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1. Introduction 

Certain solid solutions of perovskite-type ferroelectrics show excellent properties such as 
giant dielectric response and high electromechanical coupling constant in the vicinity of the 
morphotropic phase boundary (MPB). These materials are of importance to applications 
such as electrostrictive actuators and sensors, because of the large dielectric and 
piezoelectric constants (Jaffe et al., 1971; Sawaguchi, 1953; Kuwata et al., 1982; Newnham,   
1997). The term “morphotropic” was originally used to refer to refer to phase transitions due 
to changes in composition (Ahart et al., 2008). Nowadays, the term ‘morphotropic phase 
boundaries’ (MPB) is used to refer to the phase transition between the tetragonal and the 
rhombohedral ferroelectric phases  as a result of varying the composition or as a result of 
mechanical pressure (Jaffe et al., 1954; Yamashita, 1994; Yamamoto & Ohashi, 1994;  Cao & 
Cross, 1993; Amin et al., 1986; Ahart et al., 2008). In the vicinity of the MPB, the crystal 
structure changes abruptly and the dielectric properties in ferroelectric (FE) materials and 
the electromechanical properties in piezoelectric materials become maximum.   
The common ferroelectric materials used for MPB applications is usually complex-

structured solid solutions such as lead zirconate titanate - PbZr1−xTixO3  (PZT) and Lead 

Magnesium niobate-lead titanate (1-x)PbMg1/3Nb2/3O3-xPbTiO3), shortly known as PMN-

PT. For example, PZT is a perovskite ferroelectrics which has a MPB between the tetragonal 

and rhombohedral FE phases in the temperature-composition phase diagram. However, 

these materials are complex-structured and require a complicated and costly process to 

prepare its solid solutions. Furthermore, the study of the microscopic origin of its properties 

is very complicated. 

Recently, scientists started to pay attention to the MPB in simple-structured pure compound 

ferroelectric materials such as ferroelectric oxides. For example, a recent experimental study 

on lead titanate proved that PbTiO3 can display a large MPB under pressure (Ahart et al., 

2008). These experimental results even showed richer phase diagrams than those predicted 

by first-principle calculations. Therefore, it is of particular importance to study the 
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fundamental theory of dielectric as well as piezoelectric properties of such materials in the 

vicinity of the MPB. Such knowledge helps engineering specific simple-structured nonlinear 

(NL) materials with highly nonlinear dielectric and piezoelectric properties. 

Apart from first principle calculations, an alternative way to investigate the dielectric or the 

piezoelectric properties of these materials is to use the free energy formalism. In this 

chapter, we investigate the behavior of both the dynamic and the static dielectric 

susceptibilities in ferroelectrics in the vicinity of the MPB based on the free energy 

formalism. The origin of the large values of the linear and the nonlinear dielectric 

susceptibility tensor components is investigated using semi-analytic arguments derived 

from both Landau-Devonshire (LD) free energy and the Landau-Khalatnikov (LK) 

dynamical equation. We show that, not only the static linear dielectric constant is enhanced 

in the vicinity of the MPB but also the second and the third-order static nonlinear 

susceptibilities as well. Furthermore, the behavior of the dynamic nonlinear dielectric 

susceptibility as a function of the free energy parameters is also investigated for various 

operating frequencies. This formalism enables us to understand the enhancement of the 

dielectric susceptibility tensors within the concept of ferroelectric soft-modes. The input 

parameters used to generate the results is taken from an available experimental data of 

barium titanate BaTiO3 (A common simple-structured ferroelectric oxide). The effect of 

operating frequency, and temperature, on the dynamic dielectric susceptibility is also 

investigated. The enhancement of various elements of particular nonlinear optical NLO 

process such as second-harmonic generation (SHG) and third-harmonic generation (THG) is 

investigated. The enhancement of these linear and nonlinear optical processes is compared 

with typical values for dielectrics and ferroelectrics. 

The importance of this calculation lies in the idea that the free energy material parameters 

1
β and

2
β may be regarded as a function of the material composition. Therefore, this 

calculation can be used as one of the general guiding principles in the search for materials 

with large NL dielectric susceptibility coefficients. Such knowledge of MPB helps 

engineering specific NL materials with highly nonlinear dielectric properties. In addition, 

the work presented here may stimulate further interest in the fundamental theory of 

nonlinear response of single ferroelectric crystals with simple structure such as BaTiO3 or 

PbTiO3. Such pure compounds with simple structure can be used for technological 

applications rather than material with complicated structure. 

Ishibashi & Iwata (1998) were the first to propose a physical explanation of the MPB on the 

basis of a Landau–Devonshire-type of free energy with terms up to the fourth order in the 

polarization by adopting a “golden rule” and obtaining the Hessian matrix. They expressed 

the static dielectric susceptibility ( )0χ ω =  in terms of the model parameters. They found 

that ( )0χ ω =  diverges at the MPB. In the free-energy formalism, the MPB is represented by 

1 2
β = β  where 

1
β and 

2
β are material parameters represent the coefficients of the second and 

fourth-order invariants in the free energy F. They explained the large dielectric and 

piezoelectric constants in the MPB region as a result of transverse instability of the order 

parameter (Ishibashi & Iwata, 1999a,b,c; Ishibashi, 2001; Iwata et al., 2002a,b). Such transverse 

instability is perpendicular to the radial direction in the order-parameter space near the 

MPB (Iwata et al., 2005). However, the work by Ishibashi et al. was limited to the study of 

the MPB for the static linear dielectric constant only and never extended to include the 

nonlinear dielectric susceptibility. Perhaps, this is because the expressions of the nonlinear 
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dielectric susceptibility tensor components in terms of the free energy parameters were not 

yet formulated. 
In earlier work by Osman et al. (1998a,b), the authors started to derive expressions for the 
nonlinear optical (NLO) susceptibilities of ferroelectric (FE) in the far infrared (FIR) spectral 
region based on the free energy formulation and Landau-Khalatnikov equation. The core 
part of this formulation is that the NLO susceptibilities are evaluated as a product of linear 
response functions. However, the work by Osman et al. was obtained under the 
approximation of a scalar polarization which only allows them to obtain specific nonlinear 
susceptibility elements. Soon after that, Murgan et al. (2002), presented a more general 
formalism for calculating all the second and third-order nonlinear susceptibility coefficients 
based on the Landau-Devonshire (LD) free energy expansion and the Landau-Khalatnikov 
(LK) dynamical equation. In their work they provided detailed results for all the 
nonvanishing tensor elements of the second and third –order nonlinear optical coefficients 
in the paraelectric, tetragonal and rhombohedral phase under single frequency 
approximation and second-order phase transitions.  

