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1. Introduction  

Al/Al2O3 composites are widely regarded as promising construction materials (Yun et al., 
2002; Watari et al., 2000; Saiz & Tomsia, 1998). Methods used for production of such 
materials traditionally include high-temperature processing. As a result, such materials have 
a low porosity and can not be used in adsorption and catalytic processes.  
Meanwhile, permeable systems based on porous powder materials (PPM) – metals or oxides, 
are widely used as supports for catalysts and membranes (Sabirova et al., 2008; Ismagilov et 
al., 1997; Lee, 2003; Wang et al., 2004; Vityaz et al., 1987). When combined with catalysts 
(catalytically active components), permeable materials manufactured as membranes can 
substantially change selectivity to products of catalytic reactions (Rohde et al., 2005). 
Unfortunately, the amount of the active component that can be incorporated into traditional 
PPM is limited by poorly developed microporous and mesoporous structure of such materials. 
Porosity also declines  during high-temperature processing required for production of 
mechanically durable products. For example, specific surface area of ceramic membranes 

based on alumina does not exceed 9 m2/g with average diameter of macropores about 0.12 m 
(Ismagilov et al., 1997). The specific surface  of PPM and metal powders is significantly lower. 
Attempts of increasing the mesoporous component in PPM prepared from metal powders by 
filling macropores with suspensions  resulted in substantial decrease of the average size of 
transport macropores and PPM permeability (Wang et al., 2004). 
It was shown earlier that during hydrothermal oxidation (HTO) aluminum-containing 
powders are cemented into a robust  macroporous monolith with relatively high specific 
surface area due to partial aluminum oxidation by water (Tikhov et al., 2005). During 
calcination the formed aluminum hydroxides are decomposed yielding nano(meso)porous 
component in Al2O3/Al ceramometals (cermets) localized in their oxide ceramic part. 
Particles of remaining  aluminum are evenly distributed in the oxide matrix. A typical relief 
of the fracture face of Al2O3/Al cermet prepared by oxidation of aluminum powder by 
water at 100°C followed by calcination in air at 550°C is shown in Fig. 1. One can see that 
aluminum particles are covered by a porous oxide film. 
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Fig. 1. SEM micrograph of Al2O3/Al cermet prepared from ASD-4 powder: a – aluminium 
core, b - porous alumina matrix. 

Depending on the degree of aluminium oxidation during HTO and calcination temperature, 
the nano- and macroporous structure of the materials can be varied in a broad range 
(Tikhov et al., 2004; Rat’ko et al., 2004). The macroporous structure and permeability of the 
porous composites can be varied by changing the size and shape of the aluminum precursor 
particles. In addition, the mesoporous structure of aluminum oxide in the cermets can be 
tuned by mixing aluminum powder with aluminum oxides or hydroxides (Tikhov et al., 
2004). In this paper we shall report the results of studying the properties of permeable 
cermets prepared from aluminum powders PAP-2, ASD-1 (Tikhov et al., 2004), ASD-4 and a 
mixture of aluminum powder PA-4 with the product of gibbsite thermal activation 
(Zolotovskii et al., 1997). The effects of the synthesis parameters on structural-mechanical 
and catalytic properties of cermets in isobutane dehydrogenation will be discussed.  

2. Phase composition of Al2O3/Al composites 

Typical XRD patterns of Al2O3/Al cermets are presented in Fig. 2. They include intense 
narrow peaks corresponding to 111, 220, and 200 reflections of aluminum phase. In addition, 
the XRD patterns contain weak broad peaks corresponding  to  311, 400, 511, 440 reflections 
of aluminum oxide spinel phase [Tsybulya & Kryukova, 2008]. The phase composition of 
the aluminum oxide can not be characterized in more detail due to its poor crystallinity. 
A comparison of the intensity of 440 peak of Al2O3 with that of 220 peak of Al shows (Fig. 2) 
that the content  of aluminum oxide in the Al2O3/Al composites grows in the sequence: 
ASD-1<ASD-4<PAP-2. Quantitative estimates of the oxide content  based on the earlier 
reported calibration curve (Tikhov et al., 2004) are shown in Table 1.  
The differences of the oxide content in cermets are mostly due to different reactivity of the 
used aluminum powders at the initial hydrothermal oxidation stage (Tikhov et al., 2007). 
Aluminum is practically not subjected to any oxidation during calcination in air at 550°C. 
Hence, variation of the aluminum reactivity with respect to water allows to tune the content  
of the oxide phase in the Al2O3/Al cermets.  

