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1. Introduction 

Ferroelectric materials, such as lead zirconate titanate (PZT), have been widely used in 
sensor, actuator, and energy conversion devices. In this paper, we are primarily interested in 
the electro-mechanical response of polarized ferroelectric ceramics subject to cyclic electric 
fields at various magnitudes and frequencies. There have been experimental studies on 
understanding the effect of electric fields and loading rates on the overall electro-mechanical 
response of PZT (see for examples Crawley and Anderson 1990, Zhou and Kamlah 2006). 
The electrical and mechanical responses of PZT are also shown to be time-dependent, 
especially under high electric field (Fett and Thun 1998; Cao and Evans 1993; Schaufele and 
Hardtl, 1996). Ben Atitallah et al. (2010) studied the hysteretic response of PZT5A and active 
PZT fiber composite at several frequencies and isothermal temperatures. They show the 
nonlinear and time-dependent piezoelectric constants of the PZTs and PZT fiber composites. 
In a review of nonlinear response of piezoelectric ceramics, Hall (2001) discussed 
experimental studies that show strong time-dependent and nonlinear behavior in the 
electro-mechanical response of ferroelectric ceramics. The time-dependent effect becomes 
more prominent at electric fields close to the coercive electric field of the ferroelectric 
ceramics and under high magnitude of electric fields a ferroelectric ceramics exhibits 
nonlinear electro-mechanical response. Furthermore, high mechanical stresses could result 
in nonlinear mechanical, electrical, and electro-mechanical responses of the ferroelectric 
materials. Within a context of a purely mechanical loading in viscoelastic materials, time-
dependent response is shown by a stress relaxation (or a creep strain). This results in stress-
strain hysteretic response when a viscoelastic material is subjected to a cyclic mechanical 
loading. There are different types of viscoelastic materials, such as polymers, biological 
tissues, asphalts, and geological materials. It is understood that these materials possess 
different microstructural characteristics at several length scales; however the macroscopic 
(overall)1 mechanical response of these materials, i.e. stress relaxation and hysteretic 
response, especially for a linear response, follows similar trends. Experimental studies have 
shown that there are similarities with regards to the macroscopic time-dependent (or 

                                                 
1 In this context, by observing the macroscopic response of materials we treat the bodies as continuous 
and homogeneous with respect to their mechanical response although there is no clear cut as at which 
length scale the bodies can be considered continuous and homogeneous.  
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frequency dependent) response of piezoelectric ceramics, i.e. electro-mechanical coupling, 
dielectric constant, and mechanical stress-strain relation, to the macroscopic time-dependent 
and hysteretic behaviors of viscoelastic materials although it is obvious that the 
microstructural morphologies of piezoelectric ceramics are completely different from the 
ones of viscoelastic materials mentioned above.  
The macroscopic response of materials depends upon their microstructural changes when 

these materials are subjected to various histories of external stimuli such as mechanical load 

and/or electric field.  Several constitutive models have been developed to examine the effect 

of electric field and mechanical stress on the overall hysteretic response of ferroelectric 

materials. These constitutive models can be classified as purely phenomenological models 

derived based on classical mechanics and thermodynamics framework and micromechanics 

based models that incorporate changes in the polycrystalline (micro) structure of 

ferroelectric ceramics with external stimuli. In the phenomenological models, changes in the 

microstructures of materials due to external stimuli are not explicitly modeled; however the 

effects of microstructural changes on the macroscopic response of materials can be 

incorporated by allowing the material parameters to vary with the external stimuli. It is also 

noted that any changes in micro- and macroscopic responses of materials occur in some 

finite period and in most cases these changes also depend upon how fast or slow the 

external stimuli are prescribed to the bodies, leading to what so called ‘rate-dependent 

response’. Changes in the microstructures of materials with external stimuli are rather 

complicated. It might not be possible to incorporate detailed mechanisms that trigger these 

changes in developing constitutive models, mainly due to the complexity of these 

microstructural changes that occur at various scales and it is not well understood how the 

interactions among different field variables at the microscopic scale affects the macroscopic 

response. Several micromechanics based models are derived with a motivation to 

incorporate some aspects of the microstructural characteristics in predicting macroscopic 

response of materials. These micromechanics models are of course based on some 

assumptions and hypotheses. For examples: Smith et al. (2003, 2006) developed a 

constitutive model for hysteretic polarization switching response based on free-energy of a 

single crystal structure. It is assumed that the free energy is related to dipole reorientation in 

each crystal structure. A stochastic homogenization approach is used to obtain macroscopic 

hysteretic response of polycrystal structures. Chan and Hagood (1994) modeled a 

polarization reversal behavior of a single-crystal piezoceramic by assuming that the single 

crystal can be polarized to six possible directions and the overall responses of the 

piezoceramics are obtained either by averaging the crystallite responses in a global 

coordinate system or by taking into account internal alignment of the crystallites. Chen and 

Lynch (1998) incorporated the effects of grain orientations and crystal structures, i.e. 

tetragonal and rhombohedral, on the macroscopic hysteretic response of piezoelectric 

ceramics. These various microstructural-based models that require different material 

parameters are shown capable of simulating nonlinear hysteretic macroscopic response of 

piezoelectric ceramics. In most cases, these material parameters are characterized from the 

macroscopic response of the materials. An attempt of using molecular dynamics simulations 

in predicting macroscopic nonlinear hysteretic response of ferroelectric materials has also 

been considered. Such studies can be found in Uludogan et al. (2008) and Fang and Sang 

(2009). All of the above models that to some extents include microstructural aspects of 

piezoelectric ceramics are derived with a motivation to explain and improve understanding 
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on the nonlinear hysteretic response; however it might be difficult if not possible to perform 

experiments that can trace detailed microstructural changes at various microscopic scales 

during the hysteretic response, not to mention incorporating the rate of these changes as 

well. A discussion on the development of constitutive models of ferroelectric materials can 

be found in Smith (2005) and Lines and Glass (2009). 