Our aim here is then to utilize the expressions for the NLO susceptibility tensor components 

derived by Murgan et al (2002) to extend the study of the MPB to the second and third-order 

nonlinear susceptibility. Further, both the dynamic and static case is considered and an 

explanation based on the FE soft modes is provided. Because the expressions for the 

dielectric susceptibility given by Murgan et al. (2002) do not immediately relate to the MPB, 

we will first transform them into an alternative form that shows the explicit dependence on 

the transverse optical (TO) phonon mode and the longitudinal optical (LO) modes. The 

enhancement of the dynamic nonlinear susceptibility tensors is then investigated within the 

concept of the ferroelectric soft-mode with normal frequency
T

ω . Within the free energy 

formulation, the soft-mode 
T

ω is found to include the parameter ( )1 2β −β  as well as the 

parameter ( )c
T T− .  

2. Background on morphotropic phase boundary (MPB) 

Most studies on MPB is performed on a complex structured ferroelectric or piezoelectric 

materials such as PZT or PZN-PT and only recently studies on simple structure pure 

ferroelectric  materials such as BaTiO3 or PbTiO3 took place. In this section we will shortly 

review both theoretical and experimental results on the most common MPB materials and 

its main findings. Early experimental work on MPB focused mainly on the behavior of 

piezoelectric constant. This is because most of the measurements   were based on diffraction 

which measure distortion of a unit cell. For example, Shirane & Suzuki (1952) and Sawgushi 

(1953) found that PZT solid solutions have a very large piezoelectric response near the MPB 

region. Results of this kind are reviewed by Jaffe et al (1971) who first introduced the phrase 

“morphotropic phase diagram”. A typical temperature-composition phase diagram for PZT 

is shown in Fig.1. The graph is after Noheda et al. (2000a). As shown in Fig. 1, the MPB is the 

boundary between the tetragonal and the rhombohedral phases and it occurs at the molar 

fraction compositions close to x = 0.47. In addition, the MPB boundary is nearly vertical in 

temperature scale. Above the transition temperature, PZT is cubic with the perovskite 

structure. At lower temperature the material becomes ferroelectric, with the symmetry of 

the ferroelectric phase being tetragonal (FT ) for Ti-rich compositions and rhombohedral (FR) 

for Zr-rich compositions. Experimentally, the maximum values of the dielectric permittivity, 
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piezoelectric coefficients and the electromechanical coupling factors of PZT at room 

temperature occur at this MPB (Jaffe et al., 1971). However, the maximum value of the 

remanent polarization is shifted to smaller Ti contents.  

For ferroelectrics with rhombohedral and tetragonal symmetries on the two sides of the 

MPB, the polar axes are (1,1,1) and (0,0,1) (Noheda et al., 1999). The space groups of the 

tetragonal and rhombohedral phases (P4mm and R3m, respectively) are not symmetry-

related, so a first order phase transition is expected at the MPB. However, this has never 

been observed and, only composition dependence studies are available in the literature. 

Because of the steepness of the phase boundary, any small compositional inhomogeneity 

leads to a region of phase coexistence (Kakegawa et al., 1995; Mishra & Pandey, 1996; Zhang 

et al., 1997; Wilkinson et al., 1998) that conceals the tetragonal-to-rhombohedral phase 

transition. The width of the coexistence region has been also connected to the particle size 

(Cao & Cross, 1993) and depends on the processing conditions, so a meaningful comparison 

of available data in this region is often not possible.  

Various studies (Noheda et al., 1999; Noheda et al., 2000a; Noheda et al., 2000b; Guo et al., 

2000; Cox et al., 2001) have revealed further features of the MPB. High resolution x-ray 

powder diffraction measurements on homogeneous sample of PZT of excellent quality have 

shown that in a narrow composition range there is a monoclinic phase exists between the 

well known tetragonal and rhombohedral phases. They pointed out that the monoclinic 

structure can be pictured as providing a “bridge” between the tetragonal and rhombohedral 

structures. The discovery of this monoclinic phase led Vanderbilt & Cohen (2001) to carry 

out a topological study of the possible extrema in the Landau-type expansions continued up 

to the twelfth   power of the polarization. They conclude that to account for a monoclinic 

phase it is necessary to carry out the expansion to at least eight orders. It should be noted 

that the free energy used to produce our results for the MPB means that our results apply 

only to the tetragonal and rhombohedral phases, however, since these occupy most of the 

( )1 2,β β plane, the restriction is then not too severe. 
As mentioned above, the common understanding of  continuous-phase transitions through 

the MPB region from tetragonal to rhombohedral, are mediated by intermediate phases of 

monoclinic symmetry, and that the high electromechanical response in this region is related 

to this phase transition. High resolution x-ray powder diffraction measurements on poled 

PbZr1-xTixO3 (PZT) ceramic samples close to the MPB have shown that for both 

rhombohedral and tetragonal compositions the piezoelectric elongation of the unit cell does 

not occur along the polar directions but along those directions associated with the 

monoclinic distortion (Guo et al., 2000). A complete thermodynamic phenomenological 

theory was developed by Haun et al., (1989) to model the phase transitions and single-

domain properties of the PZT system. The thermal, elastic, dielectric and piezoelectric 

parameters of ferroelectric single crystal states were calculated. A free energy analysis was 

used by Cao & Cross (1993) to model the width of the MPB region. The first principles 

calculations on PZT have succeeded in reproducing many of the physical properties of PZT 

(Saghi-Szabo et al., 1999; Bellaiche & Vanderbilt, 1999). However, these calculations have not 

yet accounted for the remarkable increment of the piezoelectric response observed when the 

material approaches its MPB. A complicating feature of the MPB is that its width is not well 

defined because of compositional homogeneity and sample processing conditions 

(Kakegawa et al., 1995). 
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Another system that has been extensively studied is the 
1 3 2 3 3 3

Pb(Zn Nb )O -PbTiO   (PZN-

PT) solid solution. It is a relaxor ferroelectric with a rhombohedral to tetragonal MPB similar 

to PZT. It shows excellent properties for applications such as sensors and electrostrictive 

actuators (Kuwata et al., 1981; Kuwata et al., 1982; Iwata et al., 2002b; Cross, 1987; Cross, 

1994). The giant dielectric response in relaxors and related materials is the most important 

properties for applications. This is because the large dielectric response means a large 

dielectric constant and high electromechanical coupling constant. 

 

 

Fig. 1. The temperature-composition phase diagram for PZT where PC is the paraelectric 
cubic phase, FT is the ferroelectric tetragonal phase, FR is the ferroelectric rhombohedral 
phase and FM is the ferroelectric monoclinic phase. The nearly horizontal line represents 
the boundary between the paraelectric phase and the ferroelectric phase while the nearly 
vertical line represents the MPB between the tetragonal and the rhombohedral phase. The 
open circles represent the results obtained by Jaffe et al., (1971) while the black circles and 
squares represent the modifications introduced by Noheda et al., (2000a). The monoclinic 
phase existed at the MPB is represented by the dashed area. The graph is after Noheda et 
al. (2000a). 
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Iwata et al. (2002b; 2005) have theoretically discussed the phase diagram, dielectric 

constants, elastic constants, piezoelectricity and polarization reversal in the vicinity of the 

MPB in perovskite-type ferroelectrics and rare-earth–Fe2 compounds based on a Landau-

type free energy function. They clarified that the instability of the order parameter 

perpendicular to the radial direction in the order-parameter space near the MPB. Such 

instability is induced by the isotropy or small anisotropy of the free-energy function. In 

addition, the transverse instability is a common phenomenon, appearing not only in the 

perovskite-type ferroelectric oxides, but also in magnetostrictive alloys consisting of rare-

earth–Fe2 compound (Ishibashi & Iwata, 1999c), in the low-temperature phase of hexagonal 

BaTiO3 (Ishibashi, 2001) and in shape memory alloys (Ishibashi & Iwata, 2003; Iwata & 

Ishibashi, 2003). They also noted that the origins of the enhancement of the responses near 

the MPB both in the perovskite-type ferroelectrics and the rare-earth–Fe2 compounds are the 

same. Even more, Iwata & Ishibashi (2005) have also pointed out that the appearance of the 

monoclinic phase and the giant piezoelectric response can be explained as a consequence of 

the transverse instability as well. 