a

b
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Fig. 2. XRD patterns of Al2O3/Al cermets prepared from different aluminum powders. 
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3. Macropore structure and permeability of cermets obtained from different 
aluminum powders 

Qualitative analysis of the cermet macrostructure (Fig.3a,b,c) shows that it substantially 

depends on the type of the aluminum powder. The loosest packing of the monoliths is 

typical for cermets produced from PAP-2 powder. Averaged characteristics of the obtained 

materials estimated by the Darcy and “bubble point” methods (Vityaz et al., 1987; Khasin, 

2005) using supports in the form of porous disks made of PTK-grade titanium foam 

(average pore size 120 m, diameter 30 mm) containing the studied cermet deposited on 

their external surface by HTO followed by calcination are also very different (Table 1).  The 

average pore diameter determined by this method increases from 1 to 22 m in the series of 

cermets ASD-4<ASD-1<PAP-2. The maximum pore size varies in a similar order. The 

permeability coefficients of obtained materials also differ by more than a factor of 50 

correlating with the average pore size (Table 1). 

 

 

Fig. 3. SEM micrographs of porous Al2O3/Al composites  prepared from  different 
aluminum  powders: (a)  - ASD-1, (b) – ASD-4, (c) – PAP-2.  (LEO 1455VP ,“Tescan"; JEOL 
JSM-6460V). 

Comparison of the macropore structure parameters (Table 1) with a  qualitative analysis of 
the macrotexture (Fig. 3) shows that a decrease of the average size of  cermet particles 
aggregates decreases the  average size of macropores and permeability. The average size 
and shape of particles in cermets are determined by the particles of the aluminum source 
powder used for synthesis. According to the data obtained by the Koulter method, the 

average particle size changes as follows: ~ 33 m (ASD-1), ~ 12 m (ASD-4), ~ 5 and ~ 35 m 
(PAP-2) (Table 1). This trend qualitatively matches the results obtained by SEM (Table 1, Fig. 
3). Larger average particle sizes obtained by the Coulter method for ASD-1 and ASd-4 
samples in comparison with the SEM data are due to partial aggregation of the aluminum 
powder during its preparation or storage. Substantial variation  of the  particle size obtained 
for PAP-2 is, most likely, due to the flat shape of the particles  that are also partially 
aggregated.  
The differences in the shape and average sizes of porous cermet particles are quantitatively 
expressed in the loading density of aluminum powder in a die before HTO. For example, the 
loading density is about 1.6-1.8 g/cm3 for ASD-4, about 1.3-1.4 g/cm3 for ASD-1 and about 
0.3-0.4 g/cm3 for PAP-2. In turn, the loading density is largely determined by the size and 
shape of aluminum particles. The flat shape of partially aggregated PAP-2 particles is 
known to result in substantially lower filling density compared to round  particles (Tikhov, 

a c b
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2004 [8]). Round particles typical for ASD-1 and ASD-4 aluminum source (Tikhov et al., 
2004) provide for a denser packing. Apparently, different particle packing is also preserved 
in the obtained cermet monoliths (Fig. 3). As the result, the average size of macropores in 
PAP-2 monolith is substantially larger. The composite obtained from ASD-4 has the smallest 
pore size. This is determined by the dimensions of cavities between the aluminum particles 
that are much larger for ASD-1. The degree of aluminum conversion to hydroxide 
determining the fraction of oxide in Al2O3/Al cermets has comparatively minor effect on the 
parameters of the macropore structure (Table 1).  
 

