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1. Introduction 

Efficient means for assessment of the dynamics and the state of the stocks of renewable 
assets such as wood biomass are important for sustainable supplies satisfying current needs. 
So far attention has been paid mainly to the economic aspects of forest management while 
ecological problems are rising with the expected transfer from fossil to renewable resources 
supplies of which from forest being essential for traditional consumers of wood and for 
emerging biorefineries. Production of biomass is more reliant on assets other than money 
the land (territory) available and suitable for the purpose being the first in the number. 
Studies of the ecological impacts (the “footprint”) of sustainable use of biomass as the source 
of renewable energy encounter problems associated with the productivity of forest lands 
assigned to provide a certain annual yield of wood required by current demand for primary 
energy along with other needs.  
Apart from a number of factors determining the productivity of forest stands, efficiency of 
land-use concomitant with growing forest depends on the time and way of harvesting 
(Thornley & Cannell, 2000). In the case of clear-cut felling the maximum yield of biomass 
per unit area is reached at the time of maximum of the mean annual increment (Brack & 
Wood, 1998; Mason, 2008). The current annual increment (rate of biomass accumulation by a 
forest stand or rate of growth) culminates before the mean annual increment reaches its 
peak value and there is a strong correlation between the maximums of the two measures. 
Knowing the time of growth-rate maximum (inflection point on a logistic growth curve) 
allows predicting the time of maximum yield (Brack & Wood, 1998). However, the growth-
rate maximum is not available from field measurements directly. Despite the progress in 
development of sophisticated models simulating (Cournède, P. et al., 2009; Thürig, E. et al., 
2005; Welham et al., 2001) and predicting (Waring et al., 2010; Landsberg & Sands, 2010) 
forest growth, there still remains, as mentioned by J. K. Vanclay, a strong demand for 
models to explore harvesting and management options based on a few available parameters 
without involving large amounts of data (Vanclay, 2010). 
The self-consistent analytical model described here is an attempt to determine the best age 
for harvesting wood biomass by providing a simple analytical growth function on the basis 
of a few general assumptions linking the biomass accumulation with the canopy absorbing 
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the radiation energy necessary to drive photosynthesis. A number of reports on employing 
remote sensing facilities (Baynes, 2004; Coops, et al., 1998; Lefsky et al., 2002; Richards & 
Brack, 2004; Tomppo E. et al., 2002 ; Waring et al.,2010 ) strongly support the optimism with 
regard to successful use of the techniques to detect the time of maximum yield of a stand 
well in advance by monitoring the expanding canopy.  
According to the grouping of models suggested by K. Johnsen et al. in an overview of 
modeling approaches (Johnsen et al., 2001), the model described in this chapter belongs to 
simplistic traditional growth and yield models. It differs from other models of this kind by 
not incorporating mathematical representations of actual growth measurements over a 
period of time. Derived from a few essential basic assumptions the analytical representation 
rather provides the result that should be expected from measurements of growth under 
“traditional” (idealized) conditions. The chosen general approach of modeling the biomass 
production at the stand level allows obtaining compatible growth and yield equations 
(Vanclay, 1994) of a single variable – the age. Like with many other theoretical constructions 
the applicability of the model to reality is fairly accidental and restricted. However, since the 
derived equations are in good agreement with the universal growth curves obtained from 
measurements repeatedly confirmed and generally accepted as classic illustrations of 
biomass dynamics (Brack & Wood, 1998; Mason et al., 2008), it seems to offer a good 
approximation of the actual biomass accumulation by natural forest stands.   
Equations representing the model are believed to reflect the simple assumptions made on 
the basis of common knowledge about photosynthesis and observations in nature: biomass 
is produced by biomass; the amount of produced biomass is proportional to the amount of 
absorbed active radiation; the absorbed radiation is proportional to effective light-absorbing 
area of the foliage (number and surface area of leaves) and limited by the ground area  of 
the forest stand (the area determining the available energy flow). Projection of the canopy 
filling the ground area detectable by remote sensing is assumed to reflect dynamics and 
status (the stage) of forest growth. The height of the stand is another growth parameter 
accessible by remote sensing. Relationships of the latter with other measurable quantities 
determining the yield of accumulated biomass are well studied (Vanclay, 2009) and can be 
employed for remote assessment of the current annual increment and the state of forest 
stands (Lefsky et al., 2002; Ranson et al., 1997; Tomppo et al., 2002). The model presented 
hereafter has been developed to be aware of the current annual increment reaching the 
maximum merely from the data of remote observation of the dynamics of forest stand 
canopy while complemented by data of the average height would predict the yield.   