A first principles study was done by Fu & Cohen (2000) on the ferroelectric perovskite, 

BaTiO3, which is similar to single-crystal PZN-PT but is a simpler system to analyze. They 

suggested that a large piezoelectric response could be driven by polarization rotation 

induced by an external electric field rotation (Fu & Cohen, 2000; Cohen, 2006). Recently, 

these theoretical predictions of MPB on a single BaTiO3 crystal have been experimentally 

confirmed by Ahart et al. (2008) on a pure single crystal of PbTiO3 under pressure. These 

results on BaTiO3 and PbTiO3 open the door for the use of pure single crystals with simple 

structure instead of complex materials like PZT or PMN-PT (PbMg1/3Nb2/3O3-PbTiO3) 

that complicates their manufacturing as well as introducing complexity in the study of the 

microscopic origins of their properties (Ahart et al., 2008). Moreover, Ahart et al. (2008) 

results on the MPB of PbTiO3 shows a richer phase diagram than those predicted by first 

principle calculations. It displays electromechanical coupling at the transition that is larger 

than any known and proves that the complex microstructures or compositions are not 

necessary to obtain strong piezoelectricity. This opens the door to the possible discovery of 

high-performance, pure compound electromechanical materials, which could greatly 

decrease costs and expand the utility of piezoelectric materials. For the above mentioned 

reasons, we are motivated here to study the NL behavior of a pure single FE with simple 

crystal structure such as PbTiO3 or BaTiO3 at the MPB on the basis of the free-energy model. 

3. The concept of morphotropic phase boundary (MPB) in the free energy  

The first published paper on modeling the MPB using the Landau–Devonshire-type of free 

energy was made by Ishibashi and Iwata (1998). The authors basically used the free energy F 

as a function of the dielectric polarization in the following form; 

 ( ) ( )2 2 2 4 4 4 2 2 2 2 2 21 2

0 2 2

0 0 0
2 4 2

x y z x y z x y y z z x
F P F P P P P P P P P P P P P

α β β⎡ ⎤ ⎡ ⎤= + + + + + + + + +⎣ ⎦ ⎣ ⎦ε ε ε
        (1) 

The former expression for the free energy may simply be written in the form 

0
F F F= + Δ where 

0
F  is the free energy is for the paraelectric phase. In Eq. (1), α is a 

temperature dependent coefficient with ( )c
a T Tα = − where a is the inverse of the Curie 
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constant, T is the thermodynamic temperature, and Tc is the Curie temperature. The authors 

found that the static linear dielectric constant for both tetragonal and rhombohedral phases 

diverges at the MPB when 
1 2

β = β in the free energy function. They proposed a phase 

diagram in the 
2 1

T −β β  plane to explain the MPB as a function of the material 

parameters *

2 1
β = β β . This diagram is reproduced in Fig. 2 for completeness. The vertical 

dotted line at 
1 2

β = β represents the MPB between the rhombohedral and tetragonal phase 

for the static linear ( )0χ ω = . The solid longitudinal line represents the boundary between 

the high temperature phase (Cubic) and the ferroelectric (FE) phases. It should be noted that 

the thermodynamic stability of the FE phases requires that F →∞ as →∞P for any 

direction of the polarization P. In the region of the β  plane defined by 
1 2

β > β  

and
1 2

2 0β + β > , the cubic-rhombohedral transitions of the second-order occurs. And the 

region defined by 
2 1

0β > β > , the cubic-tetragonal transition of the second-order occurs.  

 

 

Fig. 2. The temperature-composition ( )2 1
T −β β  phase diagram with the vertical dotted 

line represents the MPB (after Ishibashi & Iwata 1998). 

In Eq. (1), if 
1 2

β = β , the free energy becomes isotropic and therefore, there is no difference 

between tetragonal and rhombohedral phases. To explain this, consider the polarization 

components
x

P ,
y

P and
z

P  taken along a set of orthogonal geometrical axis and the free 

energy is represented by a surface where its shape depends on the value of 
1

β and 
2

β . The 

case of 
1 2

β = β , the free energy is isotropic and represented by a sphere in the xyz frame of 

reference. In the tetragonal phase the free energy surface is elongated in the direction of the 

spontaneous polarization to assume the shape of an ellipse (Murgan et al., 2002a). For 

example, if the spontaneous polarization is taken along the z-direction, therefore, the 

ellipsoid is elongated along this axis as seen in Fig.3 which illustrates the uniaxial nature of 

the tetragonal symmetry. The intersection of the isotropic surface and the tetragonal surface 

occurs only at the 
x y

P P−  plane. In the rhombohedral phase, the spontaneous polarization is  

along the ( )1,1,1 direction and the free energy is not only elongated in the z-direction but 

also rotated as seen in Fig. 4. At the MPB the energy surface becomes isotropic but still 

rotated with reference to the original frame (Murgan et al., 2002a). In the previous theoretical 
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Fig. 3. The free energy surfaces for the isotropic and tetragonal systems (After Murgan et 
al., 2002a) 

 

 

Fig. 4. The free energy surfaces for the isotropic and rhombohedral systems. ( After (Murgan 
et al., 2002a) 
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calculations using the free energy, Haun et al., (1989) had directly related the MPB to the 

composition in PbZrO3:PbTiO3 solid solution family where the relation between the material 

parameters 
1

β and
2

β were overlooked. In fact Ishibashi & Iwata (1998, 1999a, 1999b) 

proposed that the material parameter *β  may be considered a function of the mole fraction 

composition x passing through 1 at 0.55x = . However, the relation between the material 

parameters 
1 2
and β β  and the composition remains a topic of further investigations.  