Source 
aluminum 

powder 
 

Average 
particle 
size of 

Al0, 
µm 

Permeability 
coefficient, 

K×10-13, 
m2 

Maximum 
macropore 

size, 
µm 

Average 
macropore 

size, 
µm 

Crushing 
strength,

(), 
MPa 

Al2O3, 
wt.% 

Cermet 
porosity 

(),% 

ASD-1 33*(25)** ~3.5 12.5 6.5 11 ~24 ~36 

ASD-4 12(5) 0.4 4.5 ~1 12 ~44 ~57 

PAP-2 ~5.4, 35 20 ~63.5 22 23 ~94 ~42 

* Coulter method. 
()** According to SEM. 

Table 1. Macropore structure, permeability and mechanical properties of Al2O3/Al 
composites prepared from different aluminum powders. 

Thus, depending on the particle shape, the character of the macropore structure and 

permeability of the composite materials prepared using hydrothermal aluminum oxidation 

can be substantially varied.  

A comparison with known permeable systems (Khasin, 2005) shows that smaller pores 

about 5-8 m are formed when copper powder is strongly pressed together with 

combustibles. This pore size corresponds to permeability coefficient about 10-14-10-13 m2. The 

permeability coefficient of macroporous ceramic supports prepared by extrusion of pastes 

containing aluminum hydroxides and -Al2O3 powder followed by calcination at 1200°C 

was estimated to be about ~10-14  m2 (Ismagilov et al., 1997). Furthermore, the mechanical 

strength of ceramics (~0.8 MPa) proved to be substantially lower than that of PAP-2 

monolith. This result opens great prospects for production of permeable materials with 

complex geometrical shapes from aluminum powder.  

4. Mechanical properties of cermets  

Dependence of crushing strength () on porosity () for PPM is expressed by Balshin’s 
empirical relation (Leonov et. al., 1998; Balshin, 1972):  

 m
0(1 )     ,  (1). 

Here m is the ratio of the total mass of the material to its mass subjected to the mechanical 

loading; 0  is the crushing strength of a non-porous body of the same composition. 

Equation (1) reflects a well-known trend that the strength of solids decreases when their 
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porosity grows. This relation is valid for most porous cermets prepared using the HTO stage 

(Tikhov et al., 2000a; Tikhov et al., 2004a; Tikhov et al., 2004b). However, a comparison of 

the porosity and strength values reported in Table 1 suggests that the Balshin’s relation is 

not valid for this PPM series. In particular, the cermet prepared from ASD-1 is 

approximately as strong as that made from ASD-4 despite substantially different porosity.  

Most likely, this effect is related to a substantial difference in the character of contacts 
between particles forming PPM. According to (Rebinder et al., 1965), the crushing strength 

of a porous material () is proportional to the number of contacts between particles (N), the 

surface area of the contact (Si) and mechanical strength of the contact unit surface area (i): 

 i iN S      (2). 

Apparently, the Balshins’s relation is valid only when one or several parameters of Eq. (2) 

vary only slightly. An abrupt change of parameters N,S,  related to changes of the size or 

shape of particles forming a porous composite, or their chemical composition may lead to a 

substantial deviation from Eq. (1). In our system such deviation may be caused either by the 

change of the particle diameter from 20 to 5 m or by change of the particle shape from 

spherical to flat. Moreover, it is very likely that the surface area of a singe contact in 

monolith PAP-2 is substantially larger due to the higher PAP-2 conversion at the HTO stage 

because these are the HTT products that cement the places of contact between the monolith 

particles (Rat’ko et al., 2004). 
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Fig. 4. Dependence of porosity () and crushing strength () on the calcination temperature 
for Al2O3/Al composite prepared from PAP-2.  

Another example of a deviation from the Balshin’s relation is a weak dependence of the 

crushing strength on porosity when the temperature of preliminary calcination of the 

ceramic granules increases (Fig. 4). In this case high-temperature sintering may also lead to 

the growth of contact surface area due to the surface diffusion or strengthening of a single 

contact due to its better crystallization.  