Bassiouny et al. (1988a and b, 1989) formulated a phenomenological model for predicting 

electromechanical hysteretic response of piezoelectric ceramics. They defined a 

thermodynamic potential in terms of reversible and irreversible parts of the polarization. 

The irreversible part is the energy associated with the residual electric polarization. This 

constitutive model leads to rate-independent equations for the electro-mechanical coupling 

in piezoelectric ceramics (in analogy to the flow rule plasticity model). Huang and Tiersten 

(1998a and b) used a phenomenological based model for describing electro-mechanical 

hysteretic behavior in ferroelectric ceramics. Their model can capture the overall nonlinear 

hysteretic response, but it does not incorporate the effect of frequencies on the overall 

hysteretic response. Another example of phenomenological models of nonlinear rate-

independent hysteretic response of piezoelectric ceramics is by Kamlah and Tsakmakis 

(1999). The nonlinearity is due to polarization switching when the piezoelectric ceramics are 

subjected to high electric field and compressive stress. Similar to the crystal plasticity model 

of Bassiouny et al. (1988a and b) Landis (2002) developed a phenomenological model for 

predicting polarization switching in ferroelectric materials. They used an idea of rate-

independent plasticity model and discussed an extension of the constitutive model to 

include a rate-dependent response. Tiersten (1971, 1993) developed a nonlinear electro-

elastic model for predicting response of polarized piezoelectric ceramics undergoing large 

electric driving fields and small strains. The constitutive model includes higher order terms 

of electric fields. Crawley and Anderson (1990) suggested that the nonlinear electric field 

can be incorporated by taking a linear piezoelectric constant to depend on the electric field. 

Massalas et al. (1994) and Chen (2009) presented nonlinear thermo-electro-mechanical 

constitutive equations for elastic materials with memory-dependent (viz. viscoelastic 

materials) that incorporate the effect of heat generation due to the dissipation of energy on 

the nonlinear thermo-electro-mechanical response of conductive materials. The advantages 

of the phenomenological models are in their relatively simple forms in which the material 

parameters can be easily characterized from macroscopic experiments, which are beneficial 

for designing structures consisting of piezoelectric ceramics. 
The electro-mechanical response of ferroelectric ceramics is shown to be time- (or rate-) 
dependent within a context of dielectric- and piezoelectric relaxation; however limited 
studies have been done on predicting time-dependent response of ferroelectric ceramics. We 
extend the concepts of response of viscoelastic solids to evaluate the nonlinear time-
dependent electro-mechanical (macroscopic) response of polarized ferroelectric materials, 
i.e. piezoelectric ceramics. General time-integral electro-mechanical phenomenological 
constitutive models based on multiple integral and nonlinear single integral forms are used. 
We assume that the dielectric and piezoelectric constants of the materials change with 
electric field and the rate of time-dependent polarization and strain responses can also 
change with the magnitude of the electric field. This manuscript is organized as follows. 
Section two discusses a nonlinear time-dependent constitutive model based on integral 
formulations for electro-mechanical response of piezoelectric ceramics, followed by 
numerical implementation and verification of the models in section three. Section four 
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presents analyses of piezoelectric bimorph actuators having time-dependent material 
properties. The last section is dedicated to a conclusion and a discussion of the proposed 
nonlinear time-integral models. 

2. Nonlinear time-dependent constitutive model for piezoelectric ceramics 

2.1 Nonlinear electro-elastic constitutive model 
A phenomenological constitutive model2 for polarized ferroelectric ceramics at an 

isothermal condition is described in terms of the following field variables: stress σ, strain ε, 
electric field E, electric flux (displacement) D. It is assumed that loading is within a quasi-
static condition such that the effect of inertia on the electro-mechanical response can be 
neglected.  The constitutive model for polarized ferroelectric ceramics can be obtained by 

defining a thermodynamic potential ( , )
e

ψ ε E  (see Bassiouny et al. 1988a; Tiersten, 1993; 

Huang and Tiersten, 1998). The relations between the different field variables are obtained 
from: 

 e
ij

ij

ψ
σ

ε

∂
=

∂
E

       e

i

i

D
E

ψ∂
= −

∂
σ

 (2.1) 

The components of the electric field and strain are expresses as 
,i i

E ϕ= −  

and ( ), ,

1

2
ij i j j i

u uε = + , respectively; where ϕ  and 
i

u are the electric potential and scalar 

component of the displacement, respectively. This study focuses on understanding response 
of piezoelectric ceramics undergoing large electric fields and the brittle nature of 
piezoelectric ceramics limits their deformation to small strains. The thermodynamic 
potential includes up to second order strain tensor and higher order electric field. Tiersten 
(1993) suggested the following free energy function at an isothermal condition: 

 
1 1 1 1

. .
2 2 2 6

e ijkl ij kl ijk jk i ij i j ijkl i j kl ijk i j k
C e E E E b E E E E E H O Tψ ε ε ε κ ε χ= − − − − +  (2.2) 

where 
ijkl

C , 
ijk

e , 
ij

κ , 
ijkl

b , and 
ijk

χ  are the fourth-order elasticity tensor, third-order electro-

mechanical tensor (piezoelectric constant), second-order electric permeability (dielectric 
constant), fourth-order electro-mechanical tensor, and third-order electric permeability 
tensor, respectively. The above elasticity constants are measured at constant or zero electric 
field, while the electrical properties are measured at constant or zero strains. The stress and 
electric displacement are: 

 

1 ˆ
2

1
ˆ

2

ij ijkl kl kij k klij k l

i ijk jk ij j ijk j k

C e E b E E

D e E E E

σ ε

ε κ χ

= − −

= + +

 (2.3) 

                                                 
2 We deal with a constitutive model for a continuous and homogeneous body, suitable for simulating 
response of a piezoelectric ceramic below its coercive electric field.  
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where 

 