4. Dielectric susceptibility from Landau-Devonshire free energy 

Ishibashi & Orihara (1994) was the first to consider the Landau-Devonshire theory to give 
expressions for the nonlinear dynamic dielectric response by using the Landau-Khalatnikov 
(LK) equation. They evaluated the NLO coefficients and the third-order nonlinear (NL) 
susceptibility coefficients in the paraelectric (PE) phase above the Curie temperature Tc. 
Subsequently, Osman et al. (1998a,b) have extended the theory to evaluate the NLO 
coefficients in the FE phase. They have demonstrated that all second order ( )2χ process 
vanishes naturally in the PE phase and that they are non zero in the FE phase due to the 
presence of the spontaneous polarization 

0
P  that breaks the inversion symmetry. However, 

the former authors considered the free energy to be a function of a scalar polarization P 
Soon after that, Murgan et al. (2002), used a more general form of the free energy to. 
calculate the dielectric susceptibility elements. In their expression, they considered the free 
energy expansion to be a function of a vector polarization Q and additional terms were 
added to Eq. (1). They considered a free energy of the following form; 

 

( )

( )

( )( )

2 2 2

0

0

4 4 4 2 2 2 2 2 2 21 2

2 2

0 0 0

2 2 3 3 4 2 2 2 21 2

2 2

0 0

2

2
4 2 2

6 4 4 2
4 2

x y z

x y z x y y z z x s z s

z s z s z s s z z s s x y

F P F Q Q Q

Q Q Q Q Q Q Q Q Q P Q P

Q P Q P Q P P Q Q P P Q Q

α ⎡ ⎤= + + +⎣ ⎦ε
β β α⎡ ⎤+ + + + + + + +⎡ ⎤⎣ ⎦⎣ ⎦ε ε ε
β β ⎡ ⎤+ + + + + + + +⎡ ⎤⎣ ⎦ ⎣ ⎦ε ε

      (2) 

In the above expression, 
s

P is the spontaneous polarization with its direction being along the 
tetragonal axes (considered in the z-direction). Eq. (2) for the free energy may simply be 
written in the form 

0
F F F= + Δ where 

0
F  is the free energy is for the paraelectric phase and 

the polarization components in paraelectric phase is then related to the polarization in 
ferroelectric tetragonal phase by 

x x
P Q= , 

y y
P Q=  and 

z z s
P Q P= + . The magnitude of the 

spontaneous polarization 
s

P  is given by the condition of minimum free energy 

( ) 0
E z

F P P∂ ∂ =  evaluated at 
z s

P P= . The above expression for the free energy is more 
suitable for many real FE crystals that undergo successive phase transitions where 
additional terms are considered in comparison to Eq. (1). An important notice is that most 
FE, especially oxide ferroelectrics, exhibits a first-order phase transitions from the PE cubic 
phase to the FE phase. However, the phase transition from the cubic PE phase to the various 
symmetries of the lower–temperature phases can be treated as second-order provided 
certain conditions are fulfilled for lower symmetry groups (Haas, 1965). In the FE phase at 
temperatures much lower than the transition temperature, the type of transition is of no 
importance for the discussion of their physical properties (Ishibashi & Iwata 1998). Together 
with the free energy expression in Eq. (2), LK dynamical equation ˆ

i i i
OP F P E= −∂ ∂ + is 
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utilized to derive various dielectric susceptibility elements (Murgan et al. (2002). The 
differential operator Ô d dt= Γ  is used in case of relaxational dynamics while 

2 2Ô M d dt d dt= + Γ is used for oscillatory dynamics with M and Γ being the effective mass 
and the damping constant respectively. 

Expressions for the second-order nonlinear susceptibility tensor elements are shown in 

table 1 while expressions for third-order nonlinear susceptibility tensor components are 

shown in Table 2. In particular, table 1 shows the nonvanishing tensor elements for 

second-harmonic generation (SHG) and optical rectification (OR) while Table 2 shows the 

nonvanishing tensor elements for the third-harmonic generation (THG) and the intensity-

dependent (IP) refractive index process. The expressions in both table 1 and Table 2 are all 

written in terms of the above linear response functions ( )σ ω and ( )s ω (Murgan et al., 

2002). For SHG there are three independent elements and a total of seven nonvanishing 

elements while for OR there are four independent elements and a total of seven 

nonvanishing elements. For THG, there are five independent elements and a total of nine 

nonvanishing elements while for IP refractive index, there are eight independent elements 

and a total of a total of 15 nonvanishing elements. It should be noted that we were obliged 

to reproduce the results in able 1 and 2 to correct various mistakes found in the original 

work published by Murgan et al. (2002). The nonlinear dielectric susceptibility elements in 

Table 1 and 2 are given in terms of the following linear response functions in tetragonal 

symmetry; 
 

Process, and K Susceptibility (2 )χ  
Equation 
Number 

SHG 

1 2K =  

( ) ( )2 2 ; ,
ilm

χ − ω ω ω  

Symmetric on 
interchange 

of ( )lm  

( ) ( ) ( )2 2

13

0

3
2SHG

zzz s
Ps sχ = − β ω ω

ε
 (3) 

( ) ( ) ( ) ( )2 2 22

3

0

2SHG SHG

zyy zxx s
Ps

β
χ = χ = − ω σ ω

ε
 (4) 

( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 2

3

0

2SHG SHG SHG SHG

xzx yzy xxz yyz s
P s

β
χ = χ = χ = χ = − σ ω σ ω ω

ε
 (5) 

Optical 
rectification (OR) 

1 2K =  

( ) ( )2 0; ,
ilm

χ −ω ω  

( ) ( ) ( ) 22

13

0

3
0OR

zzz s
Ps sχ = − β ω

ε
 (6) 

( ) ( ) ( ) ( ) 22 2 2

3

0

0OR OR

zyy zxx s
Ps

β
χ = χ = − σ ω

ε
 (7) 

( ) ( ) ( ) ( ) ( )2 2 *2

3

0

0OR OR

xzx yzy s
P s

β
χ = χ = − σ ω σ ω

ε
 (8) 

( ) ( ) ( ) ( ) ( )2 2 *2

3

0

0OR OR

xxz yyz s
P s

β
χ = χ = − σ σ ω ω

ε
 (9) 

Table 1. The nonvanishing tensor elements for second-harmonic generation (SHG) and 
optical rectification (OR) in ferroelectric tetragonal symmetry (Murgan et al. 2002). 
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Process, 

and K 
Susceptibility ( )3

ilmn
χ  

Eq. 
number 

Third-
harmonic 

generation 
(THG) 

1 4K =  

Symmetric 
on 

interchange 
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Table 2. The nonvanishing tensor elements for third-harmonic generation (THG) and 
intensity-dependent (IP) refractive index in ferroelectric tetragonal symmetry. (Murgan et 
al., 2002). 
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 ( ) ( ) ( ) 1
2 2

0 2 0
( )

s
P

−
⎡ ⎤σ ω = Θ ω + α ε + β ε⎣ ⎦                       (23) 

 ( ) ( ) ( ) ( ) 1
2 2

0 1 0
3

s
s P

−
⎡ ⎤ω = Θ ω + α ε + β ε⎣ ⎦                          (24) 

In the above, the frequency-dependent term is ( ) ( ) ( )2
n M n i nΘ ω = − ω − Γ ω  for oscillatory 

dynamics while ( ) ( )n i nΘ ω = − Γ ω  for relaxational dynamics and n is an integer number. 2

s
P  

The linear dielectric susceptibility elements ( )1

ii
χ  in tetragonal phase is written in terms of 

these uniaxial linear response functions as 

 ( ) ( ) ( )1 1 1

0 0
( ) , ( )

xx yy zz
sχ = χ = σ ω ε χ = ω ε                                      (25) 

where the linear dielectric susceptibility tensor ( )χ ω
h

is a 3 3× diagonal matrix and the 

average linear susceptibility may be given by ( ) ( )( )1 3
av xx yy zz

χ ω = χ + χ + χ . 