T,C 

,
 M

P
a 

MPa 

www.intechopen.com



Porous Ceramic Matrix Al2O3/Al Composites 
as Supports and Precursors for Catalysts and Permeable Materials  

 

201 

Overall, one should take into account that porous ceramic supports, which are chemically the 
closest analogs of our materials, usually have substantially lower mechanical strength at 
comparable parameters of the macropore structure (Ismagilov et al., 1991). So, ceramometallic 
PPM with the  aluminum oxide matrix  may have great prospects in various applications.   

5. Specificity of the nanopore structure of cermets  

One of the most remarkable properties of composites prepared by cementing aluminum-
containing powders under hydrothermal conditions is the presence of developed nano 
(micro,  meso) porous structure formed by primary aluminum oxide nanoparticles and their 
aggregates. These particles are formed during thermal decomposition of aluminum 
hydroxides obtained from aluminum metal particles at the HTO stage. Qualitatively, 
differences in the size and shape of nanoparticles can be seen even in SEM images despite 
substantial limitations in resolution (Fig. 5). The largest aggregates of particles are typical 
for PAP-2. Meanwhile, the smallest particle size (< 0.1 m in diameter) is observed for ASD-
4. The aggregates of the oxide formed from ASD-1 have  an intermediate size.  
 

 

Fig. 5. Specificity of the microstructure of alumina aggregates on the surface of aluminum 
particles  inside Al2O3/Al cermets prepared from  different powders according to SEM data: 
(a) – ASD-1, (b) – ASD-4,  (c) – PAP-2. 

Averaged quantitative information on nanopores can be obtained from the analysis of 

adsorption-desorption isotherms. The isotherm presented in Fig. 6a and the pore size 

distribution (Fig. 6b) are typical for all PPM synthesized by HTO of aluminum powders and 

calcined at 500-700°C. According to the IUPAC classification (Gregg & Sing, 1982), the 

isotherms are close to type II, whereas the capillary condensation hysteresis loops are 

similar to type H3 (Fenelonov, 2002). The latter is typical to slit-like pores formed by flat 

parallel particles. The data reported in Table 2 show that the surface area and volumes of 

PPM nanopores may substantially vary depending on the type of the Al source  powder and 

HTO conditions. At similar calcination temperatures the total surface area and volume of 

PPM nanopores usually increase when the fraction of highly porous aluminum oxide 

increases. Therefore, the highest values of these parameters were obtained for PPM 

prepared from PAP-2 that has ~90% aluminum conversion.  

The characteristics of the alumina nanopore structure in the composites can be estimated more 
precisely with the account of the total specific surface area of the composite (S) and the fraction 
of oxide in it by calculating the specific surface area of the oxide (SAl2O3) according to Eq. (3). 

 SAl2O3=Ssp(1+Х0)/(1+ Х0)   (3). 

a b c 
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Here  is aluminum conversion to aluminum oxide, and X0 = 0.89 is the relative weight change 
of the solid when all aluminum metal is oxidized (Tikhov et al., 2004a). The values of the 
aluminum oxide specific surface areas reported in parenthesis (Table 2) show that the specific 
surface areas of the oxide differ substantially  for PPM prepared from ASD-1 and ASD-4 
despite the fact that their total specific surface areas are similar. This result is largely related to 
different ratios of the aluminum hydrothermal oxidation rate to the ageing rate of the HTO 
products under hydrothermal conditions (Tikhov et al, 2000b). The particle dimensions should 
increase due to recrystallization of nanoparticles when the relative ageing rate increases, 
whereas the specific surface area should decrease. For ASD-1 and ASD-4 powders the ageing 
rates determined by the external HTT conditions were approximately equal. Meanwhile, the 
rates of Al  consumption  at the second diffusion-controlled stage of hydrothermal oxidation 
were substantially different. For ASD-4 this rate was higher by two orders of magnitude 
(Tikhov et al., 2007). Therefore, the smallest hydroxide (oxide) particles were obtained for this 
PPM. For PAP-2 the lowest oxidation rate was observed in the diffusion region. This led to a 
significant growth of the primary particle dimensions and decrease of the alumina specific 
surface area in comparison with the other samples.  
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Fig. 6. Adsorption-desorption isotherm (a) and nanopore size distribution (b) for Al2O3/Al 
composite prepared from ASD-4. 