2. General approach and basic equations   

The analytical model offered to describe dynamics of the standing stock of wood biomass in 
natural forests is based on the obvious relationship between the rate of growth (rate of 
accumulation of biomass) y and the stock (amount of biomass) S stored in the forest stand 
(Garcia, 2005):  

 ( ) ( )S t y t dt= ⋅  (1) 

By turning to common knowledge that biomass is produced by biomass the rate of 
accumulation of new biomass in the first approximation can be assumed being proportional 
to the amount of biomass already accumulated:  
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dS

y aS
dt

= =  (2) 

where a is a constant of the reciprocal time dimension and t is time. Rewriting the right-side 
equation of (2) in the form: 

 
dS

adt
S

= , (3) 

and integrating it provides lnS at= and exponential growth of the stock of biomass: 

 atS const e= ⋅ , (4) 

which is unrealistic in the long run because of finite resources of nutrients and other limiting 
factors not taken into account in Eq. (2). The problem can be solved by setting an asymptotic 
limit to growth: 

 ( ) ( )1 atS t S e−
∞= ⋅ − . (5) 

The rate of biomass accumulation y, Eq. (2), usually referred to as the current annual 

increment of stock measured by volume of wood mass per unit area (m3/ha) (Brack & Wood, 

1998) is not directly determined by the accumulated biomass stock. The uptake of CO2 and 

photosynthesis of biomass rather depends on the total surface area of leaves determining the 

amount of absorbed radiation. The number of leaves and hence the light-absorbing area 

depend on the biomass accumulated by individual trees and the forest stand as a whole. The 

actual amount of the absorbed radiation that ultimately determines the rate of 

photosynthesis (and the annual increment) per unit area (a hectare) of a particular forest 

stand is limited regardless of the total surface area of leaves. So the concept of light-

absorbing area should refer to the effective absorbing area limited by the particular area unit 

selected. It should be noticed here that further considerations are relevant to statistically 

significant numbers of individual trees and, consequently, to area units of stands 

comparable to hectare.  

It seems to be reasonable to assume that accumulation of biomass in a forest stand 

occupying a large enough land area follows the same law as the rate at which the light-

absorbing area (the canopy) of the growing stand expands with time. As noticed, the 

number and total surface area of leaves absorbing radiation is proportional to the 

accumulated biomass approaching some asymptotic limit L∞ of its own. However, the rate 

of expansion of the effective absorbing area also depends on the proportion of the free, 

unoccupied space available for expansion to intercept the radiation. Supposing the total 

light-absorbing area L as function of time being described by equation similar to Eq. (5): 

 ( ) ( )1 atL t L e−
∞= − , (6)  

the rate of expansion of the light-absorbing area expressed as: 

 ( )
dL

const L L L
dt

∞= ⋅ − ⋅  (7) 
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can be written in the form: 

 ( ) ( ) ( )21 1 1at at at atdL
const L L e L e const L e e

dt
− − − −

∞ ∞ ∞ ∞
 = ⋅ − ⋅ − ⋅ − = ⋅ ⋅ ⋅ −  . (8) 

Dimension of the constant in Eq. (8) is the reciprocal of the product of area and time. Since 
area L∞ also is constant it can be omitted for further convenience to focus attention on the 
time-dependent part of Eq. (8). 
Assuming that the rate of biomass accumulation follows the rate of expansion of the light-
absorbing area it can be described by equation similar to Eq. (8): 

 ( )1 at atdS
const e e

dt
− −= ⋅ − ⋅ , (9) 

where the value of the constant factor (dimension of which here is the dimension of current 
increment) can be chosen to satisfy some selected normalizing condition, as will be done 
further. 
The time-dependent part of Eq. (9) has a maximum at time tm satisfying condition: 

