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1. Introduction

Aerodynamics is quite important for racing cyclists and particularly in time-trial competitions.
In fact, the aerodynamic resistance, i.e. the breaking action of the relative wind, increases
quadratically with the speed while the rolling resistance depends linearly on the speed (Kyle,
1989). Thus, due to the rather high velocity (in the order of 50 km/h), the aerodynamic
resistance acting on a time-trial racer is about the 90% of the total resistance. Aerodynamics is
thus very important for the cyclists performances and many experimental studies, addressed
to find the best cyclist position as well as the best articles, have been carried out in the past
(Garcia-Lopez et al., 2008; Gibertini & Grassi, 2008; Grappe et al., 1997; Lukes et al., 2005).
Furthermore, although they are outside of the subject of the present treatise, some interesting
computational works begin to appear in literature (see for example Defraeye et al. (2010a;b)).

1.1 The aerodynamic resistance

Following a widely used notation, the component of the aerodynamic force opposite to the
bicycle motion is called Fx and its non-dimensional coefficient is Cx = Fx/(½ ρVb

2S) where
ρ is the air density, Vb the bicycle speed and S a reference area that has to be defined. In
absence of natural wind, all the relative wind is due to the bicycle motion and thus the force
Fx corresponds to the aerodynamic drag and Cx is the drag coefficient.
For the typical racing velocities the coefficient Cx slightly depends on the Reynold number
Re = ρVb

√
S/μ (where μ is the air viscosity) so that the drag is essentially proportional to the

air density and to the square of the velocity (Basset et al., 1999). In order to avoid the arbitrary
definition of S it can be more convenient to express the aerodynamic resistance in terms of
drag area SCx instead than in terms of non-dimensional drag coefficient. On the other hand,
in order to compare the position aerodynamic efficiency of different cyclists apart from their
different dimensions effect, the normalized resistance (i.e. the Cx) can be interesting and in
this case the projected frontal area can be taken as reference area (Heil, 2001 and 2002). More in
general, when the drag of two or more bodies (whatever they are, men or objects) is compared,
the decomposition of the drag area SCx in terms of drag coefficient Cx and reference area S
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can help to evaluate how much a drag difference is due to a difference in the size or to a
difference in the shape efficiency.
As reported by Gibertini & Grassi (2008), the time-trial cyclist overall Cx is slightly less than 1
(typically about 0.8) denoting that the cyclist is definitively a bluff body.

1.2 The testing methodologies

The experimental study of cycling aerodynamics is made difficult by the fact that the cyclists
are not machines and their motion is not completely deterministic. As a matter of fact,
although the motion of an elite cyclist is rather controlled and repeatable, nevertheless there
are many possible differences (also in nominally equal positions) that can sensibly (and
sometime strongly) affect the aerodynamic efficiency. The problem becomes more serious
when the focus of the study is a detail effect as the effect of a bicycle part (handlebar, fork,
wheels, etc.) or the effect of a particular of the cyclist dressing (as the shoes or the suit). In
fact, the effects of that single details (Alam et al., 2008; Blair & Sidelko, 2008; Chabroux et al.,
2008; Kyle, 1989; 1990; Sayer & Stanley, 1994; Tew & Sayers, 1999; Underwood & Jeremy, 2010)
are often smaller than the global uncertainty of the drag measurement of a test involving the
athlete (Flanagan, 1996).
It could be observed that so small effects, that can be easily masked from a slightly different
position, are not so important for the cyclist performance. Nevertheless two considerations
can be done: the first one is that also a small drag reduction can produce a sensible effect
on the resulting race time (Kyle, 1989), and the second one is that an aerodynamic effect not
strictly related to the cyclist position is anyway added to the global drag, independently to the
capacity of the cyclist to keep the optimal position. Furthermore the sum of different small
detail effects can results in a considerable value. Thus the problem of the better methodology
for the study of this kind of detail effects is an important item for the cycling aerodynamics.
Generally speaking we can consider three possible experimental approaches. The fist one is
the wind tunnel testing of the single isolated detail: this way allows for very accurate and
repeatable measurements and requires a relatively small wind tunnel (which means relatively
low costs) but, on the other hand, the working condition of the isolated detail are not, in
principle, the real working conditions. In principle tests can be carried out “in-field” as it has
been done both directly on the road (Martin et al., 2006) and on a track (Gibertini, Campanardi,
Guercilena & Macchi, 2010; Grappe et al., 1997). Unfortunately this tests are unavoidably
affected by a considerable measurement uncertainty. In the middle between these two testing
approaches, a third possible way is the wind tunnel testing including the real pedaling cyclist
that surely produce more accurate results respect to the in-field testing. Nevertheless also
wind tunnel results are affected by problems of repeatability.
An evaluation of the relative advantage and disadvantage of these three approaches is not
simple. The present paper presents a reasoned comparison between the results obtained with
”manned” wind tunnel testing and a partial model test (Gibertini, Grassi, Macchi & De Bortoli,
2010) on the effect of the overshoes.