1ˆ 2
2

ˆ

ijkl ijkl o ki lj ij kl

ij ij o ij ij

b b

ε

κ δ δ δ δ

κ κ κ δ κ

 
= − − 

 
= = +

 (2.4) 

Here 
o

κ  is the permittivity constant at free space and 
ij

δ  is the delta Kronecker. Tiersten 

(1993) also discussed an alternative expression of the constitutive model with nonlinear 

electric field and small strain when stress, electric field, and temperature are taken as the 

independent field variables: 

 

1

2
1

2

ij ijkl kl kij k klij k l

i ijk jk ik k ijk j k

S d E f E E

D d E E Eσ σ

ε σ

σ κ χ

= + +

= + +

 (2.5) 

The elastic compliances,  
ijkl

S , piezoelectric constant,  
ijk

d , and nonlinear electroelastic 

constants,  
ijkl

f , are:  

 

1

ˆ

ijkl ijkl

ijk imn mnjk

ijkl ijmn mnkl

S C

d e S

f b S

−=

=

=

 (2.6) 

The second- and third-order electric permeability constants are measured at zero or constant 
stresses: 

 
ˆ

ij ij imn jmn

ijk ijk imn jkmn

e d

e f

σ

σ

κ κ

χ χ

= +

= +
 (2.7) 

2.2 Nonlinear time-dependent constitutive model 
In analogy to the time-dependent deformation of viscoelastic materials, we extend the 
nonlinear electro-elastic model developed by Tiersten (1993) to include time-dependent 
material parameters. There have been several integral models developed to describe 
nonlinear viscoelastic behavior: modified superposition principle (Findley and Lai, 1967), 
multiple integral model (Green and Rivlin 1957), finite strain integral models (Pipkins and 
Rogers 1968; Rajagopal and Wineman 2010), single integral models (Pipkins and Rogers 
1968; Schapery 1969), and quasi-linear viscoelastic model (Fung 1981). The work by Green 
and Rivlin (1957) provides the fundamental framework for nonlinear viscoelastic response 
using the principles of continuum mechanics. It is assumed that small changes in the input 
field variables cause only small changes in the corresponding output field variables; this can 
be approximated by using continuous functions by polynomials. For a nonlinear viscoelastic 
material, Green and Rivlin (1957) formed a sum of multiple integrals of the polynomial 
functions to incorporate history of input variables in predicting output at current time. The 
constitutive equations (2.3) and (2.5) are expressed in the polynomial functions of 
independent field variables. In analogy to the correspondence between elastic and 
viscoelastic materials, we extend the nonlinear electro-elastic equations of Tiersten (1993) to 
include the time-dependent effect (for non-aging materials): 
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1 2

1 2 1 2

1 20 0 0 0

1 2

1 2

10 0

( ) ( ) 1 ( ) ( )
( ) ( ) ( ) ( , )

2

( ) ( )( ) 1 ( )
( ) ( 2) ( ) ( , )

2

t t t t

kl k k l

ij ijkl kij klij

t t
jk jk k

i ijk ik ijk

d s dE s dE s dE s
t S t s ds d t s ds f t s t s ds ds

ds ds ds ds

d s dE sdE s dE s
D t d t ds t s ds t s t s

ds ds ds d
σ σ

σ
ε

σ
κ χ

− − − −

− −

= − + − + − −

= − + − + − −

   

  1 2

20 0

t t

ds ds
s− −

 
 (2.8) 

It is also possible to include higher order terms of the electric field. In order to graphically 
visualize the linear and nonlinear kernel functions of time, let us consider a one-dimensional 
multiple integral forms (up to the second order): 

 1 2

1 2 1 2 1 2

1 20 0 0

( ) ( ) ( )
( ) ( ) ( , )

t t tdI s dI s dI s
R t t s ds t s t s ds ds

ds ds ds
ϕ ϕ

− − −

= − + − −    (2.9) 

where R(t) is the corresponding output at current time t, I(s) is the input history prescribed 

at 0 s t− ≤ ≤ , 1
( )tϕ and 2

( , )t tϕ are the two kernel functions. When the kernels are assumed to 

increase with time, Fig. 2.1 illustrates the linear and second order kernel functions of time 
(see Findley et al. (1976) for a detailed explanation). It is also assumed that the material 

response is unaltered by an arbitrary shift of the time scale, so that 2 1 2 1
( , ) ( , )t t s t s tϕ ϕ− = − . 

The following functions can be used for the two kernels in Eq. (2.9): 

 
( )/ 1

1 0 1

( )/ ( )/ ( )/ ( )/1 1 2 1 1 2 2 2
2 1 2 0 1 2

( ) (1. )

( , ) (2. ) (1. )(1. )

t s

t s t s t s t s

t s A A e

t s t s B B e e B e e

τ

λ λ λ λ

ϕ

ϕ

− −

− − − − − − − −

− = + −

− − = + − − + − −
 (2.10) 

where A0, A1, B0, B1, B2, τ1, λ1, λ2 are the material parameters that need to be determined 
from experiments. A set of experiments may be performed by applying the input variables 

at different times, say at t=0 and t=s1. The main disadvantage of the multiple integral forms 
is in characterizing material parameters from experiments, even when only up to the second 
order kernel function is considered. The characterization of material parameters becomes 
even more complicated for the anisotropic and nonlinear time-dependent case, which is the 

case for piezoelectric ceramics. 
 

 

Fig. 2.1. Time-dependent kernel functions (see Findley et al., 1976) 
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It is also possible to include higher order terms of the electric field. In case of the third order 
term is included, the following third order kernel function can be considered: 

 

( )/ ( )/ ( )/1 1 2 1 3 1
3 1 2 3 0 1

( )/ ( )/ ( )/1 2 2 2 3 2
2

( , , ) (3. )

(1. )(1. )(1. )

t s t s t s

t s t s t s

t s t s t s C C e e e

C e e e

η η η

η η η

ϕ − − − − − −

− − − − − −

− − − = + − − − +

− − −
 (2.11) 

It is also necessary that
3 1 3 1 3 1
( , , ) ( , , ) ( , , )t t t s t s t t t t s tϕ ϕ ϕ− = − = − . 

