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1. Introduction

The large interest in magnetic nanowires is mostly related to their possible application in
magnetoelectronics. It was established experimentally that the magnetic domain walls (DWs)
in very thin magnetic wires can affect substantially their resistance up to 1000% or even
more (Chopra & Hua (2002)), (Rüster et al. (2003)). On the other hand, the magnetic DWs
in nanowires can be effectively controlled by weak external magnetic field and by electric
current pulses. The latter effect of current-induced DW motion opens the way for various
applications. One of the most impressive advances in this direction is the development of
race-tracking memory devices for fast storage and reading of information (Parkin et al. (2008)).
A review of the properties of magnetic nanowires with domain walls has been presented
recently in Ref. (Kläui (2008)).
Several different phenomena have been in the scope of experimental and theoretical research,
each of them being important for the use of magnetic nanowires in magnetoelectronics. The
first one is the problem of transmission and reflection of electrons through the DW since this
effect is mostly responsible for the magnetoresistivity. The other problem is related to the
spin-transfer torque in magnetic nanowires and possible mechanisms of the current-induced
DW motion. These mechanisms are responsible for effective current-induced control of the
DW motion and correspondingly for current-induced variation of the resistance of magnetic
nanowires. The third problem concerns the dynamics of the DWs motion since the dynamics
are related to the possibility of fast current-induced control of the resistance.
In this Chapter we review our main results of theoretical investigations into charge and spin
transport properties in magnetic nanowires, mostly using some simplified models. Solving
the models one can understand better the underlying physical mechanisms of the spin and
charge transport in magnetic nanowires, that can be also used in computer simulations,
which should take into account real electronic and magnetic structure of a specific material.
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The details of our calculations and more information on the methods can be found in Refs.:
(Dugaev et al. (2002)), (Dugaev et al. (2003)), (Dugaev et al. (2004)), (Dugaev et al. (2005)),
(Araújo et al. (2006)), (Dugaev et al. (2006)), (Araújo et al. (2007)), (Dugaev et al. (2007)),
(Sedlmayr et al. (2009)) and (Sedlmayr et al. (2010)).

2. Reflection of electrons from the magnetic domain wall

Spin-polarized electrons moving in a magnetic nanowire are scattered not only from phonons,
impurities and defects like in the case of nonmagnetic materials, but also from any spatial
variation of magnetization, which leads to scattering with the variation of electron momentum
and electron spin. This problem was considered theoretically first in Refs. (Cabrera & Falicov
(1974,a)) and (Cabrera & Falicov (1974,b)).
In the case of very slow variation of magnetization, when the adiabatic approximation is
applied, the electron wavefunction can be described semiclassically. For the scattering from
DW the condition of semiclassical approximation is λ ≪ L, where λ is the wavelength
of electron and L is the width of DW. This condition is usually fulfilled in relatively
thick microwires. We consider first this case, which provides relatively weak electron
backscattering, so that the effect of DW reduces to a small correction to the conductance.

2.1 Transmission through a thick domain wall

2.1.1 Model

Let us consider a ferromagnet with a nonuniform magnetization M(r). The one-particle
Hamiltonian describing conduction electrons locally exchange-coupled to the magnetization
M(r) takes the form

H = − 1

2m
ψ†

α ∆ ψα − J ψ†
α σαβ · M(r)ψβ , (1)

where J is the exchange parameter, ψα and ψ†
α are the spinor field operators of electrons, σ =

(σx, σy, σz) are the Pauli matrices, and we use the units with h̄ = 1. Hamiltonian (1) can
be used to describe electrons interacting with a domain wall in ferromagnetic metals or in
magnetic semiconductors. The domain wall is modeled by a magnetization profile M(r), and
we assume |M(r)| = const. Then we can write J M(r) = Mn(r), where n(r) is a unit vector
field, and M is measured in the energy units including the parameter J.
The first step is to perform a local unitary transformation [Tatara & Fukuyama (1997)] ψ →
T(r)ψ, which removes the nonhomogeneity of M(r), that is T(r) transforms the second term
in Eq. (1) as ψ† σ · n(r)ψ → ψ†σzψ. This transformation can be applied not only to a simple
domain wall, but also to any other types of topological excitations in ferromagnetic systems,
for instance helicoidal waves, skyrmions, and others. Applying this transformation to the
kinetic part of Hamiltonian (1) one obtains