1.3 Shoe testing

The choice of the shoes is a typical problem of the aerodynamic optimization of a time trial
cyclist. Of course this choice depends on many aspects and not only on the aerodynamic
point of view, but nevertheless it is interesting to evaluate the amount of drag (and thus the
amount of power) due to the shoes. An interesting point that is a valid example to compare
the two cited wind tunnel testing approaches is the effect of the overshoes: this accessories
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The Study of Details Effects in Cycling Aerodynamics: Comparison Between two Different Experimental Approaches 3

are widely used in the time trial competitions with the aim of drag reduction. In the study
already mentioned here before (Gibertini, Grassi, Macchi & De Bortoli, 2010) this subject was
investigated by means of wind tunnel tests with a shank and foot model. These tests showed
that the overshoes produce a drag increasing instead of a reduction. This counter-trend results
could not be taken as conclusive because the tests were carried out on a static partial model
(reproducing just the shank and the foot) that could not include all the real effects. A recent
series of tests was carried out with an elite team of six cyclists. The aim of these tests was
mainly the optimization of cyclists position (see Gibertini, Campanardi, Guercilena & Macchi
(2010)) but it has been a precious occasion to get some confirmation of the results obtained
with the shank and foot model.

2. The reference tests of overshoe effect on a partial model of foot and shank

The leading idea of the partial model tests was to represent, as well as possible, the working
condition of the foot with a relatively simple setup (Gibertini, Grassi, Macchi & De Bortoli,
2010). The model was essentially a beam terminating with a shank model. The foot model
was hinged to the shank in the ankle position. At the other extremity the beam was hinged to
the balance interface. Thus, the model allowed to set both the angle of the shank and the angle
of the foot. The shoe, put on the foot model, included the pedal. The test layout is shown in
Fig. 1.

(a) (b)

Fig. 1. The partial model test layout in the complete model configuration (a) and in foot-off
tare configuration(b)

The test conditions have been defined on the base of shank and foot angles (defined as in
Fig. 2a) at four pedaling phases θ of a specific cyclist taken as reference example (the values
are reported in Table 1). The shank and foot angles in the four reference positions have been
deduced from the analysis of the frames of a video recorded during a previous "manned" wind
tunnel test carried out in the Large Wind Tunnel of Politecnico di Milano. The obtained values
have been taken as indicative as it was already clear that different cyclists have different angles
of shank and foot (with differences that can be in the order of some degrees).

θ = 0° θ = 90° θ = 180° θ = 270°
ǫF ǫS ǫF ǫS ǫF ǫS ǫF ǫS

−22.9° 49.3° 8.6° 80.8° −16.6° 83.7° −40.7° 40.7°

Table 1. Pedaling angle values assumed for the partial model test
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(a) (b)

Fig. 2. Geometrical and kinematical quantities definition

These measured angles have been used to set the wind tunnel test conditions taking into
account also the additional (positive or negative) incidence αp induced by the the foot vertical
translation due to the pedaling (see Fig. 2b). Referring again to Fig. 2a, ∆ǫ = ǫS − ǫF while the
relative velocity Vr and its incidence angle α have been determined by the following Equation
1 and 2 where f is the pedaling frequency and c is the crank arm lenght.

Vr =
√

(Vb + 2π f c cosθ)2 + (2π f c sinθ)2 (1)

α = ǫF + αp ; αp = arctan

(

2π f c sinθ

Vb + 2π f c cosθ

)

(2)

The test conditions for the foot model, computed by means of Equations 1 and 2, are listed in
the Table 2. The sketch of Fig. 3 illustrates the meaning of these quantities

θ = 0° θ = 90° θ = 180° θ = 270°
Vr α Vr α Vr α Vr α

17.0 m/s −22.9° 15.1 m/s 16.1° 13.0 m/s −16.6° 15.1 m/s −48.2°

Table 2. Test conditions set for the partial model test

The aerodynamic resistance is the force component Fx opposite to the bicycle motion
(Equation 3).