To reduce complexity in analyzing nonlinear viscoelastic behavior and characterizing 
material properties a single integral with nonlinear integrand has been used and found 
capable of approximating nonlinear responses in viscoelastic materials. Such models are 
discussed in Findley and Lay (1966), Pipkins and Rogers (1968), and Schapery (1969). Chen 
(2009) derived a nonlinear thermo-electro-viscoelastic constitutive equation that 
incorporates heat generation due to the dissipation of energy3 and damage.  The Gibbs free 
energy is defined in terms of a functional of the histories of stress, temperature, temperature 
gradient and electric field in the reference configuration and damage is introduced as an 
internal state variable. This constitutive model is based on a single integral form that 
includes hysteresis, aging, and damage in the electro-active materials, written as: 

 

0

0

0

0

1 ( ) ( )
( ) (0, , ) (0, , )

2

( )
(0, , )

( ) 1 ( )
( ) ( ,0, ) ( ,0, )

( )
( ,0, )

( )

t t

kl

ij ij ijkl ij

t

k

ijk

t t
ij

o ij g

t

i

i

i i i

d s dT s
C t L J t s ds t s ds

ds ds

dE s
f t s ds

ds

d x dT x
s t M t x dx C t x dx

dx T dx

dE x
t x dx

dx

D t N f

α

ρ α

η

−∞ −∞

−∞

−∞ −∞

−∞

Σ
= + − + − +

−

Σ
= + − + − +

−

= +

 



 



d d

d

d d

d

( ) ( )
( ,0, ) (0, , )

( )
(0, , )

t t
jk

jk i

t
j

ij

d x dT s
t x dx t s ds

dx ds

dE s
t s ds

ds

η

κ

−∞ −∞

−∞

Σ
− + − +

−

 



d d

d

 (2.12) 

where , , , , ,T sC Σ D E are the right Cauchy-Green stretch tensor, second Piola-Kirchoff stress 

tensor, electric displacement vector, electric field vector, temperature, and entropy, 

respectively; 
0

ρ is the mass density at a reference state; 0 0, ,L M N are the right Cauchy-Green 

stretch tensor, product of the entropy and mass density, and electric displacement tensor at 

a reference state; , , , , ,
g

CJ α f η κ are the compliance, thermal expansion, piezoelectric 

constant, pyroelectric constant, dielectric, and heat capacity, respectively; 
0

T is the reference 

temperature; and d is the damage tensor. It is also necessary that each kernel in Eq. (2.12) 

satisfy the following condition: ( , , ) ( , , )t x t s t s t xϕ ϕ− − = − −d d . Chen (2009) also discussed 

                                                 
3 Viscoelastic materials are known to dissipate significant amount of energy during cyclic loading; an 
electric current flows through a piezoelectric materials also dissipate energy which is converted to heat. 
Thus, it is necessary to account for this heat generation in predicting time-dependent response of 
piezoelectric materials.  
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the time-dependent forms for each material property in Eq. (2.12) in order to incorporate 

aging and damage. 
If we follow an approach suggested by Crawley and Anderson (1990) in which the nonlinear 
electric field can be incorporated by taking a linear piezoelectric constant to depend on the 
electric field, a single integral model with nonlinear integrand as the first approximation for 
modeling the time-dependent electro-mechanical response with nonlinearity due to high 
electric field is expressed4 as: 

 0 0

0 0

( ) ( )
( ) ( ) ( )

( ) ( )
( ) ( ) ( )

t t
ijkl k

ij ijkl

k

t t
jk i k

i ijk

k

Rd s dE s
t S t s ds t s ds

ds E ds

d s F dE s
D t d t s ds t s ds

ds E ds

σ
ε

σ

− −

− −

∂
= − + −

∂

∂
= − + −

∂

 

 
 (2.13) 

where [ ]( ),
ij k

R E t s t−  and [ ]( ),
i k

F E t s t− are the scalar components of the time-dependent 

strain and electric displacement, respectively, at current time 0t ≥ due to an input history 

of ( )
k

E s . It is assumed that [ ] [ ]0, 0, 0
ij i

R t F t= = and [ ] [ ]( ), ( ), 0 0.0
ij k i k

R E t t F E t t t= = ∀ < . The 

following kernels can be used for the material parameters in the constitutive models in 
Eq. (2.13): 

 

/

(0) (1)

/

(0) (1)

/

(0) (1)

(0) (1)

(1)

(1)

(1)

( ) 1.

( ) 1.

( (0), ) ( (0)) ( (0)) 1.

( (0), ) ( (0)) ( (0)) 1.

t

ijkl ijkl ijkl

t

ijk ijk ijk

t

ij k ij k ij k

i k i k i k

Sijkl

dijk

Rij

S t S S e

d t d d e

R E t R E R E e
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τ

τ

τ

−

−

−

−

 
 = + −
 
 
 
 = + −
 
 

 
 = + −
 
 

= + −
/

(1)
t

Fi
τ 

 
  

 (2.14) 

It can be seen that the above kernels reduce to time-independent functions by eliminating 

the second term from the material parameters. By choosing 
(0) (1) (0) (1)( (0)), ( (0)), ( (0)), ( (0))
ij k ij k i k i k

R E R E F E F E to vary linearly with the electric field, the above 

equation reduces to a linear time-dependent electro-mechanical coupling model. It is also 

possible to include more than one term for the time-dependent parts in Eq. (2.14). The time-

dependent compliance ( )
ijkl

S t  and piezoelectric constants ( )
ijk

d t  in Eq. (2.14) can be 

characterized from creep test by applying constant stresses or from hysteretic response due 

to cyclic stress inputs at different frequencies. The components of strain ( )
ij

R t and electric 

displacement ( )
i

F t  can be determined from the hysteretic response due to sinusoidal electric 

field inputs at different amplitudes and frequencies. If the experimental setup permits for 

                                                 
4 This approach yields to a nonlinear single integral model of Pipkins and Rogers (1968). 
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applying a fixed electric field, then the time-dependent strain and electric displacement can 

also be determined from this test. It is noted that for a piezoelectric ceramic such as a 

polarized PZT (let x3 be the poling axis), only some of the components of the material 

parameters are nonzero, reducing the experimental effort in calibrating these parameters. 

