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1. Introduction 

The aim of the hot structure design process is to ensure the structural integrity of the 
component minimizing two fundamental parameters: mass and thickness. The former 
influences the total weight of the vehicle, the latter influences the vehicle efficiency 
(Thornton, 1996;Kelly et al, 1983; Shih et al, 1988).  
In order to perform the thermo-structural sizing of the component it is necessary to evaluate 
the stress and temperature distribution. Usually numeric methods (finite element or finite 
difference codes)  are adopted to estimate those distribution (Daryabeigi, 2002;Poteet et al, 
2004). In a preliminary design phase where accurate results are not required, approximate 
analytic solutions can be used (Kunihiko, 1998).  
Analytic solutions, whether exact or approximate, are always useful in engineering analysis, 
because they provide a better insight into the physical significance of various parameters 
affecting the problem. When exact analytic solutions are impossible or too difficult to obtain 
or the resulting analytic solutions are too complicated for computational purposes, 
approximate analytic solutions provide a powerful alternative approach to handle such 
problems. There are numerous approximate analytic methods for solving the partial 
differential equations governing the engineering problems. One of the most powerful 
method is the Integral one (Crank, 1979; Syed et al, 2010). It is simple to use and gives the 
opportunity to solve non linear problems such as thermal radiation/conduction ones.  
In the frame of thermal structures preliminary design activities the adoption of the integral 
method together with appropriate assumptions give the possibility to develop 
analytic/numeric models that allow to solve non linear transient thermal phenomena. Those 
methods are very useful since they are very simple to use and allow to save a significant 
amount of time with respect to numeric Finite Element models in a thermal structure 
preliminary design phase.  As a consequence, complex optimization analyses characterized 
by several design objectives, constraints and variables in a reasonable length of time could 
be conducted. The proposed approach allows to define a preliminary thermal design of the 
hot structure. Obviously, in a subsequent design phase structural sizing must be performed 
starting from the configuration resulted from the previous thermal sizing process.   
The present paper describes in detail how the proposed model works. An application of the 
simplified model on the wing leading edge of a re-entry vehicle is presented.   
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2. Description of the method 

2.1 Integral method  
The integral method is an approximated analytical method since it is based on the 
assumption that the temperature distribution is described by a chosen expression 
(polynomial, logarithmic, etc.) (Necati, Ozisik, 1993).  
The method is simple, straightforward, and easily applicable to both linear and nonlinear 
one-dimensional transient boundary value problems of heat conduction for certain 
boundary conditions. The results are approximate, but several solutions obtained with this 
method when compared with exact solutions have confirmed that the accuracy is generally 
acceptable for many engineering applications. In general when the differential equation of 
heat conduction is solved exactly in a given region subject to specified boundary and initial 
conditions, the resulting solution is satisfied at each point over the considered region; but 
with the integral method the solution is satisfied only on the average over the region. 
The heat conduction equation is integrated over the spatial domain of the body; the result of 
the integration is the so called “energy integral equation”. An appropriate expression for the 
temperature distribution is chosen; the coefficients of the temperature expression are 
function of the boundary conditions. Then the temperature expression is introduced in the 
integral equation; its solution gives the temperature variation with time. Once  temperature 
variation with time is available, T(x,t) is known.  
The use of the integral method can be divided into two sequential stages.    

1. Approximation of semi-infinite body. It is valid when the thermal layer ( )tδ , that is the 

distance beyond which there is no heat flux, is less than the body thickness. 

2. ( )tδ >L. The concept of thermal layer has no physical significance. Starting from the 

solution of the first stage, the heat conduction equation is integrated over the body 

thickness.  
Several applications of the integral method have been found in literature. However none of 
them considers non linear boundary conditions and thermal properties.   

2.2 Proposed model  
In order to take into account the heat flux variation with time and thermal properties 
variation with temperature it is necessary to divide the trajectory time into a chosen number 
of time steps. The choice is such that the heat flux variation in a single time step must be less 
or equal than 1% of the maximum heat flux encountered during the flight trajectory, that is: 

 1 ,max( ) ( ) 0.01w i w i wq t q t q+ − < ⋅  (1) 

Where: 

• ti is the ith time instant at the beginning of the ith  time step 

• ti+1 is the i+1th time instant at the end of the ith  time step 

• qw is the aerodynamic heating 

• qw,max  is the maximum aerodynamic heating value 
The aerodynamic heat flux value is considered constant in the ith time step and equal to the 
algebraic mean value between the heat flux values encountered at the ith and i+1th time 
instants: 

 10.5 [ ( ) ( )]w i w iq t q t +⋅ +  (2) 
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it  is the ith time step.  
Thermal conductivity k and specific heat cp  values are considered constant and equal to: 

 ( )ik k T=  (3) 

 

 ( )p p ic c T=  (4) 

Where Ti is the temperature evaluated at the end of the i-1th  time step.  