5. The input parameters 

To plot the dielectric susceptibility, various input parameter is required. Input parameters 

such as , and 
c

a T M  are taken from the available experimental data of BaTiO3 (Ibrahim et al 

2007, 2008, 2010). For convenience, we may write the operating frequency ω as some 

coefficient f multiplied by the resonance frequency 
0

ω for FE material. Thus, 
0

f = ω ω with 

0
ω  approximated from the simple equation ( )0 0

2
c

a T T Mω ≈ + − − ε  for FE materials in 

tetragonal phase (Ibrahim et al., 2007, 2008, 2010). The parameter 1 /a C=  where  
51.7 10 KC = ×  is the Curie constant (Mitsui et al., 1976). This gives a value of 

14

0
1.4 10ω ≈ × Hz at room temperature. The thermodynamic temperature T  is fixed at room 

temperature.  

To estimate the value of 
1

β and 
2

β , we recall  the following equation obtained by Ishibashi 

et al., (1998). 

 ( )1 2 1
2

xx zz
ε = ⎡ β β −β ⎤ε⎣ ⎦  (26) 

For ferroelectric material, the dielectric constant is approximated by 
xx ii
ε ≈ χ  since 1

ii
χ 4 . 

In tetragonal symmetry, expressions for both 
xx
ε  and 

zz
ε may then be obtained by 

considering the static limit 0ω→ of equation (5). This gives 2

2 0
1

xx s
Pε = α + β ε⎡ ⎤⎣ ⎦  and 

2

1 0
1 3

zz s
Pε = α + β ε⎡ ⎤⎣ ⎦ (Murgan et al., 2002). Substituting 

xx
ε  and 

zz
ε  into Eq. (26)  yields the 

simple relation
2 1

3β = β . The value of 
1

β  is then estimated from the spontaneous 

polarization equation 
0 1s

P = −ε α β in tetragonal phase. This yields 14 3 -1 

1 7.58 10 m J−β = × for 

0.26
s

P ≈ C.m-2 at room temperature. Hence, a value of 
2 1

3β = β  13 3 -1 2.27 10 m J−= × at room 

temperature. It should be noted that the value of 
1

β and 
2

β  are very sensitive to the value of 

the spontaneous polarization. Estimation of the damping parameter Γ  for BaTiO3 may also 

be done by comparing the dielectric function in Eq. (4) and the equation 

( ) ( ) 0zz
s∞ε ε = ε + ⎡ ω ε ⎤⎣ ⎦  obtained by Osman et al. (1989a). This yields the relation; 

 ( ) ( )0 0 0
1 2 1iM i ⎡ ⎤Γ = ω− α + ε ε ω − ε⎣ ⎦                                            (27) 

which express Γ  as a function of M, α  and ω . For fixed values of 
s

P  and ω , we have 

numerically found that Γ  changes by one order of magnitude (From 6 710 10− −− ) over the 
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range of temperature from 0 oT C=  to the 
c

T T= . On the other hand, the damping 

coefficient is relatively not a sensitive function of 
s

P  or ω  in such a way that it maintains its 

order of magnitude over the relevant range of 
s

P  or ω . A similar procedure was done by 

Razak et al. (2002) to estimate the damping parameter of PbTiO3. In fact, each oscillating 

mode in the crystal may assume different damping ratio in a real crystal and the stability of 

each mode depends on its damping ratio. The average damping parameter of all the 

relevant modes is usually obtained. However, for convenience, we have to fix the damping 

parameter at specific value within the range 6 710 10− −− predicted by our Eq. (27). For 

example we may approximate the damping constant by -7 3 -2 -33.4 10 Kg.m .A .sΓ ≈ ×  which 

corresponds to  0.22
s

P ≈  C.m-2, 
0

1.01ω = ω , and 387T ≈ K. 

6. Morphotropic phase boundary (MPB) in linear dielectric susceptibility 

The divergence of the static dielectric susceptibility near the MPB for tetragonal and 

rhombohedral symmetry was first investigated by Ishibashi and Iwata (see for example 

Ishibashi & Iwata 1998). They have derived the static dielectric constant ( )0χ  by adopting 

a “golden rule” and obtaining the Hessian matrix which is a 3 3× matrix composed of the 

second derivatives of the free energy as a function of the polarization. They found that the 

static limit of ( )0χ ω→ diverges at 
1 2

β = β in a ( )0χ versus beta *β diagram where 
*

2 1
β = β β . Especially for tetragonal symmetry, the ( )0χ diverges from the right side 

toward * 1β = (See Fig. 2). 

In this section, we investigate the dynamic linear dielectric susceptibility ( )χ ω  and its MPB 

for FE material in tetragonal phase. We will study the effect of operating frequency ω on the 

dynamic linear susceptibility as a function of the material parameters 
1

β and 
2

β . Therefore, 

the divergence of the static limit of the linear dielectric susceptibility ( )0χ at the MPB 

( )1 2
β = β is regarded as a special case. In the static limit, the results obtained here for the 

static ( )0χ  shows similar divergence as those obtained by Ishibashi et al. (1998). To explain 

the behavior of ( )χ ω  in terms of FE soft modes, it is necessary to write ( )χ ω  in the 

following form; 

 ( ) ( ) ( ){ } 1
1 1 2 2

0xx yy TO
M i M

−

⎡ ⎤χ = χ = ε −ω − ω Γ + ω⎣ ⎦                                     (28) 

 ( ) ( )( ) 1
1 2 2

0zz LO
M i M

−
⎡ ⎤χ = ε −ω − ω Γ + ω⎣ ⎦                                        (29) 

We note that in deriving equations (27) and (28), we have used the spontaneous polarization 

for tetragonal phase defined by 2

0 1s
P = −ε α β . In the above equations, ( )1χ is written in terms 

of the lattice-vibrational modes, particularly, ( )1

xx
χ  is written in terms of the transverse-optical 

(TO) mode characterized by its normal frequency ( )( )2

1 2 0 1TO c
a T T Mω = − β −β ε β  and ( )1

zz
χ is 

written in terms of its longitudinal-optical (LO) mode ( )2

0
2

LO c
a T T Mω = − ε . The TO mode 

corresponds to the displacement of the free energy perpendicular to the polar axis while the 

LO mode corresponds to the displacement along the polar axis. Upon using ( )c
a T Tα = −  

the pole position can be determined by the soft-mode frequency. 

Since the stability region of the tetragonal phase lies at
2 1

β > β , the value of 2

TO
ω  is positive. 