2.3 Time-integration methods  
We present a numerical algorithm for determining time-dependent response of strain and 
electric displacement due to arbitrary stress and electric field inputs. We start with a 
numerical algorithm for one-dimensional single integral model with a nonlinear integrand 
and followed by an algorithm for multiple integral representations.  

Let [ ]( ),R I t s t− be the time-dependent response at current time 0t ≥ due to an input 

history ( )s
I I s≡ . A general single integral representation for the response is: 

  0

0

[ , ] [ , ] [ , ] 0
t s

t s sR dI
R R I t R I t I t s ds t

I ds+

∂
≡ = + − ≥

∂  (2.15) 

where 

 0 0 0

0 1

1

[ , ] ( ) ( ) 1. exp
t

R I t R I R I
τ

  
= + − −     

 (2.16) 

 0 1

1

( ) ( )
[ , ] 1. exp

s s

sR R I R I t s
I t s

I I I τ

  ∂ ∂ ∂ −
− = + − −   ∂ ∂ ∂   

 (2.17) 

Here we use a superscript to denote the time-dependent variables. A recursive method is 
used for solving the above integral form. Substituting Eqs. (2.16) and (2.17) into Eq. (2.15) 
yields: 

 0

0 1 1

1

( ) ( ) ( )expt t t tt
R R I R I R I q

τ

 
= + − − − 

 
 (2.18) 

where 

 1

10

( )
exp

t s s

t R I t s dI
q ds

I dsτ+

 ∂ −
= − 

∂  
  (2.19) 

is the history variable, which can be approximated as: 

 1 1

1 1

( ) ( )
exp exp 0.0

2

t t t

t t t

t t t

t R I dI t R I dI t
q q t
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∂ ∂     
 (2.20) 

The superscript t t− ∆ denotes the previous time history. At initial time, 0 0.0tq q= =  and 
0 0

0
( )R R I= . Equations (2.18) and (2.19) give the corresponding output due to an arbitrary 

input I(s). For the multi-axial constitutive relation, the approximate solution in Eq. (2.18) can 

be applied independently to each scalar component in Eq. (2.13).   
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The numerical algorithm for the multiple integral models (one-dimensional representation) 
in Eq. (2.9) with the kernels defined in Eq. (2.10) can be approximated by applying the 
recursive method as discussed above. The linear kernel is approximated as: 

 [ ]1 0 1 1 1
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( )
( ) ( ) (0 )exp

t

tdI s t
t s ds A A I t A I q

ds
ϕ

τ
+

−

 
− ≈ + − − − 

 
  (2.21) 
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 (2.22) 

The second order kernel is rewritten as: 
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and it can be approximated by: 
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 (2.24) 

where the history variables 
1 2 1 2
, , ,t t t tf f g g  at  0.0t >  are given as: 

 

1 1

1 1 1 1

1 1

1 2 1 2

2 2

2 1 2 1

2

exp exp
2

exp exp
2

exp exp
2

t t t

t t t

t t t

t t t

t t t

t t t

t t dI t dI
f f

ds ds

t t dI t dI
g g

ds ds

t t dI t dI
f f

ds ds

g

λ λ

λ λ

λ λ

−∆

−∆

−∆

−∆

−∆

−∆

    ∆ ∆ ∆
≈ − + + −    

     
    ∆ ∆ ∆

≈ − + + −    
     
    ∆ ∆ ∆

≈ − + + −    
     

2

2 2 2 2

exp exp
2

t t t

t t t

t t dI t dI
g

ds dsλ λ
−∆

−∆

    ∆ ∆ ∆
≈ − + + −    

     

 (2.25) 

At initial time, 0 0 0 0

1 2 1 2
0.0f f g g= = = = and 

0 0
(0) (0 ) (0 ) (0 )R A I B I I+ + += + . Thus, the 

corresponding response due to an arbitrary input obtained from the multiple integral model 
is approximated as: 
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 (2.26) 

For the multi-axial constitutive relation, the approximate solution in Eq. (2.26) can be 
applied independently to each scalar component in Eq. (2.8).   

3. Numerical implementation and parametricstudies 

We present a numerical implementation of the above time-dependent constitutive models. 
We include parametric studies on understanding the effects of different material parameters 
and input histories on the overall time-dependent response of polarized ferroelectric 
materials. Both nonlinear single integral and multiple integral models will be discussed.  

3.1 Single integral model  

This section deals with using a single integral model to simulate hysteretic response of a 

polarized ferroelectric, which focuses on PZTs, subject to a sinusoidal electric field input. Let 

x3 be the poling axis of the PZT and an electric field input 
3 max
( ) sinE s E tω=  is applied along 

the poling axis. We consider several case studies: linear time-dependent response at a stress 

free condition, nonlinear time-dependent response at a stress free condition, and response 

under a combine mechanical stress and electric field. The following material parameters are 

considered for the linear time-dependent electro-mechanical coupling and dielectric 

constant: 
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113 223
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( ) ( ) 200 100(1. ) 10 / ( / )
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d t d t e C N m V
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σ σ
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−
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−

= + − ⋅  
= = − − − ⋅  

= = ⋅

= + ⋅  
= = ⋅

 (3.1) 

The first case considers sinusoidal electric field inputs at three different frequencies: 0.01, 