 2 1 0ate− − =  (10) 

Wherefrom 

 ln 2mat =  (11) 

Exponent a determining the rate of growth in real time depends on the particular species 

and a number of other factors such as insolation and availability of water and nutrients at 

the site and has to be found from field measurements. However, existence of the maximum 

on the curve of the rate of growth (the curve of current annual increment often referred to as 

the growth curve) allows normalizing the time scale with respect to the time at which the 

maximum is reached. It is done by introducing dimensionless time variable 

 
ln 2

at
x = , (12) 

or substituting at with x·ln2 in Eq. (9), or just writing x instead of t and putting a = ln2. The 
current annual increment is normalized by choosing the constant factor to satisfy 
condition: 

 ( )
1 1 1

1 1 1
2 2 4

my y x const const
 

= = = ⋅ − ⋅ = ⋅ = 
 

. (13) 

The normalized rate of biomass accumulation expressed by current annual increment in 
time scale x normalized with respect to the time when it reaches its maximum now is 
presented by Eq. (9) where t is substituted by variable x: 

 ( ) ( )4 1 ax axdS
y x e e

dx
− −≡ = ⋅ − ⋅  (14) 

where a = ln2.  Function y(x) is shown in Fig. 1 (a). 

www.intechopen.com



 
A Simple Analytical Model for Remote Assessment of the Dynamics of Biomass Accumulation 

 

95 

 

Fig. 1. a – rate of accumulation (current annual increment) of biomass y(x) normalized with 
respect to its maximum value presented by Eq. (14) and b – stock normalized with respect to 
its asymptotic limit presented by Eq. (17) as functions of normalized time variable x.  

Returning to Eq. (1) the biomass stored by time x = xc is expressed by definite integral: 

 ( ) ( )
0

cx

cS x y x dx=  . (15) 

Substituting y(x) from Eq. (14) into Eq. (15) and calculating the integral the stock S is 
presented as function of age explicitly: 

( ) ( )
2

2

0 0 0 0

4 1 4 4 4
2

cc c c
xx x x ax ax

ax ax ax ax
c

e e
S x e e dx e dx e dx

a a

− −
− − − −  

= − ⋅ = − = − + = 
  

    

 ( ) ( )
222

0

2 2 2
2 2 1 1

2 2 2

c
c c c

x ax ax axax axe e e e e
a a a

− − −− − = ⋅ − = ⋅ − + = ⋅ −   (16) 

By normalizing the stock choosing its asymptotic limit as the normalized unit S∞ = 1 the 
result of transformations in Eq. (16) can be summarized as 

 ( ) ( ) ( )
2 22

1 1
2

c cax ax
cS x e S e

a

− −
∞= ⋅ − = −  (17) 

where, as previously in Eq. (14), a = ln2. Function (17) in the normalized time scale is 
presented in Fig. 1 (b). 

3. Mean annual increment and productivity 

The mean annual increment of a forest stand is an essential factor illustrating the overall 
productivity of the stand at a given age and is expressed by the ratio of stock to age of the 
stand (Brack & Wood, 1998). The stock being presented by Eq. (16) the mean annual 
increment Z is calculated in units of the current annual increment from 

S(x)y(x) 

time time 

a b
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 ( )
( )

2
12

axe
Z x

a x

−−
= ⋅  (18) 

where a = ln2. Function Z(x) shown in Fig. 2 has a maximum at x satisfying condition: 

 
ln 2

2ln 2
xe

x
=  (19) 

obtained from putting derivative of function (18) equal to zero. The value of x ≈ 1.81 
satisfying Eq.(19) is found from graphical solution of the equation (Fig. 3). 
 

 

Fig. 2. Mean annual increment Eq. (18) as function of the normalized time variable x. 

 

 

Fig. 3. Graphical solution of Eq. (19) determining position of the maximum of mean annual 
increment on the axis of the normalized time coordinate x. 

Z(x)

x
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In Fig. 4 the current annual increment (rate of biomass accumulation) and the mean annual 
increment are presented together wherefrom the mean annual increment is seen to reach the 
maximum value (equal to ≈ 0.8 of the peak value of current annual increment) at cross-point 
of the two curves. 
 

