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1. Introduction  

Ear biometrics has received deficient attention compared to the more popular techniques of 
face, eye, or fingerprint recognition. The ear as a biometric is no longer in its infancy and it 
has shown encouraging progress so far. ears have played an important role in forensic 
science for many years, especially in the United States, where an ear classification system 
based on manual measurements was developed by (Iannarelli, 1989). In recent years, 
biometrics recognition technology has been widely investigated and developed. Human 
ear, as a new biometric, not only extends existing biometrics, but also has its own 
characteristics which are different from others. Iannarelli has shown that human ear is one 
of the representative human biometrics with uniqueness and stability (Iannarelli, 1989). 
Since ear as a major feature for human identification was firstly measured in 1890 by 
Alphonse Bertillon, so-called ear prints have been used in the forensic science for a long 
time (Bertillon, 1890). Ears have certain advantages over the more established biometrics; 
as Bertillon pointed out, they have a rich and stable structure that does not suffer from the 
changes of ages, skin-color, cosmetics, and hairstyles. Also the ear does not suffer from 
changes in facial expression, and is firmly fixed in the middle of the side of the head so 
that the background is more predictable than is the case for face recognition which 
usually requires the face to be captured against a controlled background. The ear is large 
compared with the iris, retina, and fingerprint and therefore is more easily captured at a 
distance. 
We presented gabor-based region covariance matrix as an efficient feature for ear 

recognition. In this method, we construct a region covariance matrix by using gabor 

features, illumination intensity component, and pixel location, and use it as an efficient and 

robust ear descriptor for recognizing peoples. The feasibility of the proposed method has 

been successfully tested on ear recognition using two USTB databases, specifically used total 

488 ear images corresponding to 137 persons. The effectiveness of the proposed method is 

shown in terms of the comparative performance against some popular ear recognition 

methods. 

This chapter is organized as follows. In section 2, related works are presented. In section 3, 

region covariance matrix (RCM) and the method for fast RCM computation are presented. 

In section 4, the proposed method presented in detail. In section 5, ear image databases are 

introduced. In section 6, experimental results are shown and commented. The chapter 

concludes in section 7. 
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2. Related works 

Ear recognition depends heavily on the particular choice of features that used in ear 

biometric systems. The Principal Component Analysis method (PCA) is a classical statistical 

characteristic extracts method. The PCA (Xu, 1994; Abdi & Williams, 2010) transformation is 

based on second order statistics, which is commonly used in biometric systems. With second 

order methods, a description with minimum reconstruction error of the data is found using 

the information contained in the covariance matrix of the data. It is assumed that all the 

information of Gaussian variables (zero mean) is contained in the covariance matrix. The 

Independent Component Analysis (ICA) is another popular feature extraction method. ICA 

(Comon, 1994; Stone, 2005) provides a linear representation that minimizes the statistical 

dependencies among its components, which is based on higher order statistics of the data. 

These dependencies among higher order features could be eliminated by isolating 

independent components. It is a statistical method for transforming an observed 

multidimensional random vector into components that are statistically independent from 

each other as much as possible. The ability of the ICA to handle higher-order statistics in 

addition to the second order statistics is useful in achieving an effective separation of feature 

space for given data. The higher order features are capable of capturing invariant features of 

natural images. In (Zhang & Mu, 2008), PCA and ICA methods with RBFN classifier is 

presented. In these two methods, PCA and ICA are used to extract features and RBFN is 

used as classifier. In this chapter, these two methods denote by PCA+RBFN, and ICA+RBFN 

respectively. 

Hmax+SVM is another popular feature extraction method for ear recognition. Hmax model 

is motivated by a quantitative model of visual cortex, and SVMs are classifiers which have 

demonstrated high generalization capabilities in many different tasks, including the object 

recognition problem. This method (Yaqubi et al., 2008) combines these two techniques for 

the robust Ear recognition problem. With Hmax, a new set of features has been introduced 

for human identification, each element of this set is a complex feature obtained by 

combining position- and scale- tolerant edge detectors over neighboring positions and 

multiple orientations. This system’s architecture is motivated by a quantitative model of 

visual cortex (Riesenhuber & Poggio, 1999). 