0.1, and 1 Hz and two amplitudes: 0.25 and 0.75 MV/m. Figure 3.1 illustrates the electric-

field and transverse strain (E3-ε11) response during the first quarter cycle. It is seen that the 

electric-field and strain curves show nonlinear behavior which is due to the delay (time-

dependent) response of the material. The nonlinearity is more pronounced as the frequency 

decreases. At the frequency 1Hz the curve shows almost a linear behavior as the electric 

field is applied relatively fast with regards to the characteristics time of the materials and 

thus only a little time is given for the material to experience a time-dependent (or relaxation) 

effect. From Eq. (3.1), the characteristics time of the electro-mechanical coupling 311
d  is 2 

seconds. Thus, one should be very careful when interpreting an experimental data that 

involves nonlinear phenomena. As shown in Fig. 3.1, the response seems to suggest the 

www.intechopen.com



  
Ferroelectrics - Characterization and Modeling 

 

548 

nonlinear relation between the electric field and transverse strain which can be attributed to 

the electric field (or strain) dependent material properties, but instead this nonlinearity is 

due to the linear time-dependent effect. Figure 3.2 shows a hysteretic response of a PZT 

material at frequency 0.1 Hz and maximum applied electric field of 0.25 MV/m. 

Experimental data are obtained from Crawley and Anderson (1990). The single integral 

model with time-dependent material parameter in Eq. (3.1) is shown to be capable of 

simulating the hysteretic response. 
 

 

Fig. 3.1. Transverse strain responses during the first quarter cycle of the sinusoidal input 

 

 

Fig. 3.2. Linear hysteretic response of a PZT at f=0.1 Hz 

 

 

Fig. 3.3. Linear hysteretic response of the axial and transverse strains 
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The effect of frequencies on the hysteretic response of the linear single integral model is 

illustrated in Fig. 3.3. It is noted that the strain along the poling axis is a compressive strain 

since the electric field is applied opposite to the poling direction to create elongation in the 

in-plane (transverse) direction. From Eq. (3.1) it can be seen that the characteristics time in 

311
d is smaller than the one in

333
d ; thus, the transverse strain exhibits faster relaxation when 

subjected to an electric field along the poling axis. When the rate of loading is comparable to 

the characteristics time, the effect of time-dependent material properties on the hysteretic 

response becomes significant, as shown by the response with a frequency of 0.1 Hz. When 

the rate of loading is relatively fast (or slow) with regards to the characteristics time, i.e. 

f=0.01 and 1 Hz, insignificant (less pronounced) time-dependent effect is shown, indicated 

by narrow ellipsoidal shapes. This is because under a relatively fast loading, the material 

does not have enough time to experience delay changes at the microstructures5; while under 

a relatively slow loading these delay changes at the microstructures are (nearly) complete. 

The creep functions in the electro-mechanical coupling results in a smaller slope of the 

electric field-strain curve when a lower frequency is considered. Figure 3.4 depicts the linear 

response at different magnitudes of electric fields, which show a perfect elliptical shape 

when saturated condition is reached.  
 

 

Fig. 3.4. The effect of the amplitude of the electric field on the linear hysteretic response 
(f=0.1 Hz) 

We use a single integral model with nonlinear integrands to illustrate the hysteretic 
response of a polarized PZT. The following nonlinear functions of the integral model in Eq. 

(2.13) are chosen for the electro-mechanical coupling E3-ε11: 

 ( ) ( ) ( ) ( )/2 12

11 3 3 3 3
( ) 200 1 100 1 1. 10 /tt E E E E e C Nε α β − −= − + − + −  (3.2) 

Figure 3.5 illustrates the effect of different nonlinear parameters on the hysteretic electro-

mechanical response. We use nonlinear functions that vary linearly with electric field; it is 

also possible to pick different functions. We assume that the electro-mechanical coupling 

properties increase with increasing the magnitude of the electric field and we also assume 

                                                 
5 It is noted that we measure these time-dependent changes with respect to the laboratory 
(experimental) time at the macroscopic level.  
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that the material relaxes faster with increase in the magnitude of the electric field. The 

following material constants are used in the numerical simulations: 0.5 /m MVα β= = and 

the characteristics time varies with the magnitude of electric field as: 
3

(1 )2; 0.75Eγ γ+ = − .  

In this case, we are interested in the response of piezoceramics below the coercive electric 

field such that the piezoceramics does not experience polarization switching.  We also 

assume that applying electric fields along and opposite to the poling axis cause similar 

changes in the corresponding strains6. The nonlinear parameters show distortion in the 

hysteretic response from an ellipsoidal shape. As in the linear case, we also show the effect 

of the amplitude of the electric field on the nonlinear hysteretic response. All of the above 

nonlinear material parameters are incorporated in the numerical simulations. Figure 3.6 

shows the hysteretic response obtained from the nonlinear single integral model. The 

deviation from the ellipsoidal shape is more pronounced for the hysteretic response under 

the highest magnitude of the electric field, which is expected. Under relatively small 

amplitude of the electric field, the hysteretic response shows almost a perfect ellipse as the 

nonlinearity is less pronounced. 
In the third case study, we apply a constant stress input together with a sinusoidal electric 
field input: 

 33 3
( ) 20 ( ) ( ) 0.75sin /t H t MPa E t tMV mσ ω= − = ±  (3.3) 

where H(t) is the Heaviside unit step input. The following time-dependent compliance and 
linear electro-mechanical coupling constant are considered7: 

 
( )/50 1

3333

/5 12

333

( ) 0.0122 1.5 0.5

( ) 380 150(1. ) 10 / ( / )

t

t

S t e GPa

d t e C N m V

− −

− −

= −

= + − ⋅  
 (3.4) 

The above compliance corresponds to the elastic (instantaneous) modulus E33 of 82 GPa. In 

the linear model the strain output due to the applied compressive stress can be superposed 

with the strain output due to the applied electric field. Under a relatively high compressive 

stress applied along the poling axis depoling of the PZT could occur, leading to nonlinear 

response. The scope of this manuscript is not on simulating a polarization reversal behavior 

and we assume that the superposition condition is applicable for the time-dependent strain 

outputs due to stress and electric field inputs. We allow the polarized PZT to experience 

creep when it is subjected to a stress. The creep response is described by the compliance in 