 

Fig. 4. Current (curve 1, Eq. 14) and mean (curve 2, Eq. 18) annual increments of biomass as 
functions of time x normalized with respect to the time of the growth-rate maximum chosen 
as the unit time interval. The mean annual increment (curve 2) is presented in the same scale 
as the current annual increment. The maximum of curve 2 is reached at the cross-point of 
the two curves at x ≈ 1.81.  

The reciprocal of the mean annual increment is a parameter characterizing the size of 
plantation for sustainable supply of biomass. The total area of a plantation for sustainable 
annual supply comprised of equal lots of stands of ages in sequence from one year to the 
cutting age is directly proportional to cutting age xc and inversely proportional to the stock 
at cutting age S(xc): 

 
( )

( )c
c

c

x
A const const f x

S x
= ⋅ = ⋅ . (20) 

The constant is equal to the required annual yield of biomass; function f(xc) defined as  

 ( )
( )

c
c

c

x
f x

S x
≡  (21) 

is the reciprocal of the mean annual increment at cutting age.  
At point x ≈ 1.81 where the mean annual increment reaches maximum its reciprocal – 
function f(x) has the minimum. If Bs is the demanded sustainable annual yield of biomass, 
S(xc) – the stock of biomass accumulated in the forest stand by the cutting age, and Ao – the 
area of the forest to be felled annually to satisfy the demand, then Bs = S(xc)·Ao  and the total 
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area of the plantation – A = xc·Ao . From here the yield per unit area of the whole plantation 
is found being proportional to the mean annual increment reaching the maximum at x ≈ 1.8: 

 
( ) ( )c o c cs

c o c

S x A S xB

A x A x

⋅
= =

⋅
. (22) 

As follows from Eq. (22), felling the forest at age corresponding to 1.8 units of the 
normalized time scale provides the maximum yield per unit area of a particular stand and 
hence of the whole plantation. In other words, the maximum productivity of land area 
under a forest is achieved when felling at the time of the mean annual increment peak. 

4. Validation of the model 

Neither the value of the current annual increment at maximum, nor the real time when a 
forest stand reaches the maximum is known a priori. Both parameters depend on the species 
and conditions represented by the quality class of the site and have to be determined by 
field measurements. However, the field measurements do not provide these quantities 
directly. They have to be found from periodic mean annual increments available from field 
measurements.  
The growth-rate function given by Eq. (14) cannot be used directly to compare the model 

equation with experimental growth-rate data. For that purpose a different exponential 

equation can be employed containing variable parameters related to the quantities not 

measurable directly. The values of the variable parameters providing the best fit of the 

measured annual increments with the equation are chosen to evaluate the unknown 

quantities. A rather abundant database available for natural grey alder (Alnus incana) stands 

of up to 50 years old (Daugavietis, 2006) presents a good opportunity to test the model. 

The 5-year mean annual increments available from field measurements (Daugavietis, 2006) 
are a good approximation for the current annual increment value at mid-time of the 
respective 5-year period (Fig. 5, a). By choosing a function of the type 

 ( ) ( ) ( )
t t

a ay t c kt e k b t e
− −

= + ⋅ = + ⋅  (23) 

to describe the current annual increment it is possible to assign physical sense to variable 
parameters a and c and find the maximum value of the current annual increment and 
position of the maximum on the real-time axis by best fit of function (23) to the data from 
experimentally measured periodic mean increments. Under condition of taking coefficient k 
(of dimension y/t) equal to 1 function (23) has its maximum at time 

 m

c
t a a b

k
= − = − . (24) 

It should be noticed here that dimension of constant a in Eq. (23) is time, which is different 
from the constant a used in Eq. (2) with dimension of reciprocal time (frequency). The 
reason of choosing a different dimension of constant a in Eq. (23) is seen from Eq. (24). 
By varying parameters a, b, and the maximum value of the current annual increment ym (not 
available from any direct measurement) function (23) is varied for best fit to the set of 
experimental data normalized with respect to ym.  
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The values of increments calculated from Eq. (23) coincide with the set of experimental data 
(Daugavietis, 2006) (Fig. 5) within standard deviation of 2.5 % of the maximum value, the 
correlation between the sets of calculated and experimental data being better than 0.99. 
The normalized time scale is introduced by choosing variable x to satisfy condition 

 
m

t t
x

t a b
= =

−
. (24) 