Another feature extraction method for ear recognition is presented by (Guo & Xu, 2008). 

This method called Local Similarity Binary Pattern (LSBP). Local Similarity Binary Pattern 

considers both the connectivity and similarity information in representation. LSBP 

histogram captures the information of connectivity and similarity, such as lines and 

connective area. In this method, in order to enhance efficient representation, histograms not 

only encode local information but also spatial information by image decomposition. Because 

of the special characteristics of ear images, the connectivity and similarity of intensity plays 

a significant role in ear recognition, which can be encoded by Local Similarity Binary 

Pattern. 

3. RCM 

3.1 Covariance matrix as a region descriptor 

The covariance matrix is a symmetric matrix. Covariance matrix diagonal entries represent 

the variance of each feature and their non-diagonal entries represent their correlations. 

www.intechopen.com



 
Gabor-Based RCM Features for Ear Recognition 

 

223 

Using covariance matrices as the descriptors of the region has many advantages. The 

covariance matrix presents a natural way of fusing multiple features without normalizing 

features or using blending weights. It embodies the information embedded within the 

histograms as well as the information that can be derived from the appearance models. In 

general, for each region, a single covariance matrix is enough to match with that region in 

different views and poses. The noise corrupting individual samples are mostly filtered out 

with the average filter during covariance computation process. Due to the equal size of the 

covariance matrix of any region, we can compare any two regions without being restricted 

to a constant window size. If the raw features such as, image gradients and orientations, are 

extracted according to the scale difference, It has also scale invariance property over the 

regions in different images. 

As given above, covariance matrix can be invariant to rotations. However, if information 

regarding the orientation of the points are embedded within the feature vector, it is possible 

to detect rotational discrepancies. We also want to mention that the covariance is invariant 

to the mean changes such as identical shifting of color values. This can be an advantageous 

property when objects are tracked under different illumination conditions. Region 

covariance matrix (RCM) presented by (Tuzel et al., 2006). RCM is a covariance matrix of 

many image statistics computed within a region. 

We define I as an one dimensional unit normalized intensity image. The method can be 

generalized to other type of images, which can be a 2D intensity image, or 3D color image or 

multi spectral. Assume F be the W H d× × dimensional feature image extracted from I  

 F x y I x y( , ) ( , , )φ=     (1) 

Where the function φ can be any mapping function such as color, image gradients x xxI I, ,… , 

edge magnitude, edge orientation, filter responses, etc. this pixel-wise mapping list can be 

extended by including higher order derivatives, radial distances, texture scores, angels, and 

temporal frame differences in case a video data is available. 

For a given rectangular window R , let { }k k 1 n
f

= …
be the d-dimensional feature vectors 

inside R . 

Each feature vector kf  introduces a pixel (x, y) within that window. Since we extract the 

mutual covariance of the features, the windows can actually be any shape not necessarily 

rectangles. Basically, covariance is a statistical measure of how much two variables vary 

together. Covariance can be a negative, positive or zero number, conditional upon what is 

the relation between two features (Forsyth & Ponce, 2002). If the features increase together, 

the covariance is positive. If one feature increases and the other decreases, the covariance is 

negative, and if the two features are independent, the covariance is zero. We introduce each 

window R with a covariance matrix of the features. 

 

( , ) ( , )

( , ) ( , )

( )( )

R R

R

R R

n
T

k k
k 1

C 1 1 C 1 d
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⎜ ⎟

= ⎜ ⎟
⎜ ⎟
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= − −
− ∑

…
# %

  (2) 
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Where μ  is the mean vector of the corresponding features for the points within the 

region R . The diagonal coefficients represent the variance of the corresponding features. For 

example, the jth diagonal element represents the variance for the jth feature. The non-

diagonal elements represent the covariance between two different features. 
The feature vectors can be constructed using different type of mapping functions like pixel 

coordinates, color intensity, gradient, etc. 