As anticipated, the soft-mode frequency shows that the term 
1 2

β −β  enters on the same 
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footing as the term ( )c
T T−  which make the dielectric susceptibility diverges either when 

T approaches 
c

T or when 
1

β  approaches
2

β . Therefore, 
TO

ω  has a double soft-mode 

character and the explicit limits are then 0
TO

ω → as 
2 1

β →β  or 
c

T T→ and 
TO

ω →∞ as 

1
0β → (instability limit). The reason for the instability can be seen from the spontaneous 

polarization 2

0 1s
P = −ε α β  where near the instability limit 

s
P  becomes large and 

therefore
TO

ω . It is important to notice that the instability limit is a kind of an artifact; it 

results mainly due to the truncation of the free energy to the fourth order in the polarization. 

Thus, when 
1

β  is very small, at least the sixth order terms in the polarization should be 

added to the free energy to avoid the instability. 

Now the origin of the enhancement of the dielectric susceptibility is clear, when 
2 1

β →β , the 

value of the soft-mode frequency
TO

ω  becomes smaller which leads to a direct enhancement 

of the values of ( ) ( )1 1

xx yy
χ = χ as seen in equation (27). The static dielectric constant can then be 

derived by setting 0ω = in equations (27) and (28). This leads to a similar form to those 

equations obtained by Ishibashi et al. (1998). These are; 

 ( ) ( ) ( )( )1 1 2

1 1 2 0
1

xx yy c TO
a T T mχ = χ = β ⎡ − β −β ⎤= ε ω⎣ ⎦                                (30) 

 ( ) ( )1 2

0
1 2 1

zz c LO
a T T mχ = − ⎡ − ⎤ = − ε ω⎣ ⎦                                     (31) 

In Eq. (29) and (30), the static linear dielectric constant shows that at the MPB, ( ) ( )1 0
xx

χ ω→  

and ( ) ( )1 0
yy

χ ω→  diverge when 1 2
β = β at all temperatures while ( ) ( )1 0

zz
χ ω→ diverges only at 

c
T T→ . In Fig. 5(a), we plot the complex dynamic dielectric susceptibility ( )1

xx
χ  versus 

*

2 1
β = β β  at single operating frequency

0
0.1f = ω ω = . A part from the element ( )1

zz
χ  which 

remains constant over *β because it is a function of the LO mode only, the other element 
( )1

xx
χ shows a resonance-like behavior at certain value of *β . At this peak, the dynamic 

response of the dielectric susceptibility is maximized. In a way, this resonance-like behavior 

is a function of the material composition through the parameter *β  and it is explainable 

within the concept of the ferroelectric soft-mode dynamics. We have numerically found that 

the value of ( )1

xx
χ at its maximum is 42.4 10×  which give a linear refractive index 

( )Re( ) 109
xx

n = ε ω ≈  at room temperature. Meanwhile, far from the pole, at * 3β = , the 

dielectric constant is about 800 which results in a linear refractive index of 2.46. In fact, the 

value of the dielectric susceptibility decreases gradually from its maximum by increasing 

the value of *β . The values of the dielectric constant obtained here for ferroelectric materials 

are huge in comparison to typical dielectrics or semiconductors. For amorphous dielectrics 

such as fused silica, the dielectric constant is in the range 2.5-3.5 while the linear refractive 

index is about 1.46. In typical semiconductors such as GaAs, the dielectric constant is about 

13.2 and the linear refractive index is 3.6 (Glass, 1987).  

To examine the effect of operating frequency, we plot the average value of the dynamic 

linear dielectric susceptibility versus *β for different operating frequencies f  (Fig. 5(b)). 

Other parameters kept unchanged. The general feature of these curves is that they all show 

a peak behavior where the dynamic linear susceptibility is maximum at certain value of *β . 

This pole response is a strong function of the operating frequency. For example, curve (i) 

shows the linear susceptibility ( ) ( )1

av
χ ω versus *β for 2f = , this gives a maximum value of 

( ) ( )1

av
χ ω 7960 at * 9β = . Curve (ii) shows the linear susceptibility ( ) ( )1

av
χ ω for 1.5f = , this gives 
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a maximum value of ( ) ( )1 1060
av

χ ω 0 at * 5.5β = . Upon decreasing the operating frequency 

further to 1.1f = (Curve (iii)), the linear susceptibility ( ) ( )1

av
χ ω assumes a maximum value of 

1447  at * 3.42β = . Below the resonance, at  0.95f =  (Curve (iv)), ( ) ( )1

av
χ ω  assumes a 

maximum value of  1676  at * 2.81β = . Far below the resonance, at 0.5f =  (Curve (v)), 
( ) ( )1

avχ ω  gives a maximum value of 3185  at *
1.5β = . Finally, at 0.0f = (Curve (vi)), the 

static limit of the linear susceptibility ( ) ( )1
0avχ  in this case diverges at *

1β = . This result for 

the static case coincide with the results obtained by Ishibashi (1998) using the Hessian 

matrix of the free energy. Therefore, we may generally conclude that, for the dynamic 

dielectric susceptibility, a systematic decrease of the operating frequency
0

fω ω= is 

accompanied by systematic enhancement of the linear dielectric susceptibility especially at 

its peak. However, decreasing the operating frequency is also accompanied a systematic 

decrease of *β  towards *
1=β . At 0ω = , the value of ( ) ( )1

0avχ goes to infinity at *
1β =  since 

the soft-mode frequency TOω becomes zero. 

 

 

Fig. 5. (a) Linear dynamic dielectric susceptibility ( )1

xx
χ versus *

2 1
β = β β in tetragonal phase at 

room temperature and operating frequencies 
0

0.1f = ω ω = . 

7. Morphotropic phase boundary in second-order nonlinear susceptibility 

In the free energy formalism, there is only one underlying dynamic equation and the NLO 

coefficients take the form of products of linear response functions. This formalism does not 

explicitly show the dependence of the NL susceptibility on the MPB or the ferroelectric soft 

mode. As shown in Table 1 and table 2, the susceptibility elements takes the form of a 

product of linear response functions, ( )s nω  if the related suffix is z, and ( )nσ ω if it is x or y 
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and the argument is the related frequency. In this case, it is convenient to transform the 

second-order NL susceptibility tensor elements to an alternative form that shows a direct 

dependence on the lattice-vibrational modes. 
 

 

Fig. 5. (b) Linear dynamic dielectric susceptibility ( )1

av
χ versus *

2 1
β = β β in tetragonal phase at 

room temperature for different operating frequencies 
0

f = ω ω shows the improvement of 

the ( ) ( )1

av
χ ω  at the MPB. 