By substituting the normalized time variable x for real time t in Eq. (23) the current annual 
increment is presented as 

 ( ) ( )
a b

x
ay x b a b x e

−
− ⋅

=  + − ⋅  ⋅  . (25) 

By defining new constant parameters 
a b

a
α

−
=  and 

b

a b
β =

−
 Eq. (25) is rewritten as: 

 ( ) ( ) ( ) xy x a b x e αβ −= − ⋅ + ⋅ . (26) 

Normalizing function (26) with respect to ym = (a – b)·(ǃ + 1)·exp(-ǂ) and taking into account 

that 1
b a b a

a b a b
β

+ −
+ = =

− −
 provide 

 ( ) ( ) xy x e x eα αα β −= ⋅ ⋅ + ⋅ . (27) 

By substituting y(x) from Eq. (27) in Eq. (15) and calculating the integral the stock 

normalized to 
( )

( )2

a a b
S

a b
∞

⋅ +
=

−
 as function of cutting age is expressed by: 

 ( ) 1 1 cx
c c

a b
S x x e

a b
α−− 

= − + ⋅ ⋅ 
+ 

. (28) 

The mean annual increment 

 ( )
( ) 1

1 1 xS x a b
y x x e

x x a b
α− − 

= = ⋅ − + ⋅ ⋅  
+  

 (29) 

reaches maximum under condition 

 ( )exp 1 1
a b

x x x
a b

α α
− 

− ⋅ + = 
+ 

 (30) 

providing xm ≈ 1.77 corresponding to optimum cutting age of xc = 1.8 or 18 years in case of 
grey alder. 
After finding the age of the maximum of current annual increment, the set of 
experimental points (Fig. 5, a) can be put on the normalized time scale x and compared 
with function (14) as shown in Fig. 5, b. The variation of the value of growth-rate 
maximum at this point is still available for adjustment to improve the fit between 
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experimental data and Eq. (14). The curves presented by Eqs. (14) and (27) with best fit 
parameter values are practically identical within the normalized time interval 0.5 ≤ x ≤ 2.5. 
Because of a nonzero initial growth-rate Eq. (27) provides higher values on the rise while 
lower at later time on the decline.  
 

 

Fig. 5. a – current annual increments of grey alder stand calculated from measured 5-year 
periodic mean values with age (Daugavietis, 2006), in units of m3 per ha per annum; b – best 
fit of Eq. (14) (solid curve) to experimental data (circles) normalized against the growth-rate 
maximum in the time scale of normalized age. 

5. Rate of growth as function of light-absorbing area 

Equation (9) describing the rate of biomass accumulation derived from Eq. (7) in section 1 is 
based on the assumption that dynamics of current annual increment follows dynamics of 
the expansion of light-absorbing area of the canopy. Returning to Eq. (7) it can be assumed 
to describe the relationship between the normalized rate of growth (y) and the normalized 
light-absorbing area (L): 

 ( ) ( )4 1y L L L= ⋅ −  (31) 

shown in Fig. 6. 
It has to be noticed that the pace at which the biomass is stored is not necessarily equal to 
the pace at which the light-absorbing area increases. The uptake of biomass (photosynthesis) 
depending on the effective light-absorbing area obviously should follow with some delay, 
which means that the normalized (intrinsic or specific) time scale of the equation derived 
from Eq. (8) to describe the rate of expansion of the light-absorbing area:  

 ( )4 1 ax axdL
e e

dx
− −= − ⋅ , (a = ln2) (32) 

is different from that of Eq. (14) describing the rate of biomass accumulation.  

m3ha-1a-1 

an
n

u
al

 i
n

cr
em

en
t 

time

a b

age

www.intechopen.com



 
A Simple Analytical Model for Remote Assessment of the Dynamics of Biomass Accumulation 

 

101 

 

Fig. 6. Rate of biomass accumulation y as a function of the light-absorbing area L, Eq. (31). 

