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1. Introduction 

Due to their electromechanical properties, piezoelectric materials are widely used as sensors 
and actuators [1-3]. Under low driving levels, their behavior remains linear and can be 
described by means of linear constitutive equations. A majority of the transducers is used on 
these levels. Increasing the levels of electric field or stress leads to a depoling that results in the 
degradation of the dielectric and piezoelectric performances. This latter phenomenon is 
usually considered to be due to the irreversible motion of the domain walls [4-11]. The 
resulting nonlinear and hysteretic nature of piezoelectric materials induces a power limitation 
for heavy duty transducers or a lack of controllability for positioners. Consequently, a 
nonlinear modeling including a hysteresis appears to be a key issue in order to obtain a good 
understanding of transducer behavior and to determine the boundary conditions of use. 
Several models have been proposed in the literature found understanding the hysteretic 
behavior of various materials.12–14. However, a majority of these phenomenological 
models is purely eclectic, and it is consequently difficult to interpret the results as a 
function of other parameters (stress and temperature) in order to obtain a clear physical 
understanding. 

2. Stress/electrical scaling in ferroelectrics 

2.1 Presentation of the scaling law 
In order to determine a scaling law between the electric field and the stress, one should start 
by following piezoelectric constitutive equations restricting them in one dimension. 
These equations can be formulated with stress and electric field as independent variables, 
thus giving 

 
33 33( , ) ( , )EdS s E T dT d E T dE= +  (1) 

www.intechopen.com



  
Ferroelectrics - Characterization and Modeling 

 

494 

where E, T, and S represent the electric field, the mechanical stress, and the strain, respectively. 

The constants 33
Tε , 33

Es , and 33d  correspond to the dielectric permittivity, the elastic 

compliance, and the piezoelectric constant, respectively. Here, the superscripts signify the 
variable that is held constant, and the subscript 3 indicates the poling direction. 
The coefficients are defined as 

 33

( , 0)dS E T
d

dE

=
=  (2) 

 33

( 0, ) ( 0, )dD E T dP E T
d

dT dT

= =
= =  (3) 

From a given P:  

 
( , 0) ( 0, )dS E T dP E T

dE dT

= =
=  (4) 

It can also be descried as following;  

 
( , 0) ( , 0) ( 0, )

( , 0)

dS E T dP E T dP E T

dP E T dE dT

= = =
=

=
 (5) 

The interrelation between the strain (S) and the spontaneous polarization (P) is estimated 
using a global electrostrictive relationship, i.e., the strain is an even function of the 
polarization of the polarization, 

 
2

0

( , 0)
i n

i
i

i

S P E Tα
=

=

= =   with n∈Ν+ (6) 

Here, n is the polynomial order and αx is the electrostrictive coefficient of order x. 
The derivatives of the strain are 

 
2

1

1

. ( , 0) ( ( , 0))
( , 0)

i n
i

i
i

dS
i P E T h P E T

dP E T
α

=
−

=

= = = =
=

  (7) 

Introducing the attest relationship in the previous calculations leads to: 

 
( , 0) ( 0, )

( ( , 0)).
dP E T dP E T

h P E T
dE dT

= =
= =  (8) 

 
( , 0) ( 0, )

( ( , 0))

dP E T dP E T

dE h P E T dT

= =
=

=
 (9) 

 
( )

( , 0) ( 0, )

( ( , 0))

dP E T dP E T

dE d h P E T T

= =
=

=
 (10) 

Thus,  
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 ( ( , 0))E h P E T T∆ ≡ = ∆  and 
( ( , 0))

E
T

h P E T

∆
∆ ≡

=
  (11) 

Thus, we consider that the term h(P)T plays the same role to the electric field E. This 
statement is fraught with consequence because this equivalence must be preserved for all 
cycles (P, S or coefficients). According to the equation (7), the function h(P) must be odd, so 
that the effect of "electric field" equivalent reversed with the sign of polarization. Moreover, 
we know experimentally that the polarization tends to zero when the compressive stress 
tends to infinity. Moreover, h(P) to zero when the stress tends to infinity for not polarised 
ceramics in the opposite direction. Precisely, the equivalence implies that the couple 

0

E Ec

P

= 
 

= 
 is equivalent to the couple

0

T

P

= ∞ 
 

= 
. Hence; 

lim ( )
T

h P T Ec
→∞

=  => lim ( )
T

Ec
h P

T→∞
= . 