 [ ]k xf x y I x y I x y( , ) ( , )= …   (3) 

or they can be constructed using the polar coordinates 

 [ ]k xf r x y x y I x y I x y( , ) ( , ) ( , ) ( , )θ′ ′ ′ ′= …   (4) 

where 

 0 0x y x x y y( , ) ( , )′ ′ = − −   (5) 

are the relative coordinates with respect to window center 0 0x y( , ) , and 

 2 2r x y x y( , ) ( )′ ′ ′ ′= +    (6) 

is the distance from 0 0x y( , ) and 

 
y

x y
x

( , ) arctan( )θ
′

′ ′ =
′

  (7) 

is the orientation component. For human detection problem, (Tuzel et al., 2007) 

introduced the mapping function as 

 2 2
k x y x y xx yyf x y I I I I I I x y( , )θ⎡ ⎤= +⎣ ⎦    (8) 

Where . denotes the absolute operator. First- and second-order gradients and pixel location 

were used in this function to construct RCM. The other form of feature mapping function 

which is introduced by (Tuzel et al., 2006) for gray level images is 

 k x y xx yyf x y I x y I I I I( , )⎡ ⎤= ⎣ ⎦   (9) 

Three other kinds of feature mapping functions are introduced by (Tuzel et al., 2007; Pang et 

al., 2008). 

 k x y xx yyf x y I I I I x y( , )θ⎡ ⎤= ⎣ ⎦    (10) 

 k x y xx yyf x y I I I I⎡ ⎤= ⎣ ⎦   (11) 

 k x y xx yyf x y I x y I I I I x y( , ) ( , )θ⎡ ⎤= ⎣ ⎦    (12) 
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Figure 1, denotes a sample covariance matrix for a given image. 
 

 

Fig. 1. Covariance matrix provided for these seven features 

Despite RCM advantages, computation of the covariance matrices for all rectangular regions 

within an image is computationally prohibitive using the routine methods. Several 

applications such as detection, segmentation, and recognition require computation and 

comparison of covariance matrices of regions. However, routine methods disregard the 

fact that there exist a high number of overlaps between those regions and the statistical 

moments extracted for such overlapping areas can be utilized to enhance the 

computational speed. 

3.2 Fast covariance computation using integral images 

Instead of repeating the summation operator for each possible window as described by 

(Veksler, 2003 ; Porikli, 2005), we can calculate the sum of the values within rectangular 

windows in linear time. For each rectangular window we need a constant number of 

operations to calculate the sums over specific rectangles many times. First, we should define 

the cumulative image function. Each element of this function is equal to the sum of all 

values to the left and above of the pixel including the value of the pixel itself. We can 

calculate the cumulative image for every pixel with four arithmetic operations per pixel. 

Then we should calculate the sum of image function in a rectangle. This operation can be 

computed with another four arithmetic operations with some modifications at the border. 

Therefore by using a linear amount of computation, the sum of image function over any 

rectangle can be calculated in linear time.  

Integral images are intermediate image representations used for fast calculation of region 

sums (Viola & Jones, 2001). Later Porikli (Porikli, 2005) was extended this idea for fast 

calculation of region covariances. He presented that the covariances can be obtained by a 

few arithmetic operations with a series of integral images.  

We can rewrite (i, j)-th element in covariance matrix which introduces in (2) as 

 
n

R k k
k 1

1
C i j f i i f j j

n 1
( , ) ( ( ) ( ))( ( ) ( ))μ μ

=

= − −
− ∑   (13) 

By expanding the mean we have 

 
n n n

R k k k k
k 1 k 1 k 1

1 1
C i j f i f j f i f j

n 1 n
( , ) ( ) ( ) ( ) ( )

= = =

⎡ ⎤= −⎢ ⎥− ⎣ ⎦
∑ ∑ ∑     (14) 
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To compute region R (rectangular region) covariance, we need to calculate the sum of each 

feature dimension i 1 nf i ..( ) =  as well as the sum of multiplication of any two feature 

dimensions i j 1 nf i f j , ..( ) ( ) = . In this stage, we can use a series of integral images to compute 

these sums with a few arithmetic operations. 