In the first stage (approximation of semi-infinite body), radiation contribution is neglected, 

then linear boundary conditions are applied. In the ith time step the heat conduction 

differential equation is integrated between iδ  and 1iδ + , that is thermal layer values 

respectively at ti and ti+1 time instants. 

 
1 12

2

1i i

i i

T T
dx dx
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δ δ

δ δ
α

+ +∂ ∂
=

∂∂
   (5) 

The boundary and initial conditions to be applied are: 

 

1

1
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i in
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δ
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Where inT  is the initial temperature. A further condition may be derived by evaluating the 

heat conduction differential equation at x= 1iδ + where T=Tin=constant. 

 
2

12
( ) 0i

T
x

x
δ +

∂
= =

∂
 (7) 

Since the time parameter to be evaluated in the integral equation is the thermal layer 1( )i tδ +  

and since the available conditions for the thermal problem are 4 (see Eq. (6) and (7)), then a 

polynomial expression with more than 4 parameters cannot be selected. As a consequence, 

the temperature profile chosen is a cubic one:  

 2 3( , )T x t a b x c x d x= + ⋅ + ⋅ + ⋅  (8) 

The parameters a , ,b  c and d are functions of 1( )i tδ + . Once the conditions (6) and (7) are 

applied and the ordinary differential integral Eq. (5) is solved, the temperature distribution 

T (x,t) is known. 
Figure 1 illustrates the physical significance of the “thermal layer”. 

The energy integral equation is: 

 ( )( 0) i i

T d
x T

x dt
α θ δ

∂
− ⋅ = = − ⋅

∂
 (9) 
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Fig. 1. Physical significance of thermal layer  

Where: 
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=   (10) 

Then the temperature distribution T(x,t) is known: 
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 (11) 

Where: 

 12i itδ α= ⋅ ⋅  (12) 

 
1 112i itδ α+ += ⋅ ⋅  (13) 

When ( )tδ  is greater than the thickness L, the semi-infinite body approximation cannot be 

considered. The heat conduction differential equation is integrated over the thickness L: 

 
2

2
0 0

1
L L

T T
dx dx

tx α

∂ ∂
=

∂∂
   (14) 

Giving the following energy integral equation: 

 ( )
1

( ) ( 0) i

T T d
x L x T L

x x dt
θ

α

∂ ∂
= − = = ⋅ − ⋅

∂ ∂
 (15) 

The origin of the x axis is on the external surface where aerodynamic heating is applied. At 
x=L adiabatic boundary conditions are considered (see figure 2).  
The boundary conditions are: 

 

4 4( 0) ( ( ) ( ) )

( ) 0

w s e

T
k x q T t T t

x
T

x L
x

σ ε
∂

− ⋅ = = − ⋅ ⋅ −
∂

∂
= =

∂

 (16) 
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Fig. 2. Schematic representation of the thermal problem  

Where Te  is the ambient temperature and Ts is the temperature at x=0. 
For the same arguments explained above, the temperature distribution chosen is a quadratic 
one: 

 2( , )T x t a b x c x= + ⋅ + ⋅  (17) 

As mentioned before the thermal layer has now no physical significance. Then it is 
necessary to introduce a new time-dependent parameter. Two kind of parameters can be 
considered: 
1. Ts(t)  

2. r = Ts(t)+TL(t) 
Where TL(t) is the temperature at x=L.  