As illustrated in the figure 1, the scaling law (1) can be used to derive the stress polarization 

P behavior from the ( )P f E= cycle or reciprocally to drive the polarization behavior versus 

the electrical field once the ( )P g T= cycle is known. As it can be seen of figure in the 

( )P g T=  can be obtained from the ( )P f E=  cycle by streching the x axis.  
 

 

Fig. 1. Schematic illustration of the law scaling (1). 

2.2 Determination of the parameters of the scaling law 
Considering physical symmetries in the materials, a similar polarization behavior (P) can be 
observed during variation of an electric field (E) or the mechanical stress (T). Both of these 
external disturbances are caused by the depoling of the sample. An explication concerning 
how to apply the scaling law is here given based on the equations developed in Sec. II. 
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Starting from Eq. (7), the entire derivation of strain by polarization can be calculated based 

on experimental data, ( ( , 0))
( , 0)

dS
h P E T

dP E T
= =

=
. In order to determine the right-hand 

term of Eq. (8)  i.e(h(P(E,T=0)), the strain was plotted as a function of the polarization with a 
variation in electric field. The famous strain—polarization hysteresis loop, shaped as a 
butterfly—was obtained. It can be approximated by the square of the polarization variation, 
and neglecting only a small amount of the hysteresis, quadratic electrostriction is obtained, 
as shown in Fig. 2. A model based on this assumption provides a simplified constitutive law 
that presents all of the switching behavior in the polarization relation. 
Table 1 shows the expression of h(P(E,T=0)) for various structure of ceramics. It is noticeable 
that the polynomials of h(P(E,T=0)) depend on the structure. The switching of domains and 
the variation in angles based on the structure (i.e., 90° and 180° for a tetragonal material and 
71° and 109° for a rhombohedral material) were believed to be the cause of the variation in 
the polynomials. Micromechanics models determine domain switching possibilities with an 
electromechanical energy criterion with an electrical and a mechanical parameter.12,17 
These parameters must be greater than the product of the coercive electric field and the 
critical value of the spontaneous polarization. The 180°, 71°, and 90° domains play different 
roles in minimizing the free energy. 
 

Material Structure Function h(P(E,T=0)) 

PMN-25PT Rhomohedral (R) 3 20.0589 0.0019 0.0017 0.0001P P P− + +  

PMN-40PT Tetragonal (T) 3 20.2933 0.0056 0.0392 0.0006P P P− + +  

P188 MPB (R+T) 0.056P  

Table 1. 
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Fig. 2. Strain-electric-displacement hysteresis loops during electric-field loading at zero 
stress for ferroelectric material. 
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2.3 Verification of the scaling law 

The viability of the proposed scaling law was explored using two distinct experiments on 

soft PZT. Starting from the experimental depoling under stress P=f(T), the depoling was 

plotted as a function of h[P(E=0,T)]T] giving [ ]{ }( ( 0, ) )P g h P E T T= =  and was compared to 

the direct measurement of P=g(E). The electric field dependence of polarizations P=g(E), 

was plotted as a function of [ ]{ }/ ( , 0)E h P E T =  (giving [ ]{ }( / ( , 0)P g E h P E T= =  and 

compared to the direct measurement of P= f(T). This is portrayed in Fig. 1. The second 

comparison was helpful in determining the appropriateness of the scaling law for fields 