For each feature dimension f i( ) and multiplication of any two feature 

dimensions f i f j( ) ( ) we should construct integral images. Finally, we have 2d d+ integral 

images. Define p as the W H d× × tensor of the integral images along each feature 

dimensions. 

 
x x y y

P x y i F x y i
,

( , , ) ( , , )
′ ′< <

′ ′ = ∑    (15) 

And define Q  as the W H d d× × ×  tensor of the second order integral images. 

 
x x y y

Q x y i j F x y i F x y j
,

( , , , ) ( , , ) ( , , )
′ ′< <

′ ′ = ∑   (16) 

x yP , is the d dimensional vector and x yQ ,  is the d d×  dimensional matrix. 

 

[ ],

,

( , , ) ( , , )

( , , , ) ( , , , )

( , , , ) ( , , , )

x y

x y

P P x y 1 P x y d

Q x y 1 1 Q x y 1 d

Q

Q x y d 1 Q x y d d

=

⎛ ⎞
⎜ ⎟
⎜ ⎟=
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⎜ ⎟
⎝ ⎠

…

…

#

…

    (17) 

If we have the rectangular region as R x y x y( , ; , )′ ′ ′′ ′′ shown in figure 2, the covariance of the 

region that bounded by 1 1( , ) and x y( , )′′ ′′ is 

 
1 1 x y

T
R x y x y x y

1 1
C Q P P

n 1 n( , ; , ) , , ,′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′
⎡ ⎤= −⎢ ⎥− ⎣ ⎦

    (18) 

Where n x y′′ ′′= × . In the same way, the covariance of the region R x y x y( , : , )′ ′ ′′ ′′ is 

 

( , ; , ) , , , ,

, , , ,

, , , ,

1

1

1
( )

.( )

x y x yR x y x y x y x y

x y x y x y x y

T
x y x y x y x y

C Q Q Q Q
n

P P P P
n

P P P P

′ ′ ′′ ′′ ′′ ′′ ′ ′ ′′ ′ ′ ′′

′′ ′′ ′ ′ ′ ′′ ′′ ′

′′ ′′ ′ ′ ′ ′′ ′′ ′

⎡= + − −⎣−

− + − −

⎤+ − − ⎦

 (19) 

Where n x x y y( ) ( )′′ ′ ′′ ′= − × − . Therefore, by using the integral images, the covariance of each 

rectangular region can be computed in 2O d( ) time. In our method we used integral image 

based covariance computation as a fast approach for RCM computation of the given 

features. 
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Fig. 2. Rectangular region R 

3.3 Covariance matrix distance calculation 

Since RCMs lie on connected Riemannian manifold, the Euclidean distance is not proper for 

our features, for instant, this space is not closed under multiplication with negative scalars. 

We use the distance measure presented in (Forstner & Moonen, 1999) to compute the 

distance/dissimilarity of the covariance matrices. 

 
d

2
1 2 i 1 2

i 1

C C C C( , ) ln ( , )ρ λ
=

= ∑   (20) 

where 1 1 2 d 1 2C C C C( , ), , ( , )λ λ… are generalized eigenvalues of 1 2C C, and computed from 

 i 1 i 2 iC x C x i 1 d...λ = =    (21) 

where ix 0≠ are the generalized eigenvectors. 

4. Gabor-based region covariance matrix 

4.1 Gabor features extraction 

The RCM-based methods with feature mapping functions (9),(10) have great success in 

people detection, object tracking, and texture classification (Tuzel et al., 2006; Tuzel et al., 

2007). However our experimental results showed that the recognition rates of these methods 

are very low when being applied to ear recognition which is a very difficult task from the 

classification point of view. We construct effective features for RCM by using Gabor features 

and pixel location and illumination intensity component, to get better result in ear 

recognition. The biological relevance and computational properties of Gabor wavelets for 

image analysis have been investigated in (Jones & Palmer, 1987). 

The Gabor features of ear images are robust against illumination changes. Gabor 

representation facilitates recognition without correspondence, because it captures the local 

structure corresponding to spatial frequency (scale), spatial localization, and orientation 

selectivity (Schiele & Crowley, 2000). 