These are the transverse-optical modes (TO) with normal frequency 
TO

ω  and the 

longitudinal-optical (LO) mode with frequency
LO

ω . In this case, the ferroelectric soft mode 

is one of these transverse-optical modes that soften when the thermodynamic temperature T 

approaches Tc or *β approaches 1. For example, The SHG element (2 )SHG

zyy
χ may be expressed 

explicitly in terms of these modes in the following form; 

 
( ) ( ) 2

(2 ) (2 ) 3 3 2 2

2 0

2SHG SHG

zyy zxx s LO TO
P M

M M

⎧ ⎫⎡Θ ω ⎤ ⎡Θ ω ⎤⎪ ⎪χ = χ = −β ε − ω + ω⎨ ⎬⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦⎪ ⎪⎩ ⎭

         (32) 

This is achieved by substituting the linear response functions ( )σ ω and ( )s ω  in tetragonal 

symmetry from Eq. (3) and Eq. (4) into Eq. (7) and performing a series of algebraic 

manipulations. It should be noticed that the linear response functions for the second 

harmonics ( )2σ ω ( )2s ω  in Eq. (33) is responsible for the appearance of the function 

argument ( )2Θ ω  where ( ) ( ) ( )2
2 2 2M iΘ ω = − ω − γ ω . The static limits are then obtained by 

setting 0ω =  in Eq. (32) and performing further algebraic simplifications. The above second-

order coefficient in Eq. (32) contains a tensor suffix corresponds to the output wave of 

frequency 2ω , and others correspond to the input of frequencyω . 
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 ( )(2 ) ( 2 ) (2 ) 3 3 4 2

2 0
0SHG SHG SHG

zyy zxx xzx s TO LO
P Mχ ω = = χ = χ = β ε ω ω                         (33) 

The element ( 2)SHG

zyy
χ  in Eq. (32) contains one longitudinal optical mode 2

0
2

LO
Mω = α ε  

corresponds to the output wave of frequency 2ω  and one TO mode with frequency 

( )2

1 2 0 1
2

TO
Mω = α β −β ε β  corresponds to the input frequencyω . Therefore, this element is 

expected to assume one peak at certain value of *β . This expectation is assured upon 

plotting (2 )SHG

zyy
χ versus *β for different operating frequencies as shown in Fig. 6(a). The main 

feature of those curves is that they all display a single pole at certain value of *β . In the 

static case (curve i), the value of ( )( 2) 0SHG

zyy
χ ω→  increases systematically then diverges at the 

MPB between the tetragonal and rhombohedral phase where * 1β = . As seen from Eq. (33), 

the static value of ( )( 2) 0SHG

zyy
χ ω→ only depends on 

LO
ω and

TO
ω . Since 

LO
ω is not a function of 

*β , thus the enhancement in the values of ( )( 2) 0SHG

zyy
χ ω→  is mainly due to 

TO
ω . The value of 

( )2

1 2 0 1
2

TO
Mω = α β −β ε β decreases “softens” systematically when 

1
β  approaches 

2
β which 

lead to a direct increment in the value of ( )( 2) 0SHG

zyy
χ ω→ till the divergence occur 

at
1 2

β →β as 0
TO

ω →  at the MPB. It should be noted that, the association of a high static 

dielectric constant with a specific low frequency optical mode is experimentally observed on 

FE materials such as strontium titanate, SrTiO3 (Kittel 1995; Sirenko et al., 2000; Katayama et 

al., 2007). 
 

 

Fig. 6. (a) The nonlinear dielectric susceptibility ( ) ( )2 2 ; ,SHG

zyy
χ − ω ω ω  versus *

2 1
β = β β in 

tetragonal phase at room temperature for different operating frequencies 
0

f = ω ω shows 

the improvement of the MPB upon decreasing the operating frequency. 

The other curves in Fig. 6(a) show that both the dynamic value of SHG

zyy
χ around the MPB and 

the corresponding value of *β are functions of the operating frequency. Particularly, at 

0.3f =  (curve ii), the maximum value of SHG

zyy
χ  is found to be around 3 -14.8 10 mv−×  at 
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* 1.2β 0 . At 0.5f =  (curve iii), the maximum value of SHG

zyy
χ  was found to be around 

3 -13.5 10 mv−× at * 1.5β 0 . At 0.6f =  (curve iv), the maximum value of SHG

zyy
χ  was found to be 

around 3 -11.5 10 mv−× at * 1.7β 0 . At 0.7f =  (curve v), the maximum value of SHG

zyy
χ  was 

found to be around 3 -10.4 10 mv−× at * 2β 0 . Therefore, a systematic increase of the operating 

frequency 
0

fω = ω results in a systematic decrease of the maximum value of  SHG

zyy
χ and a 

systematic increase of the value *β too. Thus the dynamic SHG

zyy
χ  assumes higher values at 

lower frequencies. The peaks exhibited by SHG

zyy
χ  can be viewed clearly upon plotting both 

the real and imaginary parts of the complex SHG

zyy
χ  at single operating frequency 

0
0.1f = ω ω =  as shown in Fig. 6(b). The graph shows that the single pole exhibited by 

SHG

zyy
χ nearly at * 1β ≈ results from the resonance-like response exhibited by both real and 

imaginary parts of the complex SHG

zyy
χ . The values obtained in Fig. 6(a) are typical for SHG in 

BaTiO3 (Murgan et al., 2004). However, the maximum value of SHG

zyy
χ obtained in Fig. 6(b) is 

dramatically increased ( 2 -12.5 10 mV−× ) at such low frequency. This value is higher than the 

typical values of BaTiO3 by about two to three order of magnitude. Needless to say that the 

SHG value in ferroelectrics is initially very large (typically (2 ) 11 -110 mV−χ 0 ) compared with 

the order of magnitude for typical dielectric or semiconductors in the nonresonant region. 

This is not surprising for resonant effects in highly polarizable materials such as 

ferroelectrics. The TO mode softening may be explained as a result of the well-known 

phenomenon of LO-TO splitting, that is, the shift in frequency between longitudinal optical 

and transverse optical phonons at the Brillouin zone centre (Waser et al., 2006). In this case, 

the softening of the TO modes is caused by a partial compensation of the long-range electric 

fields on one hand and the short-range lattice elastic forces on the other hand.  
 

 

 

Fig. 6. (b) The real and imaginary part of the nonlinear dynamic dielectric susceptibility 
( ) ( )2 2 ; ,SHG

zyy
χ − ω ω ω  versus *

2 1
β = β β in tetragonal phase at room temperature and at operating 

frequency 
0

f = ω ω = 0.1 . 
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8. Morphotropic phase boundary in third-order nonlinear susceptibility 

The expressions for the third-order nonlinear susceptibility elements also consist of products 

of linear response functions. Table 2 shows the dynamic nonlinear susceptibility elements 

for the third-harmonic generation (THG) is also expressed in terms of the linear response 

functions ( )nσ ω and ( )s nω . The integer number n may assume one, two or three. The 

elements in Table 2 may be written in terms of the TO and LO phonon frequencies following 

the same procedure describes in the previous chapter. For example, the third-harmonic 

element THG

zyyz
χ in Eq. (17) may be written as; 

( )

( ) ( )

( ) ( ) ( ) ( ) ( )

3~
2

3 4 2 2

0

2 2

2

2 2 2

2 2 2 2 2

1

3
3

1
     2 3

2 2

THG

zyyz

LO LO

LO LO

TO TO LO TO TO

M
M M

M M M M M

−β
χ =

⎡Θ ω ⎤ ⎡Θ ω ⎤
ε −ω −ω⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
⎧ ⎫
⎪ ⎪