close to the coercive field (Ec). In this area, a small portion of the curve P(E) produced a 

wide range of constraints on the line P(T) due to  T→∝ when E→Ec. These results are 

presented in Fig. 3   
In a general manner, the experimental and reconstructed cycles demonstrated reasonable 
agreements, with regard to both increasing and decreasing paths, for the soft PZT.  
This good agreement for both P(E) and P(T) cycles thus confirmed the viability of the scaling 
law for soft PZT. Only one parameter ruled the “scale” of the strain and the scale of the 
stress effect. This ease of conversion between P(E) and P(T) cycles by such a simple law 
gives numerous opportunities regarding the use of piezoelectric materials. It is possible to 
predict the depoling behavior over the entire stress cycle (compressive or tensile)/field 
plane. These results are important to the design and performance of actuators and sonar 
transducers. 
The proposed scaling law can be used for several electrical models in order to understand 
the hysteretic behaviour of piezoelectric materials [12-14]. This scaling law is interesting in 
order to introduce the stress as an equivalent electric field; the behavior of ferroelectric 
materials under a combined electric field (E) and stress (T) can thus be determined. It is also 
interesting to note that for practical use, the maximum stress can be determined from this 
scaling law. This result is presented in Fig. 3. The small variations of polarization were 
observed for applied electric field lower than EM (here, 0.7 kV/mm). Therefore polarizations 
undergo a rapid change in polarization. Based on this EM value, the equivalent stress (TM) 
can be directly obtained (40 MPa). As a consequence, the maximum stress for application 
can be obtained without stress experiment. 
 

 

Fig. 3. Experimental validation of the scaling law for soft PZT 
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3. Temperature/electric field scaling in ferroelectrics  

3.1 Presentation of the scaling law  
In order to determine a scaling law between the electric field and the temperature, one 
should start by following the piezoelectric constrictive equations, restricting them in one 
dimension. 
These equations can be formulated with the temperature and the electric field as 
independent variables; thus, giving 

 . . .
d

d c d p dE
θ

θ
θ

Γ = +  and 33
TdD dE pdε θ= +  (12) 

 0D E Pε= +  (13) 

D, P, E, θ  and Γ and G represent the electric displacement, the polarization, the electric field, 
the temperature and the entropy, respectively, and where c and p, respectively, correspond 
to the heat capacity and the pyroelectric coefficient. Here, the superscripts signify the 
variable that is held constant, and the subscript 3 indicates the poling direction. Since the 

polarization is large enough compared to 0Eε , 0P Eε>> , then D P≈ . 

The coefficients are defined as: 

 0( , )d E
p

dE

θΓ
=  (14) 

 0 0( , ) ( , )dD E dP E
p

d d

θ θ

θ θ
= =  (15) 

For a given P:  

 0 0( , ) ( , )d E dP E
p

dE d

θ θ

θ

Γ
= =   (16) 

which can also expressed as:  

 0 0 0

0

( , ) ( , ) ( , )

( , )

d E dP E dP E
p

dP E dE d

θ θ θ

θ θ

Γ
= =   (17) 

Here, θ0 and E0 correspond to room temperature (298 K) and the initial electric field (0 
kV/mm), respectively. 
From a physical point of view, the entropy cannot depend on the polarization orientation in 
the ferroelectrics material. It means that the entropy must be an even function of 
polarization. Limiting the entropy expansion to the second order and ensuring 

 2.P Pα βΓ = +  (18) 

Here, α  and β are a two constant. 

The derivatives of the strain can be written as: 

 
0

0

2 . ( , )
( , )

d
P E

dP E
α β θ

θ

Γ
= +  (19) 
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Introducing Eq. (19) in the previous calculations leads to: 

 0 0
0

( , ) ( , )
2. . ( , ).

dP E dP E
P E p

dE d

θ θ
α β θ

θ
+ = =   (20) 

 0 0

0

( , ) ( , )

( 2. . ( , ))

dP E dP E
p

dE P E d

θ θ

α β θ θ
= =

+
  (21) 

The function 02. . ( , )P Eα β θ+ does not depend on temperature. 