Fx = F · Vr cos(αp) (3)

The average resistance was computed taking the mean value of the four resistance values
measured at the four different pedaling phases of Table 1.
Of course, the main limitation of this approach is that some interference effects with the other
real components are missing (first of all the crank arms). An other possible objection is that
also the real foot and shank dynamics is not completely reproduced: the incidence angle and
the velocity are set to taken into account the motion due to pedal rotation but the rotation of
the foot itself as well as the rotation of the shank are not reproduced. On the other hand, the
measurements were quite accurate and repeatable indeed.
The tests were carried out assuming a reference riding condition of 15 m/s (i.e. 54 km/h) speed
and 1.8 Hz pedaling frequency. Two different shoe models (one laced and one strap fastened)
and the overshoe have been tested with two different pedal models. In order to obtain the
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The Study of Details Effects in Cycling Aerodynamics: Comparison Between two Different Experimental Approaches 5

Fig. 3. The test parameters

aerodynamic loads acting on the foot only, previous aerodynamic tare tests with just the beam
and the shank have been carried out as can be seen in Fig. 1b. The loads measured without
the foot have been subtracted from the load measured with the complete model. One of the
most curious results was the overshoe effect. In these test it resulted that the overshoe over
a strap fastened shoe model produces an over drag for all the four tested phases as can be
seen in Fig. 4 that shows the results obtained by Gibertini, Grassi, Macchi & De Bortoli (2010)
for the strap fastened shoe model, with and without the overshoe, with a clipless single-sided
pedal (33 mm high).
Taking the arithmetic mean of the four results related to the four phases, the measured drag
area increase resulted to be equal to 0.001 m2 for each foot. The total amount of cyclist and
bicycle drag area is in the order of 0.2 m2 (Defraeye et al., 2010a) thus the effect of the two
overshoes is in the order of 1% of the total drag.
In order to verify the results of Gibertini, Grassi, Macchi & De Bortoli (2010), a new test
campaign has been carried out using the same test conditions (as described here before) and
using the same models (all the pictures of the partial model tests included in this chapter have
been taken during this new test campaign). The new tests confirmed the results published in
the cited journal paper. As in that refrence work, the tests have been repeated with another
pedal model obtaining essentially the same results: the drag area absolute values were slightly
different as the pedals were different but the differences between different shoe models drag,
as well as the difference due to the overshoe, were the same within a tolerance of 10−4m2.
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Fig. 4. Comparison between the foot drag areas without and with the overshoe at four
different pedaling phases (drag areas expressed in m2)

3. The manned wind tunnel tests of overshoe effect

The wind tunnel tests of the ”complete system” (including the cyclist) were carried out in the
large wind tunnel of Politecnico di Milano (Campanardi et al., 2003). This facility is equipped
with a specific test rig for cycling aerodynamic tests. The test chamber is wide enough (Fig.
5) to get a negligible blockage effect: in facts, a typical value for the projected front area
of a cyclist in time trial position is about 0.3 m2 while the test section area in cycling test
configuration is 14.5 m2 leading to a solid blockage of about 2% thats is an unusually low value
(Defraeye et al., 2010a) assuring very low blockage effects (Barlow et al., 1999). Nevertheless,
although it was very small indeed, blockage effect correction has been applied to the results
following the procedure indicated in Barlow et al. (1999) for the case of unconventional shape.

Fig. 5. The wind tunnel test chamber

The test rig, that is in details described by Gibertini & Grassi (2008), allows to reproduce
a realistic condition with the athlete pedaling and both wheels spinning (Fig. 6). The rear
wheel axle is held by two vertical beams so that the wheel can spin over a small roller that,
by means of a toothed belt, transmits the rotation to the front roller and finally to the front
wheel; the front wheel axle is free so the cyclist has to drive the wheel as in a real condition.
A brake system provides an adjustable resistance torque to the rollers producing a realistic
effort and thus a realistic cyclist body attitude. A sketch of the test rig is shown in Fig. 7.
The drag contribution of the support system (i.e. the aerodynamic tare) is measured in a test
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The Study of Details Effects in Cycling Aerodynamics: Comparison Between two Different Experimental Approaches 7

run without rider and bicycle. The bicycle is equipped with a tachometer so that, during the
test run, the cyclist is able to maintain the correct rotational speed of the wheels matching the
wind velocity.

Fig. 6. Cyclist pedaling in the wind tunnel

Fig. 7. The test rig for the cyclist

As mentioned before, the tests concerned a team of six cyclists with the aim of optimizing
their position for time trial competitions. This gave the possibility to test the overshoe effect
on a rather large base of athletes. The comparison with the reference tests of Gibertini, Grassi,
Macchi & De Bortoli (2010) was made more meaningful by the fact that the most of these
cyclists (four over six) adopted the same shoe model used in that study (Fig. 8a). The overshoe
model was the same for all the six cyclists and was of the same kind of the one used in the
partial tests (Fig. 9).
In Table 3 the anthropometric data of the six cyclists are listed, including the pedaling angles
(see Fig. 2a for the definition) measured from the wind tunnel video-camera frame as showed
in Fig. 10.
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(a) (b)

Fig. 8. Front view of cyclist legs without (a) and with (b) the overshoes

Fig. 9. The overshoe

By Equations 1 and 2 is possible to compute, for each cyclist and for each pedaling phases,
the foot incidence α. In Fig. 11 these incidences are plotted together and compared with the
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The Study of Details Effects in Cycling Aerodynamics: Comparison Between two Different Experimental Approaches 9