Daugman (Daugman, 1985) modeled the responses of the visual cortex by Gabor functions 

because they are similar to the receptive field profiles in the mammalian cortical simple 

cells. Daugman (Daugman, 1985) enhanced the 2D Gabor functions (a series of local spatial 
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bandpass filters), which have good spatial localization, orientation selectivity, and frequency 

selectivity. Lee (Lee, 2003) gave a good description to image representation by using Gabor 

functions. A Gabor (wavelet, kernel, or filter) function is the product of an elliptical 

Gaussian envelope and a complex plane wave as 

 

2 2
2

2

2 k x

ikx2 2
v 2

k
x e e e

( )

, ( )
σ

σ
μϕ σ

− −⎡ ⎤
= −⎢ ⎥

⎢ ⎥⎣ ⎦
  (22) 

Where x x y( , )= is the variable in a spatial domain, and k  is the frequency vector, which 

determines the scale and direction of Gabor functions 
i

vk k e μφ= , where max / v
vk k f= , with 

k 2max /π= . In our application, f 2=  and /8μφ πμ= . The term 2 2exp( / )σ− is subtracted 

in order to make the kernel DC-free and, thus, insensitive to illumination. Examples of the real 

part of Gabor functions used in this chapter are shown in Figure 3. We use Gabor functions 

with five different scales ( )v  and eight different orientations ( )μ , making a total of 40 Gabor 

functions. The number of oscillations under the Gaussian envelope is determined by 2σ π=  
 

 

Fig. 3. The real part of gabor function for five different scales and eight different orientations 

The gabor kernels family is constructed by taking five scales { }v 0 4( ,..., )∈ and eight 

orientations { }0 7( ,..., )μ∈ . The gabor features can be achieved by convolving the gabor 

kernels with the image I  

 v vg x y I x y x y, ,( , ) ( , ) ( , )μ μϕ= ∗    (23) 

Where . is a magnitude operator. vg x y, ( , )μ are the gabor representation of an image at 

orientation μ  and scale v . Figure 4 shows the magnitude of gabor representation of an ear 

image. 
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Fig. 4. The magnitude part of gabor representation of an ear image 

4.2 Gabor based RCM 

We propose a new gabor-based feature mapping function to construct effective and robust 
RCM. 

 k 0 0 0 1 7 4f x y I x y g x y g x y g x y, , ,( , ) ( , ) ( , ) ( , )= ⎡ ⎤⎣ ⎦…    (24) 

Where I x y( , ) is the pixel illumination intensity and vg x y, ( , )μ are the gabor representation 

of the ear image. By substituting (24) into (2), we have the gabor-based region covariance 

matrices in region R RC( ) . RC dimntionality is 43 43× . 

In our method, we represent each ear image with five RCMs extracted from five different 

regions 1 5C C( , , )… . First RCM 1C( ) defined over the whole ear image, so it gives us a global 

representation of the ear image. Four other RCMs are defined over part of the ear image, so 

they give us the part-based representation of the ear image. In order to increase the 

robustness of our method against illumination variations, we use both global and part-based 

representations for ear images in our method. Figure 5, denotes these five regions for 

1 2 3 4 5C C C C C, , , , .  
For computing the distance between a gallery RCM and a Probe RCM, we use 

 
5 5

G P G P G P G P
i i j j i i j j

j j
i 1 i 1

G P C C C C C C C C( , ) min ( , ) ( , ) ( , ) max ( , )ρ ρ ρ ρ ρ
= =

⎡ ⎤ ⎡ ⎤= − = −⎢ ⎥ ⎣ ⎦⎣ ⎦
∑ ∑    (25) 

Where GC and PC  are RCMs from gallery and probe sets. 
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Fig. 5. Five regions for covariance matrices of a sample ear image 

Sometimes one local RCM, due to illumination variation or noise, may be affected so much 

that make its corresponding distance unreliable. That is the reason why we subtracted the 

most unreliable part in (25) from the summation of all distances between gallery and probe 

RCMs. We used nearest neighbor classifier with the distance in (25) for our method. 

5. Databases 

Our method tested on two USTB databases (Yuan et al., 2005). Database 1 includes 180 

images of human ear corresponding to 60 individual with three images per person. All the 

images in database 1 acquired under standard condition with a little changes. Figure 6, 

denotes sample ear images from database 1. 