 

Precursor 
aluminum 

powder 

Specific surface 
area of Al2O3/Al 

(Al2O3), 
m2/g 

Nanopore 
volume (V), 

cc/g 

Nanopore 
diameter, 

nm 
Reference 

ASD-1 52 (221) 0.05 3.8 
(Tikhov et al., 

2004a) 

ASD-4 54 (318) 0.05 4.7 - 

PAP-2 121 (~121) 0.16 4.7 - 

Table 2. Parameters of the nanopore structure of Al2O3/Al composites. 

The parameters of the nanopore structure are also substantially affected by the calcination 
temperature of cermets. The results obtained during investigation of the adsorption 
characteristics of PPM prepared from PAP-2 and calcined at  increasing  temperatures are 
reported in Table 3 and Fig. 7. The adsorption isotherms visibly change from type II to type 
III according to the IUPAC classification. The hysteresis loop practically disappears at high 
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calcination temperatures (Fig. 7g). This fact is largely related to the changed pore size 
distribution (Fig. 7 b,d,f,h). Initially the sample had nanopores with a narrow pore size 
distribution around 4 nm. Additional mesopores with diameter ~ 5 nm appear starting from 
calcination temperature 850°C. At higher calcination temperatures the relative fraction of the 
nanopores with the size ~ 4 nm decreases whereas that of the larger pores increases. The 
average size of these pores grows to 8-10 nm.  
The behavior of the specific surface area and volume of nanopores with increasing 
calcination temperature is somewhat unusual. The initial growth of the specific surface area 
after the heat treatment at 550°C is due to the thermal dehydration of aluminum hydroxide 
and formation of Al2O3. The pore size does not change during this process. However, the 
number of nanopores grows as it is indicated by a two-fold increase of the pore volume. 
Probably, this effect is due to a deviation of the aluminum hydroxide dehydration from an 
ideal pseudomorphic transformation (Tikhov et al., 2004a; Tikhov et al., 2004b). 
 

Calcination 
temperature, ºС 

Specific surface 
area, m2/g 

Nanopore volume, 
cc/g 

Nanopore diameter, 
nm 

120 86 0.07 4.7 

550 121 0.16 4.7 

650 116 0.16 4.9 

750 107 0.16 5.0 

850 98 0.21 5.9 

950 75 - - 

1050 24 0.12 9.5 

Table 3. Influence of the calcination temperature on the nanopore characteristics of Al2O3/Al 
composite prepared from PAP-2. 