β ω ω⎪ ⎪× + +⎨ ⎬
⎡Θ ω ⎤ ⎡Θ ω ⎤ ⎡Θ ω ⎤ ⎡Θ ω ⎤ ⎡Θ ω ⎤⎪ ⎪β + ω + ω −ω + ω + ω⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎪ ⎪
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎩ ⎭

  (34) 

The linear response functions for the second-harmonics ( )2σ ω ( )2s ω  exists in Eq. (17) is 

responsible for the appearance of the function argument ( )2Θ ω  in Eq. (34) where 

( ) 22 4 2M iΘ ω = − ω − Γω . The function argument ( )2Θ ω  is intrinsic part of the (3)χ response 

and they do not result from cascade processes in which two second-order process follow 

one another in time (Murgan et al., 2002). In nonlinear optics, a cascaded THG could arise 

from SHG followed by sum-frequency generation, or symbolically 2ω+ ω→ ω , then 

2 3ω+ ω→ ω . The element THG

zyyz
χ  in Eq. (34) (apart from the prefactors and the LO modes) 

include two terms related to the TO modes. The first term include a TO mode propagating 

at the input frequency ω while the second term include a TO mode propagating at 2ω . 

Therefore, the element THG

zyyz
χ is expected to assume a double peak behavior which may lead 

to a complicated enhancement effects at two different values of *β . In the static limit, Eq. (34) 

reduces to the following form; 

 
( ) 23~

2 2

3 4 4 4 2

0 1

2
1

3

THG

LO
zyyz

TO LO TO
M

⎡ ⎤− β β ω
χ = −⎢ ⎥ε ω ω β ω⎣ ⎦

                       (35) 

The former equation clearly indicates that the value of 
( )3~ THG

zyyzχ →∞  when the value of 

0
TO

ω →  at the MPB.  

A plot of  THG

zyyz
χ  versus *β is shown in Fig. 7(a). In the dynamic case, both the real (The -●- curve) 

and the imaginary parts (The -o- curve ) of THG

zyyz
χ assume a double peak behavior at two 

different values of *β as predicted by Eq. (34). In Fig. 7(b), the value THG

zyyz
χ is plotted versus 

*β for different operating frequency. The main feature of these curves is that they all display a 

double peak response at certain value of *β as predicted by Eq. (34). The value of THG

zyyz
χ  is 

generally increased upon decreasing the operating frequency f. As in the second-order case, 

this is due to the softening of the TO mode which results in a direct increment of THG

zyyz
χ .  
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Fig. 7. (a) The third-order nonlinear susceptibility tensor element THG

zyyz
χ  versus *

2 1
β = β β  in 

tetragonal phase at room temperature for operating frequencies f   = 1.5 and for the static 

case at f = 0. 

 

 

Fig. 7. (b) The absolute value nonlinear dielectric susceptibility THG

zyyz
χ  versus *

2 1
β = β β in 

tetragonal phase at room temperature for different operating frequencies 
0

f = ω ω . 
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For example, at 1.3f =  (thin solid curve), the maximum value of THG

zyyz
χ  is found to be 

around 12 2 -21.15 10 m v−×  at * 4.5β 0 . At 1.1f =  (the dashed curve) the maximum value of 
THG

zyyz
χ  is 12 2 -24.8 10 m v−× at * 3.5β 0 . At 1.01f =  (solid curve), the maximum value of THG

zyyz
χ  

increases to 12 2 -29.1 10  m v−× at * 3β 0 . At 0.9f =  (the -●- curve), the maximum value of 
THG

zyyz
χ  further increases to 11 2 -21.61 10  m v−× at * 2.7β 0 . In the static case with 0f =  (the –o- 

curve), the value of SHG

zyy
χ  diverges at * 1β = as predicted by Eq. (35). From the numerically 

generated data, the typical value of the dynamic (3)χ in BaTiO3 is found to lie within the 

range of 1310−  to 1610− depending on the operating frequency. Similar values of THGχ for 

BaTiO3 are found by Murgan et al., (2002). These values for THG in ferroelectrics are very 

large compared with typical semiconductors or dielectrics. For example, the THGχ for GaAs is 

about 19 2 -26.7 10 m v−× while it is in the range of 22 2010 10− −−  for Glass (Eaton, 1991). From our 

numerically generated data, the value of (3)χ in BaTiO3 at its peak is increased by two or 

three orders of magnitude in comparison with the values far from its peak. 

9. Conclusion 

In this chapter we have examined the behavior of both linear and nonlinear dielectric 

susceptibility as a function the free energy parameters for different operating frequencies. 

Both dynamic and static dielectric susceptibility is examined. Within the free-energy 

formulation, the material-dependent nonlinear coefficients 
1

β and
2

β  may be assumed as 

function of the molar composition. Using both the free energy and Landau-Khalatnikov 

equation, the nonlinear dielectric susceptibility is written as a product of the linear 

response functions. This form of dielectric susceptibility is transformed into an alternative 

form that shows the explicit dependence on the transverse-optical (TO) and longitudinal-

optical (LO) modes. The dielectric susceptibility is then investigated within the concept of 

the ferroelectric soft-mode with normal frequency
TO

ω where the material parameters 
1

β  

and 
2

β  enters on the same footing as temperature. The divergence of the static dielectric 

susceptibility at the MPB occurs when the ferroelectric soft-mode becomes zero as a result 

of 
1 2

β →β  or 
c

T T→ . Most dielectric susceptibility elements are systematically enhanced 

upon decreasing the operating frequencies. In the vicinity of the MPB, the low-frequency 

limit linear dielectric susceptibility is increased by one to two orders of magnitude in 

comparison with the non-MPB value of the static dielectric susceptibility. For second-

order NL elements, the dynamic NL susceptibility may assume single or double pole 

response. This actually depends on whether the dielectric susceptibility include a soft-

mode corresponding to the input frequency ω or two soft-modes corresponds to both 

ω and 2ω . We found that the second-order NL process is enhanced by two orders of 

magnitude in the vicinity of the MPB in comparison with the non-MPB values. We have 

also demonstrated the systematic enhancement of the dynamic nonlinear susceptibility 

upon increasing the thermodynamic temperature of the material towards the Curie 

temperature. Within the third-order process, we have investigated both the THG and the 

intensity-dependant (IP) susceptibility. We have found that certain elements within the 

THG process assumes a triple-response at three different values of *β . This phenomena 

occurs if the NL susceptibility element includes   three different soft-modes frequencies 
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corresponds to ω , 2ω  and 3ω . Other elements within the third-order NL process may 

assume single or double pole in their dynamic response. As in the second-order process, 

the third order process is enhanced at the MPB by two to three orders of magnitude. All 

nonlinear elements are found to diverge in the static limit upon approaching * 1β = . It 

should be noted that we have investigated the MPB within the tetragonal phase 

where
2 1

0β > β > , it will be very interesting to study the MPB for the rhombohedral phase 

within the free energy formalism. Finally we note that this calculation is important for 

designing a new material with higher nonlinearity for technological applications. This is 

achieved by investigating the MPB where the dielectric response is maximized.  
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