Relationship between the units of the two normalized time variables – xb describing the 
current annual increment (rate of biomass accumulation) and xa describing the rate of 
expansion of the light-absorbing area can be concluded from knowing that maximum of the 
current annual increment is reached at L/L∞ = 0.5 when xb = 1. In units of time scale xa the 
light-absorbing area L is expressed by integrating Eq. (32) the result of which is similar to 
Eq. (17): 

 ( ) ( )
2

1 aax
aL x L e−

∞= −  (33) 

where L is normalized in the same way as stock by taking the asymptotic limit L∞ equal to 1. 
The “age” xa at which the normalized light-absorbing area reaches the value 0.5, as follows 
from Eq. (33), satisfies equation: 

 
2

1
2

aaxe−− =  (34) 

wherefrom, remembering that a = ln2, the time in units of scale xa corresponding to unit time 
of scale xb = 1 is found being equal to 

 

2
ln 1

2
1.77

ln 2
ax

 
− −  

 = ≅ . (35) 

It means that a unit of the normalized time scale of the rate of expansion of the light-
absorbing area is about 0.56 of the unit of the normalized time scale describing the rate of 
biomass accumulation. The units of the two normalized time scales presented in Fig. 7 are 
approximately equated by 

L 
L∞

y(L)
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 1.77b ax x≅ . (36) 

As seen from Fig. 7, expansion of the light-absorbing area of the canopy (curve 1) proceeds 
ahead of the rate of biomass accumulation (curve 2) complying with the assumption that 
higher rates of the increase of the surface area (and the number) of leaves require a greater 
proportion of the gross product of photosynthesis lost after seasonal vegetation.  
The size of the effective light-absorbing area expressed by the ratio to its asymptotic limit is 
presented in Fig. 7 on the lower time axis. The maximum rate of expansion dL/dx is reached 
at x = xb ≈ 0.56 (xa = 1) when L = 0.25L∞ while the current annual increment reaches the 
maximum at x = xb = 1 when L = 0.5L∞. By the time x = xb ≈ 1.81 when the mean annual 
increment reaches its maximum the effective light-absorbing area is equal to approximately 
0.8 L∞. The current annual increment of biomass in the stand is maintained over 0.8 of the 
maximum value within the range of light-absorbing area between 0.28 and 0.8 of L∞.  
 

 

Fig. 7. Rate of expansion of the light-absorbing area (1), current annual increment (2), and 
the light-absorbing area (3) in time-scale x = xb normalized to the time of the current annual 
increment maximum. The lower axis shows the size of the light-absorbing area reached at 
the respective point on the time axis. 

The basic components of the model – equations presenting current and mean annual 
increments, stock, and the rate of expansion of the light-absorbing area as functions of age 
expressed in the intrinsic time units are summarized in Fig. 8.  

6. Conceptual remarks 

The analytical expressions comprising the model are derived from rather general principles 
of biomass production by photosynthesis in living stands without taking into account 

L 
L∞
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factors affecting forest growth other than the effective light-absorbing area of the canopy. 
However, since dynamics of the latter is strongly dependent on availability of nutrients, 
water, and some other crucial factors, the model reflects the cumulative effect of all of them 
through the relationship between the rate of growth and the capacity to capture the active 
radiation. Therefore, monitoring the canopy dynamics can provide reliable information for 
conclusions about that capacity and the expected end product of photosynthesis.  
Determining the best time for harvesting by observing expansion of the canopy from 
satellites is one of attractive practical applications of the model for management of even-age 
stands in concert with remote sensing. Even though the canopy projection measureable by 
remote sensing instruments is not quite equal either to the light-absorbing area or the leaf 
area index, the correlation between the three is strong enough to make corrections necessary 
for detecting the time (age) of growth-rate maximum from remote observations of the 
dynamics of canopy expansion. 
 

 

Fig. 8. Dynamics of the light-absorbing area (1), Eq. (7), the rate of production of above-
ground biomass (2), Eq. (14), mean annual increment (3), Eq. (18), and the yield (4), Eq. (17), 
as functions of the intrinsic time provided by the rate of growth of a forest stand. The 
effective light-absorbing area as the ratio to its maximum value L/L∞ , Eq. (33), is presented 
by the lower abscissa. Note the inflection point of curve 4 being reached before 0.25 S∞; at 

the time of maximum productivity S @ 0.5 S∞.  