Thus, Eq. 21 can be written as 

 
( )

0 0

0

( , ) ( , )

2. . ( , ).

dP E dP E
p

dE d P E

θ θ

α β θ θ
= =

+
 (22) 

According to Fig. 4, for a given value of polarization (P), we can write the following equality  

0 0( , ) ( , )P dP E dP Eθ θ= =  

Thus, 

 02. . ( , )).E P Eα β θ θ∆ ≡ + ∆  and 
02. . ( , ))

E

P E
θ

α β θ

∆
∆ ≡

+
 (23) 

With; 0E E E E∆ ≡ − =
 and 0θ θ θ∆ = −

 

The term 02. . ( , )).P Eα β θ θ+ ∆  can thereby be considered to play an equivalent role as that of 

the electric field (∆E). Such a statement is fraught with a consequence, since this equivalence 

must be preserved for all cycles (P, Γ or coefficients). Moreover, 0( 2. . ( , )).P Eα β θ θ+ ∆  is 

equal to . Cα θ∆   ( , 0)C CE Pα θ× ∆ = =  when the temperature tends to Curie temperature (θC). 

The equivalence thus precisely implies that the couple 
0

E Ec

P

= 
 

= 
 is equivalent to the 

couple
0

C

P

θ θ=

=

 
  
 

. Hence; 

 0lim ( 2. . ( , )). )
C

CP E E
θ θ

α β θ θ
→

+ ∆ = => 0lim ( 2. . ( , ))
C

C

C

E
P E

θ θ
α β θ α

θ→
+ = =

∆
 (24) 

As illustrated in Fig. 4, the scaling law can be used to derive the behavior of the polarization as 
a function of the temperature P(θ) from P(E) cycle, or reciprocally to drive the polarization 
behavior versus the electrical field, once the P(E) cycle is known. 

3.2 Verification of the scaling law 
The effects of various electric fields and temperatures on the polarization profile are 
illustrated in Figure 5, where Figure 5(a) represents the polarization variation as a function 
of the temperature for an electric field E=0 V/mm. It was shown by Hajjaji et al [15] that the 
depolarization as a function of the temperature was mainly due to the decrease in the dipole 
moment and the fact that the variation in this dipole moment was reversible. In the vicinity 
of the ferroelectric to paraelectric transition, the temperature depolarization of the ceramics 
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Fig. 4. Schematic illustration of the temperature/electric field scaling law 

was the result of a 0–90° domain switching, whereas a 0–180° domain switching did not 

occur with temperature. The effects were thus quite obvious. At a fixed θ (cf. Fig. 2(b)), the 
polarization variation was minor for low applied electric fields. It then began to increase as 
E increased gradually from 350 V/mm (a value close to Ec). For the electric field, the 
depolarization of the ceramic was governed by the domain wall motion. As demonstrated 
by Pruvost et al.[27], the depolarization process under an electric field was more 
complicated than its counterpart under a compressed stress or temperature in the sense that 
the electric field depolarization involved more than one mechanism. For electric tetragonal 
ceramics; there existed three possibilities for domain switching: 0–90°, 90–180°, and 0–180°. 
It should be pointed out that the focus of the present study was to investigate the 
characteristics of the polarization variation when the sample was in a stable state. For this, 
the employed fields (E) were below 450 V/mm (E<Ec) and the temperature dependence 
took place below 373 K. 
Despite the difference between the mechanisms of depolarization as a function of electric 
field and temperature, we have try determining a law that links the two (electric field E and 
temperature θ) and to identify one from another. 
In order to obtain a suitable scaling relation for the ceramic, one can first follow the 
suggested scaling law given in Eq. (23). This enables a direct determination of the 

proportionality coefficients α and β from the experimental data. The coefficient α can be 

determined from the following equation (24) ( 4300)C

C

E
α

θ
= =

∆
. According to Fig 5(a and b), 

a plot of the eclectic field (∆E) as a function of ∆θ renders it possible to obtain the coefficient 

β (β=3000). Based on the plot in Figure 3, it was revealed that the experimental data could be 

fitted (with R2=0.99), within the measured uncertainty, by: 0( 2. . ( , )).E P Eα β θ θ∆ = + ∆ . 

