1-HS512.  Sadelain et al. tried different HS combinations, 
reconstructed the RV vectors, got increased expression of ┚-globin gene, as high as 5＼of 

normal ┚-globin gene expression level in mice13.  But 4 months later, the expression of ┚-
globin gene cannot be detected, suggested the gene silencing appeared.  Gene silencing is a 
phenomenon that the specific gene is not expressed in vivo for a variety of reasons.  
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Studies show that the RV has the characteristics of random integrate into the host genome, 
while expression of ┚-globin gene is affected by the integrated position, which is called 
position effect variegation (PEV)14. The possible reason  
for both of PEV and gene silencing is that transduced gene located in other regions outside 
of a normal gene locus.  During the development of erythroid cells, over expressed mRNA 
from abnormal integrated position in chromosome may trigger specific mRNA degradation 
to prevent expression of the gene.  Other studies also showed that gene silencing caused by 
RV is relative with the DNA sequences of long terminal repeats (LTR) and frame of RV 
virus15. 
The transduction efficiency of RV in HSC is low due to retrovirus vector only can infect 
dividing cells, but most of the HSCs are in quiescent stage, lacking of  receptors for RV coat 
in HSC surface is also considered as one of the main reasons.  In recent years, it was found 
that the random integration features of RV creates the potential risk of activating oncogenes 
or inactivating tumor suppressor genes, so  application of RV in clinic is relatively limited16. 
The insufficiency of RV prompts people to try to develop new viral vectors for ┚-
thalassemia gene therapy, such as lentivirus (LV), adeno associated virus (AAV),et al.  The 
well-known lentivirus is human immunodeficiency virus£⊆(HIV£1).  Although LV 

belongs to retroviridae, it can effectively infect non-dividing cells. May et al. firstly obtained 
steady expression of ┚-globin gene in ┚-thalassemia mice by transducing HSCs with LV 
containing large fragment of LCR and ┚-globin gene, the expression of ┚-globin gene 
reached 10-20% of normal level, and lasted for more than 15 weeks without PEV effect, 
which showed preferable therapeutic action17.  It was reported recently that a severe 
transfusion dependent thalassemia patient who accept ┚-globin gene therapy through 
lentivirus became transfusion independent for 21 months18.  However, it is also noticeable 
that whether recombinant HIV-1 vector lost the pathogenicity completely so there will be no 
risk for patients to gain acquired immune deficiency syndrome (AIDS).  Therefore, the 
safety of vector still need be monitored and valued in a long term through more 
experiments in vivo19. 

3. AAV mediated β-thalassemia gene therapy 

Adeno-associated virus (AAV) is often found in cells that are simultaneously infected with 
adenovirus (Ad).  However, unlike Ad, AAV does not stimulate inflammation in the host; 
causes a very mild immune response has a wide range of host of human and non-human 
cells, which can be dividing and non-dividing cells; wild AAV inserts preferentially at a 
specific site on human chromosome 19.  AAV is not known to cause direct disease in 
humans and considered as the safest viral vector so far.  In the absence of helper virus, 
recombinant AAV will stably integrate into the host cell genome, mediating the long and 
stable expression of the transgene.  The main deficiency of AAV is the small packing 
capacity, only 4.5 kb20.   
AAV is a small (20 nm) replication-defective, nonenveloped virus, belongs to the genus 
Dependovirus, family Parvoviridae.  The genome of AAV is built of single-stranded 
deoxyribonucleic acid (ssDNA), comprises two open reading frames (ORFs), rep and cap, 
flanked by inverted terminal repeats (ITRs) at both ends of DNA strand.  The rep gene 
encodes 4 kinds of Rep proteins required for the AAV replication and rescue: Rep 78, Rep68, 
Rep52, Rep40.  And the cap gene contains nucleotide sequences of capsid proteins: VP1, VP2 
and VP3, which interact together to form a capsid of an icosahedral symmetry.  The ITR 
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sequences comprise 145 bases each, are required in cis for efficient virus replication, 
integration, rescue, and encapsidation21,22(Fig.3).   
 

 

From Blood, Vol. 94 No. 3 (August 1), 1999: pp. 864-874. Adeno-Associated Virus Vectors and 
Hematology . 