The obtained analytical expression, Eq. (17), for accumulated biomass of a stand as function 
of age is a particular case of the well-known Richards growth equation (Zeide, 2004): 

L

L∞ 
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 ( ) ( )1
c

bty t const e−= ⋅ −  (37) 

with parameter values b = ln2 and c = 2 describing sigmoid (logistic) growth.   
A generalized differential form of sigmoid growth (the growth-rate function) has been 
considered by C. P. D. Birch (Birch, 1999) and a detailed formalistic analysis of the family of 
sigmoid growth equations is given by O. Garcia (Garcia, 2005). The sigmoid shape of the 
yield (stock) curve Eq. (17) in the present case is predetermined by the shape (the maximum) 
of the obtained growth-rate function Eq. (14). 
The normalized time unit introduced to provide a dimensionless common measure to match 
the model with experimental data is the same intrinsic time unit suggested by B. Zeide as a 
unit provided by organisms themselves and clarifying the meaning of parameters of growth 
functions (Zeide, 2004). A number of other growth factors, such as biological potential of a 
particular species, the site quality, changing climate, etc. are reflected in the real-time 
equivalent of the intrinsic time unit. For instance, comparison of best fits to available 
measured data of grey alder stands at sites of different quality (Daugavietis, 2006) show the 
stands at sites of higher quality reaching the growth-rate maximum earlier (Kosmach, 2010). 
Since climate change is a factor affecting forest growth (Nakawatase & Peterson, 2006), the 
real-time equivalents of the intrinsic time unit obtained from monitoring the growth of 
stands of a given species hold information for potential assessment of the changing 
environment accessible by remote observations and retrospective studies of forest growth. 
The Richards equation (37) predicts diminishing of the current increment to zero with the 
age of the stand while the effective light-absorbing area given by Eq. (6) approaches a 
constant maximum and, therefore, should be expected to provide a constant maximum 
increment of biomass. However, the real growth curves (at least of natural forest stands) 
rather comply with Richards equation even if the underlying models do not take into 
account factors, such as respiration or partition, diminishing the annual above-ground 
biomass production. In the present case they are somehow implied in the factor (L∞ – L) 
restricting the rate of expansion of the effective light-absorbing area in Eq. (7), which 
ultimately determining the descent of the derived growth functions, Eqs. (14) and (17), can 
be attributed to shading. At large, the simplified models of this kind should not be expected 
to hold at the very short and far ranges of the time axis their application being limited by the 
range of the intrinsic time units between 0.5 and 3 – the interval of interest for commercial 
forest management. G. E. P. Box has likely hit the point with regard to the subject by writing 
in 1979: “All models are wrong, but some are useful” (cited in Vanclay, 2010).  

7. Conclusions 

The simple logistic analytical model of biomass accumulation by forest stands derived on 
the basis of general assumptions about photosynthesis comprises compatible equations of 
growth and yield as functions of time. The function describing dynamics of the rate of 
growth derived as function of the effective light-absorbing area of the canopy provides a 
growth function representing particular case of Richards equation and is in good agreement 
with data obtained from experimental measurements. The model contains two related 
parameters: the unit of the intrinsic (normalized with respect to peak current annual 
increment) time scale and the effective light-absorbing area of the canopy not equal but 
closely related to the leaf area index or to projection of the canopy. The latter accessible by 
remote sensing opens the use of remote sensing data for monitoring the growth of forest 
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stands to predict the culmination of current annual increment the age of the stand at which 
being known allows predicting the optimum age for harvesting.  
The model has been developed for determining the land area and the optimum harvesting 
age of even-aged natural stands for sustainable supply of firewood and wood biomass to 
satisfy the needs of paper mills and biorefineries. It can be extended to consider solutions of 
the same problems with regard to timber products such as boards and other construction 
elements of buildings. 
Some further studies are necessary to find out the relationship between remote observations 
of canopy dynamics and dynamics of the effective light-absorbing area to realize the benefits 
of using the model with the opportunities provided by remote sensing to forest 
management. 
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