In addition, the viability of the proposed scaling law was explored by way of two distinct 

experiments on soft PZT. Starting from the experimental depoling under temperature P(θ), 
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the depoling was plotted as a function of (α+2.β.P(E0,θ)×∆θ) (giving P(α+2.βP(E0,θ)×∆θ) and 
was compared to the direct measurement of P(E). The experimental result under an electric 

field, P(E), was plotted as a function of 
0( 2. . ( , ))

E

P Eα β θ+
 (giving

0

( )
2. . ( , )

E
P

P Eα β θ+
) and 

was compared to the direct measurement of P(θ). This is depicted in Figure4.  
The second comparison was helpful in determining the appropriateness of the scaling law 
for fields close to the coercive field (Ec). In this area, a small portion of the curve P(E) 

produced a wide range of temperatures on the line P(θ), due to θ→θC when E→Ec (cf. 
Figures 6 and 7). In a general manner, the experimental and reconstructed cycles were in 
reasonably good agreement, with regard to both increasing and decreasing paths. This 

decent correlation for both the P(E) and P(θ) cycles thus confirmed the viability of the 
scaling law.  
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Fig. 5. (a) Polarization versus electric field on Pb(Mg1/3Nb2/3)0.75Ti0.25O3 ceramic. (b) 
Polarization versus temperature on Pb(Mg1/3Nb2/3)0.75Ti0.25O3 ceramic 
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Fig. 6. Scaling of electric field against (∆θ) for Pb(Mg1/3Nb2/3)0.75Ti0.25O3 ceramic  

 

 

Fig. 7. Experimental validation of the scaling law for PMN-25PT ceramic 

EM 

www.intechopen.com



 
Nonlinearity and Scaling Behavior in a Ferroelectric Materials 

 

503 

It is interesting to note that for purely electrical measurements, the presented law rendered 

it possible to determine the maximum temperature for practical use (cf. Figure 7). Small 

variations in polarization were observed for an applied electric field lower than EM (here, 

150 V/mm), leading to the conclusion that the polarizations underwent a rapid change. 

Based on the obtained EM value, one can determine the equivalent temperature (θM) 

corresponding to the maximum temperature used.  

The relationship 
02. . ( , )

E

P E
θ

α β θ
∆ =

+
 leads to both a negative, i.e., 

min
min

min 02. . ( , )

E

P E
θ

α β θ
∆ =

+
, and a positive, i.e., max

max
max 02. . ( , )

E

P E
θ

α β θ
∆ =

+
, bound. The 

absolute value of ∆θmin can thus be considered to be much larger than ∆θmax. Consequently, a 

symmetric electrical field cycle would give rise to a dissymmetric cycle in terms of 

temperature. Reciprocally, a symmetric temperature cycle would result in an asymmetric 

cycle in terms of the electrical field. 

4. Temperature/stress scaling in ferroelectrics  

4.1 Presentation of the scaling law  
In order to determine the general laws between the mechanical stress, electrical field, and 

the temperature, we are based on previous studies of Guyomar et al [7]. These studies were 

proposed a scaling effect between electric field and a term composed by the polarization 

multiplied by the stress:  

 0( , )E T P E Tα∆ ≡ ∆ ×  (25) 

Where α is the proportionality constant between ∆E and ∆T. Both ∆E and ∆T represent the 

electric field and the mechanical stress variation. P(E,T0) is the polarization at zero 

stress(T0=0MPa). 