 

 

Fig. 6. Sample ear image for two persons from database 1 

Database 2 includes 308 images of human ear corresponding to 77 individual with four 

images per person. All the images in database 1 acquired under illumination variation and 

± 30 degree pose variations. Figure 7, shows sample ear images from database 2. 
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Fig. 7. Sample ear image for two persons from database 2 

6. Experimental result 

We performed our experimental studies comparing various ear reconigtion algorithms 
including our method with PCA+RBFN method (Zhang & Mu, 2008), ICA+RBFN method 
(Zhang & Mu, 2008), Hmax+SVM method (Yaqubi et al., 2008), LSBP method (Guo & Xu, 
2008), four RCM-based methods (Tuzel et al., 2007; Pang et al., 2008). In order to compare 
the recognition performance of our method with the above methods, we have used USTB 
databases (Yuan et al., 2005) in our experiments. In database 1, from a total of 60 persons, 
two images per person where randomly used for training. There are three different ways of 
selecting two images for training from three images. In database 2, from a total of 77 
persons, three images per person where randomly used for training. There are four different 
ways of selecting three images for training from four images.  
For simplicity, RCM-based methods associated with (9), (10), (11), (12) denote by RCM1, 
RCM2, RCM3, RCM4 respectively. RCM3 is a subset of RCM1 with lack of intensity 
component; also RCM2 is a subset of RCM4 with lack of intensity component. 

Figures 8 and 9 denote the mean of the recognition rates for database 1 and 2 datasets. From 

Figures 8 and 9, it can be seen that the recognition performances of four RCM-based 

methods were worse than other methods, so it can be concluded that the discrimination 

power, in these RCM-based methods are weak for recognition task. To find out about the 

intensity parameter I x y( ( , ))  effect on the recognition rate, we compare the result of RCM1 

with RCM3 and the result of RCM2 with RCM4. We can conclude that I x y( , ) is an 

important feature in RCMs and it contributes to increasing the recognition performance of 

RCM-based methods. Thus, we used the illumination intensity component in our mapping 

function to increase the accuracy of our method. 
Table 1 shows the comparision of the standard deviation of recognition performance 

between all discussed methods on database 1 and 2. From table 1, We can see that the 
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standard deviation of our method for database 1 are low. Therefore, our method showed 

better performance than any other methods in database 1. The mean recognition rates of our 

method in database 1 and 2 are 93.33% and 87.98% respectively. Due to the pose variations 

in database 2 images, the recognition performance of our method, in terms of average 

accuracies,  outperforms any other methods, except LSBP and ICA methods. 
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Fig. 8.  Mean Recognition rates of different methods on database 1  (%) 
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Fig. 9.  Mean Recognition rates of different methods on database 2  (%) 
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Methods 
Standard Deviation 

Database 1 Database 2 

Our method 1.67 5.23 

LSBP 1.92 4.74 

ICA+RBFN 3.33 4.15 

PCA+RBFN 3.53 3.07 

Hmax+SVM 1.93 2.70 

RCM1 2.58 2.22 

RCM2 3.33 4.80 

RCM3 2.55 2.72 

RCM4 2.54 3.06 

Table 1. Standard deviations of the recognition rates 

Eventually, these results prove that using Gabor features, as main features in constructing 

RCMs, will improve the discrimination ability for recognizing ear images, and it shows 

better recognition rate in proportion to previous methods. 

7. Conclusion 

In this chapter, we proposed gabor-based region covariance matrices for ear recognition. In 

this method we form region covariance matrix by using gabor features, illumination 

intensity component, and pixel location and utlize it as an efficient ear descriptor. We 

compared our method with PCA+RBFN method (Zhang & Mu, 2008), ICA+RBFN method 

(Zhang & Mu, 2008), Hmax+SVM method (Yaqubi et al., 2008), LSBP method (Guo & Xu, 

2008), and four RCM-based methods (Tuzel et al., 2007; Pang et al., 2008), using two USTB 

databases.  

Unlike the previous RCM-based methods which have very low recognition rates when 

being applied to ear recognition, our RCM-based method, which used gabor features as a 

main feature for constructing RCM, showed better result in ear recognition. Potential results 

showed that our method achieved improvement, in terms of recognition rate, in proportion 

to other methods. Our method obtains the average accuracy of 93.33% and 87.98%, 

respectively, on the databases 1 and 2 for ear recognition. 
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