Subsequently, continuous smooth increase of the specific surface area accompanied by the 
growth of the average pore size is observed with increasing calcination temperature. Until  
the calcination temperature of 750°C the volume of nanopores is approximately constant with 
a minor increase of the pore size. For the sample calcined at 850°C the pore volume 
substantially grows, decreasing at higher temperatures (Table 3). After calcination at 1050°C 
the pore volume decreases by almost a factor of two, whereas their diameter increases by the 
same value. Thus, the specific surface area of samples calcined at 550°C or higher temperatures 
continuously decreases with calcination temperature. Meanwhile, the changes in the volume 
of nanopores are not monotonous. Such effects are not typical for aluminum oxide powders. 
Usually, both the pore volume and specific surface area decrease with  the calcination 
temperature (Khalil, 1998; Zhu et al., 2002). However, for granulated aluminum oxides with a 
large amount of macropores in some  cases a small growth of the total pore volume with the 
temperature of calcination was observed, while their micropore volume and specific surface 
area decreased (Boreskov et al., 1951). Such effect is, most likely, due to the specific features of 
sintering of primary aluminum oxide nanoparticles in granulated ceramics. The mechanism of 
the nanoparticle sintering may be attributed to “internal” sintering due to surface diffusion 
(Geguzin, 1984), when the growth of particles and decrease of the free surface energy is not 
accompanied by the pore structure “densification”, so that the total pore volume remains 
approximately constant. This process is possible due to the growth of nanoparticles and 
formation of separate particles (dense or low-porous)  with sizes substantially exceeding those 
of nanoparticles present in  the initial sample. Adjacent particles merge with such particles. 
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Thus, variation of the aluminum reactivity and calcination temperature allows one to modify 
the parameters of aluminum oxide nanostructure in PPM. 
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Fig. 7. Adsorption-desorption isotherms (a,c,e,g) and nanopore size distribution (b,d,f,h) of 
Al2O3/Al composite prepared from PAP-2 after different temperatures of calcination: (a,b) – 
120˚С; (c,d) – 650˚С; (e,f) – 850˚С; (g,h) – 1050˚С. 
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6. Nanoporous structure of composites prepared from blends of aluminum 
with TCA and catalytic properties of the CrOx/Al2O3/Al catalysts in the 
dehydrogenation of isobutane 

Despite the fact that variation of synthesis conditions and type of aluminum powders makes 
possible to change  the properties of nanoporous oxide component in a broad range, their 
application is substantially restricted by economic and technological problems. In particular, 
the problems of cost and application safety are the most important for application of cermets 
as catalyst supports. In this respect, such powders as ASD-1 and similar to it PA-4 are more 
promising that PAP-2 or ASD-4. The main drawback of the PA-4 powder is a low activity in 
HTO, which  leads to a low surface area and moisture capacity of cermets prepared from it. 
The last factors are exceptionally important for synthesis of catalysts by impregnation. To 
improve these parameters, we synthesized supports by blending aluminum powder with 
the product of gibbsite thermochemical activation (TCA). TCA is amorphous aluminum 
oxide (Al2O3x1.3 H2O) synthesized by gibbsite dehydration in a pulse mode and 
characterized by a high chemical activity and ability to be rehydrated to form 
pseudoboemite in the presence of water vapor (Zolotovskii et al., 1997). During the cermet 
synthesis TCA is a precursor for additional nanoporous aluminum oxide incorporated in the 
cermet macropores.   
The XRD patterns of the Al2O3/Al cermet prepared from a PA-4 + TCA blend and alumina 
prepared from TCA are shown in Fig. 8. The aluminum oxide concentration in this cermet is 
higher compared with those where all alumina was obtained by aluminum oxidation 
(compare Figures 2 and 8). The structure of aluminum oxide both in the composite and in 

pure aluminum oxide are close to that of -Al2O3 (Tsybulya & Kryukova, 2008). 
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Fig. 8. XRD patterns of Al2O3/Al cermet prepared from blend of PA-4 + TCA and alumina 
from TCA. 

Catalysts from Al2O3/Al cermets were prepared by incipient wetness impregnation of their  
calcined granules (3х3 mm cross-section and 3-5 mm length, Fig. 9) with solutions of active 
component precursors – chromic anhydride and promoters (Pakhomov et al., 2008). In this 
Chapter we shall report textural properties of the composite supports and catalytic 
properties of chromium-alumina catalysts in dehydrogenation of isobutane.  
Comparison of Figures 1 and 10 proves that the surface texture  of cermets prepared with 
TCA  differs substantially from that of cermets without its addition. Primarily, this is a 
result of introducing a large amount of aluminum hydroxide with aggregates of irregular 
shape (Fig. 10a). Another reason for the differences in the surface shape is the high 
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calcination temperature (700°C) favoring aluminum melting from the nanoporous ceramic 
spheres formed during HTO and calcination (Fig. 10b). 
 

 

Fig. 9. General view of granulated Al2O3/Al composites prepared from powdered TCA and 
PA-4 used as supports for dehydrogenation catalysts. 