In the other study Hajjaji et al proposed a scaling law between the electrical field and the 

temperature [16]. This law is expressed by the following expression.  

 0( 2 ( , ))E P Eχ β θ θ∆ ≡ + × × ∆  (26) 

Here, χ  and β are a two constant. P(E, θ0) is the polarization at room temperature ( 

θ0=298K) and ∆θ is the temperature variation. 

In most cases the coefficient χ  is negligible compared to 02 ( , )P Eβ θ× . Thus, the expression 

(26) becomes: 

 0(2 ( , ))E P Eβ θ θ∆ ≡ × × ∆  and 
0(2 . ( , ))

E

P E
θ

β θ

∆
∆ ≡

×
 (27) 

With; 0E E E E∆ ≡ − =  and 0θ θ θ∆ = −  

According to equations (25) and (27) we find the following expression: 

 0 0( , ) 2 ( , )E T P E T P Eα β θ∆ ≡ ∆ × ≡ ×  (28) 
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0 0( , ) ( , )P E T P E θ=  

 2Tα β θ∆ ≡ ∆  (29) 

With; 0E T T T∆ ≡ − =  and 0θ θ θ∆ = −   0( 298 )Kθ =  

Thus  

 T δ θ≡ × ∆  (30) 

As illustrated in figure 8, we determine P(T) and P(θ) from P(E) (steps 1 and 3), P(E) and 

P(θ) from P(T) (steps 1 and 2), and at the end we can determine P(E) and P(T) from P(θ) 
(steps 2 and 3),. 
 

 

Fig. 8. Schematic illustration of the scaling laws 
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4.2 Verification of the scaling law 

Figure 9 shows the relation between ∆T and 
0( , )

E

P E T

∆
 where good linear fits are apparent (R 

close to 1). This implies a power-law relation between the mechanical stress and electric 

field, i.e., ( 0( , )E T P E Tα∆ ≡ ∆ × , the exponent α can be extracted from the slope, i.e. 

0

( )
( )

( , )

( )

E
d

P E T

d T
α

∆

=
∆

.  

The expression (25) allows expressing the mechanical stress as an equivalent electric field 
and the electric field as an equivalent stress. Thus, a good agreement between electrical field 
and mechanical stress proved that the proposed scaling law allows predicting the depoling 
behavior under stress using only purely electrical measurements. Reciprocally, the 
predictions of the depoling behaviour under an electrical field were permitted using only 
purely mechanical measurements. It was found that such an approach permitted the 
prediction of the maximal stress application from purely electrical measurements (i.e., 
measurements of S(E) and P(E)). The maximal stress for application is the stress that can be 
applied to materials without they lose their piezoelectric properties. 
 

 

Fig. 9. Experimental validation of the scaling law between electrical field and mechanical 
stress for PZT ceramic 

In the other study we proposed a scaling law between the electrical field and the 

temperature [16]. This law is expressed by the expression (25) ( 0(2 ( , )).E P Eβ θ θ∆ ≡ × ∆ ). 
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Figure 10 shows the relation between 
0( , )

E

P E θ

∆
 and θ∆  where good linear fits are apparent 

(R close to 1). This implies a power-law relation between the temperature and electric field, 

i.e., ( 0(2 ( , )).E P Eβ θ θ∆ ≡ × ∆ ), the exponent β can be extracted from the slope, i.e. 

0

( )
( , )

2
( )

E
d

P E

d

θ
β

θ

∆

=
∆

.  

According to this law, it is possible to determine the behavior of the polarization in function 
of temperature from the electrical measurements. Reciprocally, it is possible to determine 
the behavior of the polarization in function of the electric field from thermal measurements. 
It is interesting to note that for purely electrical measurements, the presented law rendered 
it possible to determine the maximum temperature for practical use. Small variations in 
polarization were observed for an applied electric field lower than EM (here, 150 V/mm), 
leading to the conclusion that the polarizations underwent a rapid change. Based on the 

obtained EM value, one can determine the equivalent temperature (θM) corresponding to the 
maximum temperature used. 
 