In paragraph 2 it will be demonstrated that the second approach gives better results with 

respect to the first one when compared to one-dimensional finite element model results. In 

fact, in the second approach the solution of the energy integral equation has an information 

on the temperature distribution of the previous time step since the parameter r  represents 

the sum of the temperature values at the extreme points of the body. On the contrary in the 

first approach it is not possible to give any information on the previous temperature 

distribution.  
The energy integral equation is: 

 ( )( 0) i

T d
x T L

x dt
α θ

∂
− ⋅ = = − ⋅

∂
 (18) 

Where: 

 
0

( , )
L

T x t dxθ =   (19) 

When boundary conditions are applied, the integral equation becomes: 

 3 4( ( ) ) ( )s
s s

dT
A B T t C T t D

dt
+ ⋅ ⋅ + ⋅ =  (20) 

For the second case: 

 3 4( ( ) ) ( )
dr

A B r t C r t D
dt

−
− −

+ ⋅ ⋅ + ⋅ =  (21) 
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The terms 3( )sB T t⋅  and 3( )B r t⋅ are neglected when:  

 34
1

3
sT L

k

σε
<<<  (22) 

Where σ  is the Stefan-Boltzmann constant, ε  is the surface emissivity. The terms A, B, C 

and D are thermal properties and heat flux functions. The temperature expressions for the 

two cases are respectively: 

 

4 4

4 4
2
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2 2
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w s e
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 ⋅ ⋅ −
= + − ⋅ + 

  
 ⋅ ⋅ −

+ − ⋅ 
⋅ ⋅ ⋅ ⋅  

 (23) 
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 (24) 

Following the same approach and changing adequately the boundary conditions it is 
possible to take into account the heat radiation exchange with an internal structure (see 
figure 3). 
In particular, the first  expression in (16)  becomes: 

 34
1

3
sT L

k

σε
<<<  (25) 

Where TM  represents the external surface temperature of the internal structure. The 
temperature distribution inside the internal structure is evaluated following the same 
approach described for the hot structure in a radiative environment; in this case the 
aerodynamic heating is substituted with the heat radiation flowing from the hot structure. 
The final expression for the temperature distribution in the hot structure is: 
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 + − − +  

 − + − −  

 (26) 

Where 1ε  is the external emissivity and 2ε  is the internal emissivity. 
The model can be also applied to double-layer structures. 
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Fig. 3. Schematic representation of the thermal problem-internal radiation 

2.3 Comparison with Finite Element results 
The model described in the previous paragraph has been validated comparing the results of 
a one-dimensional thermal problem obtained with the proposed model with the results 
obtained with the Finite Element method. The Finite Element Analyses have been 
performed on one-dimensional conduction bars LINK32 elements that simulate the heat 
conduction phenomenon between two nodes (Ansys 12.0). The element is characterized by a 
single degree of freedom (temperature), the thermal properties and the cross sectional area. 
The external radiation has been simulated by means of LINK31 elements that are 
characterized by two nodes, a view factor, emissivity and the Stefan-Boltzmann constant. 
The net heat radiation between node I and node J is defined by equation (26): 

 4 4( ) ( )rq FA T I T Jσε  = −   (27) 

A convergence analysis has been conducted on the mesh of the finite element model. 
The benchmark is characterized by the following properties: 

ρ=5000 kg/m3 

L=0.05 m 

Where ρ  is the density and L is the slab thickness. The thermal conductivity k and  the 

specific heat pc  variations with time are illustrated in figures 4 and 5. 
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Fig. 4. UHTC Thermal conductivity vs Temperature  
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Specific Heat vs Temperature
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Fig. 5. UHTC Specific Heat  vs Temperature 

The aerodynamic heating variation with time is depicted in figure 6. 
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Fig. 6. Aerodynamic heating vs time 

The temperature of the external environment is considered constant and equal to: 

Te=300 K 

The initial temperature of the structure is: 

Ti=300 K 
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Figure 7 shows the location of the points of the structure that will be considered for the 
results comparison. 
 

 

Fig. 7. Position of the points considered for the validation  

Figures 8 and 9 illustrate T1 and T2 variations with time. The labels “I model” and “II 

model” refer respectively to the results obtained considering ( )r t
−

 and 1( )T t  as time 

parameters. 
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Fig. 8. Temperature T1 vs time 

 
A good accordance between the FEM and the I model results is recorded. The maximum 
percentage difference is 15.7% (see also figure 9 and 10). On the contrary the second model 
curve is characterized by significantly greater differences with respect to the FEM results 
(see figure 10 and table 1); this means that the adoption of a parameter that gives precious 
information regarding the previous temperature distribution is fundamental in order to 
evaluate the temperature distribution. 
Figures 9 and 10 show that the maximum percentage difference occurs after about 50 
seconds; more precisely it occurs when the passage from the semi-infinite body 
approximation to the finite body approximation. This is due to the different temperature 
distributions chosen for the two solutions (third order polynomial for the semi-infinite body, 
second order polynomial for the finite body). 
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Fig. 9. Temperature T2 vs time 
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Fig. 10. Percentage difference-Temperature T1 vs time 
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Percentage difference T2
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Fig. 11. Percentage difference-Temperature T2 vs time 

The same remarks can be made for the temperature T2. The percentage differences are 

slightly greater (see table 1). 
 