ψ† ∆ ψ → ψ† (∇+ A(r))2 ψ, (2)

where the gauge field A (r) is given by A(r) = T†(r)∇ T(r). This gauge field A(r) is a matrix
in the spin space.
Let us consider now a more specific case of a domain wall in a bulk system or a thick magnetic
wire. We assume that the wall is translationally invariant in the x-y plane: M(r) → M(z) and
n(r) → n(z). For such a simple domain wall one can parameterize the unit vector field n(z)
as

n(z) = ( sin ϕ(z), 0, cos ϕ(z) ) , (3)
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where the z-dependent phase ϕ(z) determines the type of a domain wall. In this case the
gauge field assumes the form

A(z) =
(

0, 0, − i
2

σy ϕ′(z)
)

(4)

and the transformed Hamiltonian is

H = − 1

2m
∆ +

m β2(z)
2

− Mσz + iσy
β′(z)

2
+ iσy β(z)

∂

∂z
, (5)

where β(z) = ϕ′(z)/2m describes the local perturbation.
For a slowly varying smooth function ϕ(z) (thick domain wall of width L centered at z=0), the
perturbation due to the domain wall is weak, and close to the center of the wall, |z| ≪ L, the
parameter β(z) can be treated as a constant. If we assume the domain wall in the form of a
kink, then ϕ(z) = −(π/2) tanh (z/L), and the parameter β(z) is given by

β(z) = −π/4mL cosh2(z/L). (6)

2.1.2 Semiclassical approximation

In bulk magnetic metals like Fe, Ni or Co, the width L of a magnetic domain wall is
usually much larger then the electron Fermi wavelength λF. In such a case application of
a semiclassical approximation can be justified (Cabrera & Falicov (1974,a); Cabrera & Falicov
(1974,b)). The dominant perturbation from the domain wall is then described by the term with
β (∂/∂z) in Eq. (5), since it is of order of βkF. The term proportional to β2 is smaller, while the
term including β′(z) is of the order of β/L and therefore can be neglected.
The Schrödinger’s equation with Hamiltonian (5) has then the following semiclassical
solutions (i = 1, 2)

ψi(ρ, z) =
exp(±i q · ρ)

[ε2
i (z) + β2(z) k2

i (z)]
1/2 k1/2

i (z)

(
∓iβ ki(z)

εi(z)

)

exp

[

±i
∫ z

0
ki(z) dz

]

. (7)

where ρ = (x, y), q is the momentum in the plane of the wall, the wavevector components
normal to the wall (along the axis z) are given by

k2
1,2(z) = κ2(z) + m2β2(z)± 2m

[

M2(z) + β2(z) κ2(z)
]1/2

, (8)

and

εi(z) =
k2

i (z)
2m

+
mβ2(z)

2
− M(z)− κ2(z)

2m
, (9)

with κ(z) defined as κ2(z) = 2mε − q2. Obviously, there is no reflection from the wall in the
semiclassical approximation.

2.1.3 Scattering from the wall in Born approximation

For the case of not too thin domain wall, the term proportional to β(z) ∂/∂z can be treated as
a small perturbation and therefore the scattering from the wall can be evaluated within the
Born approximation. The matrix elements of the (kz ↑) → (k′z ↓) spin-flip scattering is given
by

Vkz k′z = −
∫ ∞

−∞
e−ik′zzβ(z)

d
dz

eikzz dz. (10)
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Using (6) and calculating the integral we find

Vkzk′z =
iπ2kz(k′z − kz)L

4m
csch

[
π(k′z − kz)L

2

]

. (11)

Correspondingly, the probability of backscattering (k′z = −kz) is

Wback ≡ 2π
∣
∣Vkz ,−kz

∣
∣2 =

π5 k4
z L2

2m2
csch2(πkzL). (12)

For kzL ≫ 1, from the last equation we find

Wback =
2π5 k4

z L2

m2
e−2πkz L. (13)

Thus, the probability of the backscattering with simultaneous spin flip vanishes exponentially
in the limit of kF L ≫ 1. The spin-conserving backscattering is determined by the term
proportional to β2 in the Hamiltonian (5). In the first approximation this term can be neglected
as it gives a smaller contribution than the one proportional to β(z) ∂/∂z.
The question arises, whether the Born approximation gives correct results for the problem
under consideration. There are two general conditions for its applicability: |U(z)| ≪ 1/mL2

or |U(z)| ≪ k/mL, where U(z) is the scattering potential. In the first case the Born
approximation is good for arbitrary electron energy, whereas in the second one it is good only
for fast electrons. Therefore, if we choose the limit kF L ≫ 1, then |U(z)| ∼ βkz ∼ (kz/mL),
and none of the conditions is satisfied. In the opposite case of a small domain-wall width,
kF L ≪ 1, we have |U(z)| ∼ 1/mL2 and the Born approximation is not justified again.
Thus, the Born approximation can be used only for rough estimations. In the case under
consideration, kF L ≫ 1, it just shows that the usual scattering from the wall is exponentially
weak.