Eq. (3.4). A sinusoidal electric field with amplitude of 0.75 MV/m and frequency of 0.1 Hz is 

applied. Two cases regarding the history of the electric field input are considered: The first 

case starts with applying the electric field in the opposite direction to the poling 

axis,
3
(0 ) 0.0E

+ < . The second case starts with the electric field input in the direction of the 

                                                 
6 It is noted that the corresponding strain response in a polarized ferroelectric ceramics when the electric 
field is applied along the poling axis need not be the same as the strain output when the electric field is 
applied opposite to the poling axis. In most cases they are not the same, especially under a relative high 
magnitude of electric field as the process of polarization switching might occur even before it reaches 
the coercive electric field.  
7 The PZT is modeled as a viscoelastic solid with regards to its mechanical response. The creep 
deformation in a viscoelastic solid will reach an asymptotic value at steady state (saturated condition). 
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poling axis,
3
(0 ) 0.0E

+ > . When an electric field is applied opposite to the current poling axis, 

the PZT experiences contraction in the poling direction, indicated by a compressive strain. 

When the polarized PZT is subjected to an electric field in the poling direction, it 

experiences elongation in that direction. 

 

 

 

Fig. 3.5. The effect of nonlinear parameters on the hysteretic response 

 

 

Fig. 3.6. The effect of the amplitude of the electric field on the nonlinear hysteretic response 

(f=0.1 Hz) 

We examine the effect of the electric field input history on the corresponding strain output 
when the PZT undergoes creep deformation. Figure 3.7 illustrates the hysteretic response 
under the input field variables in Eq. 3.3. As expected, the creep deformation in the PZT due 
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to the compressive stress continuously shifts the hysteretic response to the left of the strain 
axis (higher values of the compressive strains) until steady state is reached for the creep 
deformation. At steady state, the hysteretic response should form an ellipsoidal shape. It is 
also seen that different hysteretic response is shown under the two histories of electric fields 
discussed above. When the electric field is first applied opposite to the poling axis, the first 
loading cycle forms a nearly elliptical hysteretic response. This is not the case when the 
electric field is first applied in the poling direction (Fig. 3.7b). The hysteretic response under 
a frequency of 1 Hz is also illustrated in Figs. 3.7c and d, which show an insignificant time-
dependent effect. This is due to the fact that the rate of loading under f=1 Hz is much faster 
as compared to the creep and time-dependent response of the material. It is also seen that 
under frequency 1 Hz, the strain- and electric field response is almost linear. Thus, under 
such condition it is possible to characterize the linear piezoelectric constants of materials, i.e. 

311 322 333 113 223
, , , ,d d d d d from the electric field-strain curves. At this frequency of 1 Hz, the slope in 

the strain-electric field curves (Figs. 3.7c and d) remains almost unaltered with the history of 
the applied electric field. This study can be useful for designing an experiment and 
interpreting data in order to characterize the piezoelectric properties of a piezoelectric 
ceramics. 
 

 
 

 

Fig. 3.7. The corresponding hysteretic response under coupled mechanical and electric field 
inputs 

3.2 Multiple integral model  
This section presents a multiple integral model to simulate hysteretic response of a 
piezoelectric ceramics subject to a sinusoidal electric field. We consider up to the third order 
kernel function and we examine the effect of these kernel functions on the overall nonlinear 
hysteretic curve. The following material parameters are used for the simulation: 
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 (3.5) 

When only the first and third kernel functions are considered, the nonlinear hysteretic 
response at steady state under positive and negative electric fields is identical as shown by 
an anti-symmetric hysteretic curve in Fig. 3.8a. The hysteretic response under the amplitude 
of electric field of 0.25 MV/m shows nearly linear response. Including the second order 
kernel function allows for different response under positive and negative electric fields as 
seen in Fig. 3.8b. At low amplitude of applied electric field, nearly linear response is shown; 
however this hysteretic response does not show an anti-symmetric shape with respect to the 
strain and electric field axes. The contribution of each order of the kernel function depends 
on the material parameters. For example the material parameters in Eq. (3.5) yield to more 
pronounced contribution of the first order kernel function; while the contributions of the 
second and third order kernel functions are comparable.  
 

 

Fig. 3.8. The effect of the higher order terms on the hysteretic response (f=0.1 Hz) 

Intuitively, the corresponding strain response of a piezoelectric ceramics when an electric 
field is applied in the poling direction (positive electric field) need not be the same as when 
an electric field is applied opposite to the poling direction (negative electric field), especially 
for nonlinear response due to high electric fields. Depoling could occur in the piezoelectric 
ceramics when a negative electric field with a magnitude greater than the coercive electric 
field is considered. Thus, to incorporate the possibility of the depoling process, the even 
order kernel functions can be incorporated in the multiple time-integral model.  In order to 
numerically simulate the depolarization in the piezoelectric ceramics we apply a sinusoidal 
electric field input with amplitude of 1.5 MV/m. We consider the first and second order 
kernel functions and use the following material parameters so that the contributions of the 
first and second order kernel functions on the strain response are comparable: 
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 (3.6) 
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Figure 3.9 illustrates the corresponding strain response from the multiple integral model 
having the first and second kernel functions. The response shows an un-symmetric 
butterfly-like shape. The un-symmetric butterfly-like strain-electric field response is 
expected for polarized ferroelectric materials undergoing high amplitude of sinusoidal 
electric field input. The nonlinear response due to the positive electric field is caused by 
different microstructural changes than the microstructural changes due to polarization 
switching under a negative electric field.  
 