 

 

Fig. 10. SEM micrographs of the fracture surface  of Al2O3/Al composite granules prepared 
from powdered TCA and PA-4. 

However, this process did not lead to destruction of the cermet support granules or 
substantial mesoporosity  degradation (Table 4). According to the data presented in Table 4, 
the increase of TCA concentration in the initial blend leads  to a continuous increase of the 
specific surface area, volume and average diameter of nanopores.The total pore volume, 
which, in addition to nanopores, includes macropores and ultramacropores formed by voids 
between aluminum particles, aggregates of aluminum oxide formed during TCA 
decomposition and hollow spheres, also increases. Meahwhile, the fraction of nanopores in 
the total pore volume grows from 44 to 67%. The aluminum precursors alone (see ASD-1 
sample with similar properties in Table 2) are not capable of providing for such developed 
nanopore structure in cermets.  

a b 
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Sample, 
TCA content in 

initial blend, 
wt.% 

Specific surface 
area, 
m2/g 

Nanopore 
volume, 
cm3/g 

Total pore 
volume, cm3/g 

Average 
nanopore 
diameter, 

nm 

60 97 0.25 0.35 7.3 

50 87 0.20 0.34 6.8 

40 78 0.16 0.33 5.7 

30 64 0.12 0.27 5.9 

Table 4. Nanopore textural characteristics of granulated composites prepared from 

powdered TCA and PA-4 (calcination temperature 700C). 

At the same time, the catalytic properties of chromium-alumina catalysts did not change 
continuously with variation of the TCA concentration in the precursor blend. Maximum 
isobutene conversion was observed for the sample containing 50% TCA (Fig. 11). This 
sample is also characterized by the highest selectivity to isobutene. Apparently, this 
composition has optimum pore structure of the support. In particular it is shown in Fig. 12 
that the nanopore structure of the support includes both nanopores with dimensions 3-4 nm 
(narrow peak) and larger pores with diameters 6-8 nm. The improvement of all nanopore 
structure parameters is exclusively due to the larger nanopores as the fraction of the smaller 
ones decreases (Fig. 12).  There is certain ratio between the two types of pores in the 
optimum 50% TCA sample that decreases for the 60% TCA sample (Table 4). It appears that 
such nanopore structure provides for the optimum structure or size of the catalyst active 
component.  
 

 
TCA concentration, wt.% 

Fig. 11. Dependence of isobutane conversion X (1,3) and selectivity to isobutene S (2,4) at 

540C (1,2) and 590C (3,4) on TCA  concentration (wt.%) in the initial blends used for 
preparation of granulated composites CrOx/Al2O3/Al.  

The developed macropore structure of the support granules with 3-5 mm size excludes 

problems of internal diffusion limitations typical for granulated catalysts. Overall, this 

provides for high isobutene conversion close to the equilibrium one at this temperature 
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(Pakhomov, 2006) and unusually high selectivity (>94%) to the dehydrogenation product 

(Fig. 11).  
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Fig. 12. Nanopore size distribution of Al2O3/Al composites prepared from blends with 
different TCA concentrations. 

7. Conclusion 

Hydrothermal treatment of blends with aluminum metal powders provides an efficient 
technique for preparation of mechanically strong monolith composite materials with 
developed nanopore structure along with a  relatively high fraction of macropores.  The 
developed macropore structure provides a high permeability and decreases diffusion 
limitations inside the porous composite. Changing the reactivity of Al powder particles 
allows to tune the oxide/aluminum ratio, while  their shape affects the monolith 
permeability. These materials can be used as filters or membrane supports.  
Incorporation of precursors of the nanoporous materials in a macroporous system leads to a 
substantial increase of the nanopore volume. Application of granulated Al2O3/Al 
composites prepared from powdered blends of aluminum and thermally activated gibbsite 
as catalysts supports allowed us to prepare catalysts with high activity and selectivity in 
dehydrogenation of isobutane.  
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