θ = 0° θ = 90° θ = 180° θ = 270°
Cyclist Height ǫF ǫS ǫF ǫS ǫF ǫS ǫF ǫS Shoe Size

AK 184 cm −31° 39° −2° 61° −13° 66° −52° 36° 43.5
TK 182 cm −33° 48° −6° 74° −23° 76° −59° 45° 43
KS 173 cm −29° 41° 0° 66° −21° 73° −50° 39° 42.5∗

DD 177 cm −24° 47° 2° 72° −21° 73° −50° 42° 43.5
SD 182 cm −29° 43° −3° 67° −24° 71° −50° 41° 44
KD 182 cm −29° 39° −6° 64° −19° 73° −49° 38° 43∗

∗ different shoe models

Table 3. Cyclists anthropometric data

Fig. 10. Frame of the wind tunnel video-camera with drawn lines highlighting the pedaling
angles

reference values used in the partial model tests.
As discussed in the introduction of the present paper, the manned tests are affected by a low
degree of repeatability so that in principle, in order to obtain a result statistically meaningful,
the test should be repeated several times. On the other hand the tests number are limited
by reasons of wind tunnel costs and also by the fact that the cyclists tend to loose the
concentration after too many repetitions (so that the result is not necessarily improving).
In the present activity the cyclist position were tested twice, with any repetition test just
subsequent to the first one, while the overshoes effect has been tested, for each cyclist, with
an overshoes-on test just subsequent to an overshoe-off test at the same cyclist position (only
for the cyclist KS the overshoe-on test preceded the other one). The single results is poorly
meaningful as the chased effect is in the order of the test repeatability but the set of the all six
data (one for each cyclist) gives a reasonable estimation of its order of magnitude.
Each test consisted in a 30 s acquisition at 12.5 m/s and, except for AK and TK, in a second
acquisition at 13.9 m/s during the same wind tunnel run. As the two velocities are quite
close each to the other so that the Reynolds number is essentially the same, for each test the
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Fig. 11. Foot incidences

drag area was averaged over the two acquisitions (when applicable). The pedaling frequency
was 1.5 Hz for 12.5 m/s and 1.7 Hz for 13.9 m/s. In Table 4 the measured values of ∆SCx
(the drag area increase due to the overshoes) are presented. The parameter RP, computed for
each cyclist, is the root mean square of the differences between the drag areas measured in
two related tests (a position tests and its repetition). Due to the small statistical base (from 3
to 5 positions tested for each cyclist) this parameter is only indicative but nevertheless gives
a rough quantification of the test repeatability. It appears clear that the measured values of
∆SCx are in the order of the tests uncertainty but nevertheless it is remarkable that in no one
case the overshoes showed an advantage. The mean value (taking the mean of all the cyclist)
resulted to be 0.003 m2 that, taking into account all the uncertainties, is quite well comparable
with the value of 0.002 m2 obtained with the partial model tests. These results are summarized
in Fig. 12.

Cyclist ∆SCx RP
[m2] [m2]

AK 0.006 0.004
TK 0.004 0.006
KS 0.004 0.003
SD 0.001 0.003
KD 0.002 0.002
DD 0.001 0.002

Table 4. The overshoe effect

4. Conclusions

The results of the present experimental investigation well highlight the difficulties of
evaluating details effects by means of complete manned wind tunnel tests. The present
investigation essentially confirmed the results obtained with the partial model: the overshoes
produced an increase in the aerodynamic drag. Also the order of magnitude of the measured
effect is essentially confirmed although the present manned tests are affected by a problem
of repeatability that does not allow to estimate accurately such a small effect. Of course
this degree of uncertainty does not allow to consider the present tests as a quantitative
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Fig. 12. The overshoe effect (drag areas expressed in m2)

validation of the simplified test procedure but, nevertheless, the present results demonstrate
that the complete manned configuration does not produce, respect to the simplified setup, any
important aerodynamic effect that can drastically change the results. It can be concluded that,
for the case of shoes aerodynamics, the partial test in a relatively small wind tunnel is a very
reasonably way, more convenient respect to a more expensive and less accurate manned test.
Of course this results is due to the fact that the adopted procedure and setup included all the
main effects of the real condition and this was due to a reasoned approach but also to the fact
that the foots are essentially undisturbed by the wake of the other components. This is not the
case, for example, of the rear wheel that is completely immersed in the wakes of the cyclist
legs and of the bicycle itself so that the drag measured by means of isolated wheel tests result
to be not applicable to the real condition.
Generally speaking it is clear from the presented activity results that the question about the
way for an accurate experimental definition of so small aerodynamic effects is still an open
question.
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