2.2 Reflection from a thin domain wall

2.2.1 Model and scattering states

Let us consider now a sharp domain wall assuming M(z) = M0n(z) =
[M0 sin ϕ, 0, M0 cos ϕ], where ϕ(z) varies from zero to π for z changing from z = −∞

to z = +∞. When DW is laterally constrained, the number of quantum transport channels is
limited. In the extreme case only a single conduction channel contributes. In such a situation,
one can restrict considerations to a one-dimensional model, and write the Hamiltonian as

H = − 1

2m
d2

dz2
− JMz(z) σz − JMx(z) σx . (14)

Although this model describes only a one-channel quantum wire, it is sufficient to account
qualitatively for some of the observations. Apart from this, it can be easily generalized to the
case of a wire with more conduction channels.
In the following description we use the basis of scattering states. The asymptotic form of such
states (taken sufficiently far from DW) can be written as

χR↑(z) =

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(

eik↑z + rR↑ e−ik↑z

r f
R↑ e−ik↓z

)

, z ≪ −L,

(

tR↑ eik↓z

t f
R↑ eik↑z

)

, z ≫ L,

(15)
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where k↑(↓) =
√

2m(E ± M), with M = JM0, and E denoting the electron energy. The
scattering state (15) describes the electron wave in the spin majority channel incident from
z = −∞, which is partially reflected into the spin-majority and spin-minority channels,

and also partially transmitted into these two channels. The coefficients tR↑ and t f
R↑ are the

transmission amplitudes without and with spin reversal, respectively, whereas rR↑ and r f
R↑ are

the relevant reflection amplitudes. It is worth to note that transmission from the spin-majority
channel at z < 0 to the spin-majority channel at z > 0 requires spin reversal. The scattering
states corresponding to the electron wave incident from z = −∞ in the spin-minority channel
have a similar form. Furthermore, scattering states describing electron waves incident from
the right to the left take a similar form, as well.
In a general case (for kF L > 1 or kF L < 1) the transmission and reflection coefficients can
be calculated numerically, as described below. When kF L ≪ 1, then the coefficients can
be calculated analytically. Upon integrating the Schrödinger equation Hψ = Eψ (with the

Hamiltonian given by Eq. (14)) from z = − δ to z = + δ, and assuming L ≪ δ ≪ k−1
↑(↓), one

obtains

− 1

2m

(
dχ

dz

∣
∣
∣
∣
z=+δ

− dχ

dz

∣
∣
∣
∣
z=−δ

)

− λ σx χ(z = 0) = 0 (16)

for each of the scattering states (for clarity of notation the index of the scattering states is
omitted here), where

λ ≃ J
∫ ∞

−∞
dz Mx(z). (17)

Equation (16) has the form of a spin-dependent condition for electron transmission through a
δ-like potential barrier located at z = 0. To obtain it we also used the condition k↑(↓)L ≪ 1,
which is opposite to the condition used in the semiclassical approximation. The magnitude of
the parameter λ in Eq. (17) can be estimated as λ ≃ JM0L.
Using the full set of scattering states together with the wave function continuity condition,
one finds the transmission amplitudes

tR↑(↓) = tL↓(↑) =
2v↑(↓)(v↑ + v↓)

(v↑ + v↓)2 + 4λ2
,

t f
R↑(↓) = t f

L↓(↑) =
4iλ v↑(↓)

(v↑ + v↓)2 + 4λ2
, (18)

where v↑(↓) = k↑(↓)/m denotes the electron velocity in the spin-majority (spin-minority)
channel. According to (18), the magnitude of spin-flip transmission coefficients can be
estimated as (for simplicity we omit here the eigenstate indices)

∣
∣
∣t f

∣
∣
∣

2
∼

(
λv

v2 + λ2

)2

∼
(

Mε0

εF ε0 + M2

)2

(kF L)2, (19)

where εF = k2
F/2m and ε0 = 1/mL2. For kF L ≪ 1 one finds ε0 ≫ εF. Thus, taking εF ∼ M,

one obtains
∣
∣
∣t f

∣
∣
∣

2
∼

(
M
εF

kF L
)2

≪ 1. (20)

Accordingly, a sharp domain wall can be considered as an effective barrier for the spin-flip
transmission. On the other hand, the probability of spin conserving transmission is much

489Charge and Spin Transport in Magnetic Nanowires
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larger,
∣
∣
∣t/t f

∣
∣
∣

2
∼ εFε0/M2 ≫ 1. This means that electron spin does not follow adiabatically

the magnetization direction when it propagates through the wall, but its orientation is rather
fixed.