Fig. 3. Structure of wild-type and vector AAV genomes. A, Map of the wild-type AAV 
genome, including Rep (solid) and Cap (open) reading frames, promoters (p5, p19, and p40), 
polyadenylation site (pA), and inverted terminal repeats (ITR). The viral transcripts 
encoding the different Rep and Cap (VP1-3) proteins are shown below the genome. The 
smaller Rep proteins, VP2 and VP3, are translated from internal initiation sites. B, Map of a 
typical AAV vector, showing replacement of the viral Rep and Cap genes with a transgene 
cassette (promoter, transgene cDNA, and polyadenylation site). C, Secondary structure of 
the AAV ITR, with the locations of the Rep binding site (RBS) and terminal resolution site 
(TRS) indicated.  

There have been 11 AAV serotypes identified, of which serotype 2 (AAV2) has been the 
most extensively examined so far23.  AAV2 presents natural tropism towards skeletal 
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muscles, neurons, vascular smooth muscle cells and hepatocytes24.  Currently, the 
application of AAV serotype 2 in hemophilia B gene therapy gets a promising 
development25.  AAV2 is also studied in gene therapy for pulmonary cystic fibrosis, tumor 
and ┚-thalassemia.  Although AAV2 is the most popular serotype in various AAV studies, it 
has been shown that other serotypes can be more effective as gene delivery vectors for 
specific tissue.  Preliminary studies have demonstrated other AAV serotypes display 
different tissue tropisms26.  For instance, AAV6 has a higher efficiency in infecting airway 
epithelial cells compare to other serotypes27, AAV8 presents very high transduction rate of 
hepatocytes28, AAV1 and 5 were shown to be very efficient in gene delivery to vascular 
endothelial cells29.  The main reason causing the difference is there are distinctions among 
the capsid proteins of AAV serotypes, while the primary factor for virus entering into cells is 
the binding of capsid proteins with specific cell receptors.  For example, the receptors that 
mediate AAV2 entering into cells are 30, fibroblast growth factor receptor and the integrin 

┙ヰ┚531,32.  So  transduction efficiency of AAV serotypes is affected by distribution of 
specific AAV receptors in various tissues. 
In 1994, Srivastava et al. first reported successful transduction of CD34+ human primitive 

hematopoietic cells by recombinant AAV2 vectors at a relatively low vector:cell ratio of 

1,00033, indicated the potential of AAV2 in ┚-thalassemia gene therapy. Subsequently, AAV2 

mediated transduction of CD34 + cell were reported by a number of investigators 34-36. High 

transduction efficiency of AAV2-mediated transgene expression in HSCs was found when 

the AAV2 vector particle:cell exceeded 106 by some groups 35,36.  A few of groups concluded 

that human CD34+ cells were impervious to transduction by recombinant AAV2 vectors, 

and the transgene expression observed by others was due to ‘pseudo-transduction’ 

mediated by contaminants in the vector stocks37, which causes people focus more on the 

generation of rAAV. 

The helper virus or plasmid is required in production of recombinant AAV (rAAV) due to 

the AAV’s replication deficiency characteristic. The traditional rAAV production system 

involves transfecting HEK 293 cells with a recombinant AAV vector plasmid and an AAV 

helper plasmid in the presence of a helper virus function38,39. The vector plasmid contains 

AAV ITRs and a transgene cassette. The helper plasmid contains the AAV rep and cap gene, 

but not ITRs. Ad is the most used helper virus, which provides adequate function in helping 

the replication of the recombinant AAV. However, Ad contamination is liable to occur in the 

latter procedures of purify of AAV.  Thus, helper plasmid containing VA腰E2a and E4 gene 

of Ad genome is developed and used in many studies40-42.   