 

Fig. 3.9. The butterfly-like shape of the electro-mechanical coupling response  

4. Analyses of piezoelectric beam bending actuators 

Stack actuators have been used in several applications that involve displacement 
controlling, such as fuel injection valves and optical positioning (see Ballas 2007 for a 
detailed discussion). They comprise of layers of polarized piezoelectric ceramics arranged in 
a certain way with regards to the poling axis of an individual piezoceramic layer in order to 
produce a desire deformation. In conventional bending actuators, a single layer 
piezoceramic requires a typical of operating voltage of 200 V or more. By forming a multi-
layer piezoceramic actuator, it is possible to reduce the operating voltage to less than 50 V. 
In this section, we examine the effect of time-dependent electro-mechanical properties of the 
piezoelectric ceramics on the bending deflections of an actuator comprising of two 
piezoelectric layers, known as a bimorph system. 
Consider a two dimensional bimorph beam consisting of two layers of polarized 
piezoelectric ceramics and an elastic layer, as shown in Fig. 4.1. In order to produce a 
bending deflection in the beam, the two piezoelectric layers should undergo opposite tensile 
and compressive strains. This can be achieved by stacking the two piezoelectric layers with 
the poling axis in the same direction and applying a voltage that produces opposite electric 
fields in the two layers or by placing the two piezoelectric layers with poling axis in the 
opposite direction and applying a voltage that produces electric fields in the same direction. 
The beam is fixed at one end and the other end is left free; the top and bottom surfaces are 
under a traction free condition. A potential is applied at the top and bottom surfaces of the 
beam and the corresponding displacement is monitored. We prescribe the following 
boundary conditions to the bimorph beam: 
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 (4.1) 

where 1
u  and 2

u  are the displacements in the x1 and x2 directions, respectively. The 

bonding between the different layers in the bimorph beam is assumed perfect; thus the 
traction and displacement continuity conditions are imposed at the interface layers. The 
beam has a length L of 100mm, width b of 1mm and the thickness of each piezoelectric layer 
is 1mm. Let us consider a bimorph beam without an elastic layer placed in between these 
piezoelectric layers. We assume that the beam is relatively slender so that it is sensible to 
adopt Euler-Bernoulli’s beam theory in finding the corresponding displacement of the 
bimorph beam; the calculated displacements are at the neutral axis of the beam and we shall 

eliminate the dependence of the displacements on the x2 axis, 
1 1
( , )u x t and 

2 1
( , )u x t . The 

kinematics concerning the deformations of the Euler-Bernoulli beam, with the 
displacements measured at the neutral axis of the beam is: 

 ( ) ( ) ( )
2

1 2

11 1 2 1 2 12

1 1

, , , ,
u u

x x t x t x x t
x x

ε
∂ ∂

= −
∂ ∂

  (4.2) 

 

 

Fig. 4.1. A bimorph beam 

Since we only prescribe a uniform voltage on the top and bottom surfaces of the beam, the 
problem reduces to a pure bending problem8: the internal bending moment depends only on 

                                                 
8 We shall only consider the longitudinal stress- and strain and the transverse displacement measured at 
the neutral axis of the beam. 
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time, M3(t)=M(t) and the longitudinal stress is independent on the x1, 11 2
( , )x tσ . At each time 

t, the following equilibrium conditions must be satisfied: 
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= −




 (4.3) 

As a consequence, the first term of the axial strain in Eq. (4.2) is zero and the curvature of the 

beam depends only on time. The constitutive relations for the piezoelectric layers are: 
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where the electric field at the piezoelectric layer with the thickness hp/2 is assumed 

uniform
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x− ≤ ≤ . The poling axes 

of the two piezoelectric layers are in the same direction. The axial stress becomes (hs=0): 
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Substituting the stress in Eq. (4.5) to the internal bending moment in Eq. (4.3) yields to: 
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Finally, the equation that governs the bending of the bimorph beam (pure bending 

condition) subject to a time varying electric potential is: 
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where I is the second moment of an area w.r.t. the neutral axis of the beam. Integrating Eq. 
(4.7) with respect to the x1 axis and using BCs in Eq. 4.1, the deflection of the beam is: 

 2

2 1 1

1
( , ) ( )

2
u x t t x= Φ  (4.8) 

The following time-dependent properties of PZT-5A are used for the bending analyses of 

stack actuators: 
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A sinusoidal input of an electric potential with various frequencies are applied. Figure 4.2 
illustrates hysteresis response of the bending of the bimorph beam. The displacements are 
measured at the free end (x1=100mm). As discussed in Section 3.1, when the rate of loading 
is comparable to the characteristics time, the effect of time-dependent material properties on 
the hysteretic response becomes significant, as shown by the response with frequencies of 
0.05 Hz and 0.1 Hz. When the rate of loading is relatively fast (or slow) with regards to the 
characteristics time, i.e. f=0.01 Hz and 1 Hz, insignificant (less pronounced) time-dependent 
effect is shown, indicated by narrow ellipsoidal shapes. 
 

 

 

Fig. 4.2. The effect of input frequencies on the tip displacements of the bimorph beam 

5. Conclusions 

We have studied the nonlinear and time-dependent electro-mechanical hysteretic response 

of polarized ferroelectric ceramics. The time-dependent electro-mechanical response is 

described by nonlinear single integral and multiple integral models. We first examine the 

effect of frequency (loading rate) on the overall hysteretic response of a linear time-

dependent electro-mechanical response. The strain-electric field response shows a nonlinear 

relation when the time-dependent effect is prominent which should not be confused with 

the nonlinearity due to the magnitude of electric fields. We also study the effect of the 

magnitude of electric fields on the overall hysteretic response using both nonlinear single 

integral and multiple integral models. As expected, the nonlinearity due to the electric field 
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results in a distortion of the ellipsoidal hysteretic curve. We have extended the time-

dependent constitutive model for analyzing bending in a stack actuator due to an input 

electric potential at various frequencies. The presented study will be useful when designing 

an experiment and interpreting data that a nonlinear electro-mechanical response exhibits. 

This study is also useful in choosing a proper nonlinear time-dependent constitutive model 

for piezoelectric ceramics. 
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