 T1 T2 

I 
model

15.7 % 16 %

II 
model

-18% 39% 

Table 1. Maximum percentage differences for I and II model 

Finally, the first model is useful in a preliminary design phase where the one-dimensional 

approximation can be applied. The model can be used in an optimization tool in order to 

find the lighter configuration of a given thermo-structure. Since it is very simple and fast, 

complex optimizations characterized by a relevant number of design and constraint 

variables can be performed. Then significant amount of computational time can be saved 

adopting the proposed model instead of the Finite Element method approach.  

3. Application 

The described model has been applied to preliminary design the ceramic wing leading edge 

of a re-entry vehicle. This activity has been performed in the frame of a project founded by 

the Italian Space Agency (ASI). The aim of the project is to develop advanced reusable 

structures able to sustain the high thermal loads encountered by re-entry and hypersonic 

vehicles (Ferraiuolo et al, 2008, 2009; Glass, 2008). Previously, the wing leading edge had 

been sized adopting a Finite Element commercial code (ANSYS) together with a first order 

optimization method (Ryszard, 2006; Hackman, Richardson, 2000). In the preliminary 
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design phase, a two-dimensional geometry has been considered since the aero-thermal loads 

do not vary significantly along the wing.    

 

 

Fig. 12. Scheme of the Test Article 

The components of the Test-Article are (see figure 13): 
1. UHTC (Ultra High Temperature Ceramic) wing leading edge, 
2. C/C panel to be joined with the UHTC WLE and the radiative shield, 
3. Steel and Inconel slabs representing the internal structure of the Test Article, 
4. Radiation shield used to minimize the heat transfer between the UHTC and the internal 

structure. 
 

 

Fig. 13. 2d scheme of the internal structure of the WLE 

The design variables considered for the optimization phase are: 
1. UHTC WLE thickness 
2. Radiation Shield Thickness 
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3. UHTC material (discrete variable; 3 UHTC material have been considered in the 
optimization phase). 

The constraint variables are: 
1. Limit use temperatures for the UHTC and the radiation shield, 
2. Maximum temperature of the steel slab that must not exceed 430 K (this constraint has 

been chosen since measurement devices in the steel slab cannot operate at a greater 
temperature value). 

The objective is to minimize the weight of the structure.  
The result of the optimization is an almost constant UHTC thickness of 10 mm and a 8 mm 
thickness for the radiation shield. The time needed to perform that optimization was about 
160 hours. Figure illustrates the 3D final configuration of the UHTC wing leading edge. 
 

 

Fig. 14. 3d scheme of the WLE 

3.1 Optimization of The WLE with the proposed model  
The model described in paragraph II has been adopted to preliminary design the above 
described Wing Leading edge. An optimization code (MODEFRONTIER) has been used in 
order to perform the optimizations. The model has been implemented in Excel and then in 
MODEFRONTIER.  
Figure 15 illustrates where the proposed model has been used. In particular, in the “*1” 
rectangles the model considering the internal radiation has been adopted; in the “*3” one the 
model considering only the external radiation has been adopted; the “*4” rectangle refers to 
the double-layered model and the “*2” one refers to a numeric model able to evaluate the 
thermal and the structural responses of multi-layered structure subjected to aerodynamic 
heating (Ferraiuolo et. al, 2008).   
The structural sizing has been performed only in rectangles “*2” since they include the 
junction between The UHTC leading edge and the C/C panel which is more critical from a 
structural point of view (Blosser, Mcwithey, 1983, Thomas, 2002;Milos, Squire, 1999). 
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Structural sizing on the remaining areas will be performed in a subsequent detailed design 
phase. 
 

 

Fig. 15. Models adopted for the preliminary design   

The optimization phase has been enriched considering the possibility to change the UHTC 

material. Then, a discrete design variable has been added in MODEFORNTIER. Figure 16 

illustrates the scheme built in MODFRONTIER. 