In our study, we constructed rAAV plasmid (pMT-2) containing genomic sequences of 

human ┚-globin gene and mini-cassette of locus control region (LCR) element, as described 

previously. The plasmid pAAV2-RC contains AAV2 rep and cap genes and plasmid 

pHelpers contains adenovirus-derived genes (i.e. the E2A, E4, and VARNA genes. The 

pMT-2 together with pAAV2-RC and pHelper were cotransfected into HEK 293 cells to 

generate rAAV2-┚-globin virions. The packaged rAAV2 virions were purified using a 

single-step gravity-flow column43. The purity of recombinant virions was evaluated by 

sodium dodecyl sulfate- polyacrylamide gel electrophoresis (SDS-PAGE), and the titer of 

purified viral stock was determined by quantitative DNA dot-blots. The titer of rAAV2-┚-

globin was near 1.3×1010 virus particles/ml, as determined by quantitative DNA slot blots 

.SDS-PAGE analysis revealed that rAAV2-┚-globin contained VP1, VP2, and VP3 proteins at 

a ratio of approximately 1:1:10, suggesting high purity of rAAV2-┚-globin. 
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To investigate the function of rAAV2-┚-globin in ┚- thalassemia gene therapy, we first 

detected rAAV2 mediated transduction and ┚-globin gene expression in human fetal liver 

hematopoietic cells from aborted fetus, as the expression of ┚ -globin gene in early fetal has 

not been initiatedḿThe results showed that rAAV2 efficiently transduced human fetal liver 

hematopoietic cells, and mediated expression of human ┚-globin gene in vivo, the detection 

of expression of ┚ -globin gene was stopped at 2 weeks post transplanted considering the 

activation of endogenous ┚ –globin gene. Following that, we investigated whether rAAV2 

could mediate the expression of normal ┚-globin gene in human hematopoietic cells from ┚-

thalassemia patients. We found that rAAV2-┚-globin transduced human fetal hematopoietic 

cells, as determined by allele-specific PCR analysis. Furthermore, ┚-globin transgene 

expression was detected in human hematopoietic cells up to 70 days post-transplantation in 

the recipient mice. High pressure liquid chromatography (HPLC) analysis showed that 

human ┚-globin expression level increased significantly compared with control, as indicated 

by a 1.2–2.8 fold increase in the ratio of ┚/┙ globin chain.44,45 These novel data demonstrate 

that rAAV2 can transduce and mediate normal ┚-globin gene expression in fetal 

hematopoietic cells from ┚-thalassemia patients. Our findings further support the potential 

use of rAAV-based gene therapy in treatment of human ┚-thalassemia, How to improve the 

transfection efficiency of AAV mediated HSC transduction, however  is still an important 

issue.  

Recent article reported that mutation of tyrosine residues on AAV2 capsid greatly enhanced 

transduction efficiency of AAV2 in HSC.  They generated novel AAV vectors by mutating 7 

tyrosine residues on AAV2 capsid to phenylalanine, respectively, named 

Y252,Y272,Y444,Y500,Y700,Y704 and Y730. It was showed that the transduction efficiency of 

Y444F was 8-11 times higher than wt AAV2, next followed by Y500F and Y730F.  

Furthermore, the combination of mutations Y444 + Y500F+Y730F showed even more 

increased transduction efficiency (4 times) compare to Y444F.  The similar effect also was 

observed when the tyrosine residues on AAV6 capsid was mutated to phenylalanine.  They 

discovered that increased efficiency is relative with phosphorylation of tyrosine residues on 

AAV capsid.   Tyrosine residues exposed on AAV capsid surface could be phosphorylated 

by epidermal growth factor receptor protein tyrosine kinase (EGFR-PTK) on cell surface, 

which has no effect on the steps of AAV entering into cells.46,47  However, phosphorylation 

of tyrosine residues on AAV capsid consequently triggered degradation of ubiquitin and 

proteasomal when AAV was present in cell plasma, which further caused the AAV 

degradation.  The degradation of AAV is successful avoided by mutation of tyrosine 

residues on AAV2 capsid to phenylalanine, thus improved transduction efficiency of AAV.  

Base on these encouraging results, we are trying to improve AAV transduction efficiency in 

HSC by mutating the single or combination of tyrosine residues on AAV capsid after 

analysis of sequence of AAV capsid protein, in order to facilitate the use of AAV in 

transduction of hematopoietic stem cells, and provide an effective therapeutic way for ┚-

thalassemia gene therapy. 
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