 

Fig. 10. Experimental validation of the scaling law between electrical temperature variations 
for PZT ceramic 

Considering physical symmetries, similar behaviors can be observed under stress or 
temperature. Indeed both external disturbances may result in depling of the sample. We 

consider here a scaling effect that is described with (equation 30): T δ θ≡ × ∆ . 

Where T is the mechanical stress, θ∆  the temperature variation, and δ  the scaling 

parameter. We therefore explore the viability of this assumption using two distinct 
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experiments on the same PZT material. We record first the depoling under mechanical 

stress. In a second time, we record the depoling under temperature. We try to obtain the 

same depoling values under mechanical stress or temperature in order to compare therefore 

the scaling effect. Starting from the experimental depoling under mechanical stress P(T), we 

plot the depoling as a function of “
T

δ
” P(

T

δ
) and is compared to direct measurement 

( )P θ∆ . In the same manner the the experimental result under stress P( θ∆ ) is plotted as a 

function of δ θ× ∆  (giving P( δ θ× ∆ )) and compared to the direct measurement P(T). In 

figure 4 are shown these results. The agreement is outstanding considering the different 

natures of mechanical stress and temperature. The two external disturbances acts very 

differently on the domain configurations [8-11], but at the macroscopic scale, over an 

important averaging, it is shown here that a very sharp scaling law can be considered. It is 

important to note the consequences of such a scaling once it has been demonstrated 

experimentally. It is possible to predict the poling behavior over the entire 

stress/temperature plane as shown on figure 11. 

In order to confirm these results, we plotted the mechanical stress as a function to the 

temperature variation. Figure 12 shows the relation between ∆θ and T, where good linear 
fits are apparent (R2  close to 1). This implies a power-law relation between the stress and 

temperature, i.e., ( T δ θ≡ × ∆ ), the exponent δ  can be extracted from the slope, i.e. 

( )

( )

d T

d
δ

θ
=

∆
. According to figure 12, the coefficient δ  is equal to 0.35×106. 

 

 

Fig. 11. Experimental validation of the scaling law for soft PZT ceramic. 

In the literature, a majority of these phenomenological models are purely electric, mechanic, 
or thermal [19-22]. Consequently, it is difficult to interpret the results as a function of the 
combined to two or three excitations (mechanical stress and temperature for example).  
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The proposed scaling law can be used for several models have been proposed in the 
literature for comprehending the hysteretic behavior of various materials, which renders it 
interesting for introducing the temperature as an equivalent to the mechanical stress, or 
reciprocally to introducing the mechanical stress as an equivalent to the temperature. 
The behavior of ferroelectric materials under a combined mechanical stress (T) and 

temperature (θ) can thus be determined, which will help in the identification and 
understanding of the effect of the simultaneous action of temperature and mechanical stress 
on ceramics.  
According to this law, it is possible to determine the behavior of the polarization in function 
of temperature from the mechanical measurements. Reciprocally, it is possible to determine 
the behavior of the polarization in function of the mechanical stress from thermal 
measurements. It is interesting to note that for purely mechanical measurements, the 
presented law rendered it possible to determine the maximum temperature for practical use, 
and reciprocally it is possible to determine the maximum stress for practical use from purely 
thermal measurements. 
 