 

 

Fig. 16. Modefrontier optimization scheme  

Ten points have been chosen for the optimization of the WLE (see figure 17). 

A gradient based method has been chosen to perform the optimization. The time needed to 

perform the optimization is 20 hours, 8 times smaller than the time needed adopting finite 

element codes. The outputs of the optimizations are summarized in tables 2,3 and 4. 
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Fig. 17. Optimization points  

 

Points Optimized thickness (mm) Material Number 

2 9 3 

3 8.5 1 

4 8 1 

5 8 1 

6 9.5 1 

7 10 1 

Table 2. Optimized thicknesses and materials- points 2-7 

 

Points UHTC Thickness (mm) C/C Thickness (mm) Material number 

1 4 5 3 

8 4.1 5.9 1 

Table 3. Optimized thicknesses and materials- points 1 and 8 

 

Point Optimized thickness

9 8 

Table 4. Optimized thickness – point 9 

Interpolating the optimized thicknesses along the wing leading edge, the following 
configuration is obtained (figure 18):  
The final weight is 12% less than the starting configuration. All the optimized thicknesses 
are less than 10 mm, except for the point 7. The material 3 chosen for the upper portion of 
the wing leading edge, is characterized by a smaller density and Temperature limit use with  

respect to materials 1 and 2.  The design of the connection between the UHTC WLE and the 
C/C panel will be performed in the detailed design phase [19]. 
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Fig. 18. Optimized configuration 

Figure 19 illustrates the linearized thickness distribution for that starting and the optimized 
configuration. the black area highlights the weight saving amount obtained by adopting the 
numeric-analytic model proposed. 
 

 

Fig. 19. Wing leading edge – linearized thickness distribution 

A finite element model representing the optimized configuration has been built in order to 
compare the results obtained by means of the proposed model and the results obtained by 
means of the Finite Element Method. 
Table 5 contains the temperature values evaluated at the time instant characterized by the 
maximum heat flux.  
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Points 
Temperature (K) 
Fem model (2D) 

Temperature (K) 
Proposed model (1D)

Percentage difference 

1 766.5 786.24 -4 

2 1351.1 1403.9 -4.9 

3 1397.6 1483.9 -5.9 

4 1496.6 1557.7 -5 

5 1533.7 1582.9 -3.9 

6 1633.6 1713.1 -5.9 

7 1613.0 1696.1 -6.2 

8 956.4 983.7 -4 

9 712.2 734.1 -5 

Table 5. FEM and proposed model results-Temperature 

Table 6 contains the principal stress S1 values for points 1 and 8. 
 

Points 
Stress S1 (MPa) 

FEM model (2D) 
Stress S1 (MPa) 

Proposed model (2D) 
Percentage 
difference 

1 202  183.8  -9 

8 185  166.9  -9.8 

Table 6. FEM and proposed model results – stress values 

The proposed model overestimates the temperature values with respect to the Finite element 
model. The maximum percentage difference is always less than 10%. As a consequence the 
presented numeric-analytic model is applicable to two-dimensional geometries where the heat 
transfer contribution in a direction is negligible with respect to the other ones. 

4. Conclusion 

A simplified numeric-analytic one-dimensional model able to simulate the thermal behavior 
of thermal structures has been developed. Radiation and thermal properties non linearities 
have been taken into account. The model is useful to minimize the computational time 
needed to perform the preliminary design phase of structural components of re-entry or 
hypersonic vehicles. The time saving is possible since the proposed model is very simple 
and does not foresee a spatial discretization of the geometry. Then complex optimizations 
characterized by several design constraints, variables and objectives can be performed in a 
reasonable amount of time. The results obtained with the simplified model have been 
compared with the results obtained by means of the finite element method giving good 
results (the maximum percentage difference never exceeds 20%). 
The model has been applied to preliminary design the ceramic wing leading edge of a re-
entry vehicle allowing to save 12% of the weight with a computational time 8 times smaller 
with respect to the previous optimization performed on a two-dimensional finite element 
model. A thermostructural finite element analysis performed on the optimized 
configuration has demonstrated a good accordance between the results obtained with the 
proposed model and those obtained with the two-dimensional Finite element method.   
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Finally, the proposed simplified approach is well suited for thermal protection systems and 
hot structures where the one-dimensional assumption is acceptable. Particular attention 
must be paid on curved geometries like the wing leading edge where the approach can be 
used only in certain areas. 
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