 

Fig. 12. Experimental validation of the scaling law between mechanical stress and 
temperature variation for PZT ceramic 

5. Predictions of material behavior 

Due to their electromechanical properties, piezoelectric materials are widely employed as 
sensors and actuators [16-17]. Most of these piezoelectric materials are utilized under 
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different conditions (stress, electrical field, and temperature).It would thus be interesting to 
predict their behaviors under a variety of excitations without having to perform too much 
experimental work, i.e., just carrying out a single experiment and providing the other 
experimental values. For example, from a simple measurement of the polarization as a 
function of the electric field, one could predict the behavior of the polarization as a function 
of temperature negative and positive(step 2) and stress (compressive and tensile stress) (step 
1). In conclusion, we could determine P(T) and P(θ) from P(E) (steps 1 and 3),P(E) and P(θ) 
from P(T) (steps 1 and 2), and finally P(E) and P(T) from P(θ) (steps 2 and 3),. 
 

 

Fig. 13. Schematic illustration of the material behavior under excitations. 

6. Relationship between the coefficients d33 and ε33 

The proposed scaling law can also be applied to the minor cycles. This fact provides a great 

advantage for the problem of the relation between 33ε  and 33d  according to 

 33

P

E
ε

∂
=

∂
 (2) 

 33

P
d

T

∂
=

∂
 (3) 

It is quite difficult to experimentally obtain a real d33 corresponding to an exact ɛ33. During 
the experiment, the electrical field (E) was stopped at a certain level to obtain a value of the 
polarization (P), and the permittivity (ɛ33) could thus be defined. When E was stopped, d33 
was calculated based on the obtained33 and did consequently not correspond to thereal d33. 
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As illustrated in Fig. 14, the measuring point for P was not on the main cycle but slightly 
beside, on the minor cycle. This result was due to the difference of E0+ΔE from ɛ, not 
corresponding to that of T0+ΔT from d33. Resultantly, the calculation of d33 could not be 
based on an exact value. By using the proposed simple scaling law, on the other hand, it was 
possible to obtain an exact value for d33, 

 ( )
P P

h P
T E

∂ ∂
= −

∂ ∂
 (4) 

thus, 

 33 33( )d h P Pε= − . (5) 

Figure 15 depicts the prediction of the piezoelectric constant (d33) under a compressive 
stress. In this case, d33 was calculated from the function h[P(E,T=0)] and compared with 
experimental values. It could be observed that the experimental and calculated piezoelectric 
constants displayed a similar variation with the compressive stress. Such a good agreement 
between simulation and experiment proved that the proposed law scaling rendered it 
possible to predict the piezoelectric constant (d33) under stress using only purely electrical 
measurements. Reciprocally, predictions of the dielectric constant (ɛ33) under an electrical 
field were permitted using only purely mechanical measurements. 
 

 

Fig. 14. relation between ε33 et d33 

7. Conclusion 

The present chapter proposes a three simple scaling laws taking into account the electrical 
field, the stress, temperature, and the polarization of ferroelectric materials in the form of 

0( , )E T P E Tα∆ ≡ ∆ × , 0(2 ( , )).E P Eβ θ θ∆ ≡ × ∆  and T δ θ∆ ≡ × ∆ . The nonlinear behavior was 

considered and compared to that predicted by a linear reversible constitutive law in order to 
demonstrate the range of validity of the linear assumptions. 
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Fig. 15. (Color online) Evolution of the piezoelectric coefficient under compressive stress 

The proposed scaling laws can be used for several models have been proposed in the 
literature for comprehending the hysteretic behavior of various materials, which renders it 
interesting to interpret the results as a function of the combined to two or three excitations 

(mechanical stress and temperature for example).The ease of conversion between P(E), P(θ) 
and P(T) cycles by such a simple laws gives numerous opportunities regarding the use of 
piezoelectric materials. It was possible to predict the depoling behavior over the entire stress 
cycle (compressive or tensile), or to predict the depoling behavior over the entire 
temperature cycle (negative or positive) from to the hysteresis cycle. Thus, one should note 
that applying a symmetric electrical field cycle leads to a dissymmetric cycle under stress 
and temperature.  Consequently, the polarization behaves differently as a function of 
compressive as opposed to tensile stresses. Moreover, the polarization behaves also 
differently as a function of positive and negative temperature. 
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