2.2.2 Resistance of the domain wall

To calculate the conductance of the system under consideration, one can start with the current
operator ĵ = e ψ†(z) v̂ ψ(z), where v̂ is the velocity operator, whereas ψ†(z) and ψ(z) are
the electron field operators taken in the spinor form. Using the expansion of ψ(z) in the
basis of scattering states (15) and carrying out quantum-mechanical averaging, one obtains
the following formula for the current

j = −ie ∑
n

∫ dk
2π

∫ dε

2π
eiεη Gn(k, ε) χ†

n(z) v̂ χn(z), (21)

where n is the index of scattering states (n = R ↑, R ↓, L ↑, and L ↓) and η = 0+. The
matrix elements of the velocity operator v̂ = −(i/m) ∂/∂z should be calculated in the basis of
scattering states, and the retarded Green function Gn(k, ε) in Eq. (21) is diagonal in this basis.
Using Eq. (21) in the limit of small deviation from equilibrium, one obtains the Landauer
formula for conductance, which takes into account the spin up and down channels

G =
e2

2πh̄

(
v↓
v↑

∣
∣tR↑

∣
∣2 +

∣
∣
∣t

f
R↑

∣
∣
∣

2
+

v↑
v↓

∣
∣tR↓

∣
∣2 +

∣
∣
∣t

f
R↓

∣
∣
∣

2
)

, (22)

where all the velocities and transmission coefficients are taken at the Fermi level.
For the thin domain wall, kF↑(↓)L ≪ 1, taking into account Eq. (15), one can write the
conductance in the form

G =
4e2

πh̄

v↑ v↓
(
v↑ + v↓

)2
+ 2λ2

(

v2
↑ + v2

↓
)

[(
v↑ + v↓

)2
+ 4λ2

]2
. (23)

In the limit of v↑ = v↓ and λ → 0, we obtain the conductance of a one-channel spin-degenerate

wire, G0 = e2/πh̄. In the regime of ballistic transport G0 is also the conductance of the system
without the domain wall.
Variation of the conductance G with the wall width L (Fig. 1) was calculated from Eq. (22),
with the transmission coefficients determined numerically. Thus, the results shown in Fig. 1,
are valid for arbitrary value of kF L. In the limit of kF L ≪ 1, the results shown in Fig. 1 coincide
with those obtained from the formula (23).
The conductance of magnetic nanowire in the presence of a domain wall is substantially
smaller than in the absence of the wall. Accordingly, the associated magnetoresistance can
be large. For example, for p = 0.9 in Fig. 1 the magnetoresistance is equal to about 70% (it
corresponds to G/G0 = 0.6). It should be noted that in magnetoresistance experiments on
magnetic nanowires, for which the inequality kF L < 1 is fulfilled, one can have more than one
domain walls. Accordingly, the magnetoresistance effect can be significantly enhanced.
In the case of strong polarization (p > pc) the main contribution to the conductance is
associated with the spin-flip transmission through the domain wall, and the conductance
increases monotonously with the width of the domain wall.
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Fig. 1. Conductance of the domain wall as a function of DW width L in a magnetic quantum
wire for different values of the parameter p = M/εF.

2.2.3 Spin current

When the electric current is spin polarized and when there is some asymmetry between the
two spin channels, the flow of charge is accompanied by a flow of spin (angular momentum).
The z-component of the spin current can be calculated from the following definition of the
corresponding spin-current operator (it is defined here as number of spins per unit time)
Ĵz(z) = 1

2 ψ†(z) {σz, v̂}ψ(z), which leads to the following average value

Jz(z) = −i ∑
n

∫ dk
2π

∫ dε

2π
eiεδ Gn(k, ε) χ†

n(z) σz v̂ χn(z). (24)

After carrying out the calculations similar to those described above for charge current, one
arrives in the linear response regime (limit of small bias voltage U ) at the following formulas
for the spin current Jz:

Jz(z < −L) =
eU

2πh̄

(
v↓
v↑

∣
∣tR↑

∣
∣2 +

∣
∣
∣t

f
R↑

∣
∣
∣

2
− v↑

v↓

∣
∣tR↓

∣
∣2 −

∣
∣
∣t

f
R↓

∣
∣
∣

2
)

, (25)

Jz(z > L) =
eU

2πh̄

(
v↓
v↑

∣
∣tR↑

∣
∣2 −

∣
∣
∣t

f
R↑

∣
∣
∣

2
− v↑

v↓

∣
∣tR↓

∣
∣2 +

∣
∣
∣t

f
R↓

∣
∣
∣

2
)

. (26)

Using Eq. (15) we find

Jz(z > L) = −8eU
π

λ2
(

v2
↑ − v2

↓
)

[(
v↑ + v↓

)2
+ 4λ2

]2
(27)

and Jz(z < −L) = −Jz(z > L). The magnetic torque due to spin transfer to the magnetic
system within the domain wall is determined by the non-conserved spin current

Tz(U) =
16eU

π

λ2
(

v2
↑ − v2

↓
)

[(
v↑ + v↓

)2
+ 4λ2

]2
. (28)
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It should be noted that spin-flip scattering due to DW does not allow to separate spin channels
like it was in the case for homogeneous ferromagnets. If we define now the spin conductance
as Gs

z = Jz/U , then one can write for z > 0

Gs
z = −8e

π

λ2
(

v2
↑ − v2

↓
)

[(
v↑ + v↓

)2
+ 4λ2

]2
. (29)

Thus, Gs
z is negative for z > 0 and positive for z < 0. In a nonmagnetic case we have v↑ = v↓

|
|

Fig. 2. Spin conductance of the wire with a domain wall as a function of DW width L for
different values of p = M/εF.

and therefore Gs = 0. In the case considered here, Gs = 0 when there is no DW in the
wire. Let us introduce the spin conductance for one (spin-up) channel only, Gs0 = e/2π.
The relative spin conductance in the presence of DW, Gs/Gs0, calculated using Eq. (25) and
with numerically found transmission coefficients, is shown in Fig. 2 as a function of the DW
width L and for indicated values of the parameter p. It corresponds to the spin current outside
the region of the domain wall. The spin current inside the wall is not conserved due to the
spin-flip transitions.
The nonzero spin current in a one-channel wire with domain wall is due to a difference in
spin-flip transmissions for spin-up and spin-down channels: the corresponding transmission
coefficient turns out to be larger for faster (majority) electrons.

2.2.4 Spin polarization due to domain wall

Spin dependent reflections from the wall lead to additional spin polarization of the system
near the wall. The distribution of spin density created by the wall can be calculated using the
basis of scattering states. The z-component of the spin density in the equilibrium situation
(U = 0) is

Sz(z) = −i ∑
n

∫ dk
2π

∫ dε

2π
eiεη Gn(k, ε) χ†

n(z) σz χn(z). (30)

492 Nanowires - Fundamental Research
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The above formula contains a constant part corresponding to the spin density in the absence
of DW, as well as the z-dependent part δSz(z) created by the wall,

δSz(z) =
1

π

∫ kF↑

0
dk rR↑ cos(2k↑z)− 1

π

∫ kF↓

0
dk rR↓ cos(2k↓z), (z < −L),

=
1

π

∫ kF↑

0
dk rL↑ cos(2k↑z)− 1

π

∫ kF↓

0
dk rL↓ cos(2k↓z), (z > L). (31)

>From (31) we infer that the spin density is an oscillating function of z. The spin dependent
reflections from the wall create spatial oscillations of the electron spin density. These
oscillations are similar to the Friedel oscillations of charge in a nonmagnetic metal. One
should point out that in addition to the above calculated spin polarization, there is also a
nonequilibrium spin polarization due to the current flowing through the system at U = 0
(Ebels et al. (2000)).

3. Spin quantum wells in magnetic nanowires

Let us consider now the magnetic nanowire with a magnetization profile exhibiting two
domain walls at a distance 2d. We assume that the magnetization M(z) in both DWs varies
within the x − z plane and the z axis is along the wire. Thus, now z is the easy axis, and the
x − z plane is the easy plane. We study the case where the thickness and the width of the
nanowire are smaller than the carrier Fermi wavelength so that only one size quantized level
(a single one-dimensional subband) is populated. The Hamiltonian describing independent
carriers along the wire in the presence of magnetization field M(z) is given by Eq. (14).
We are interested in the case where the width 2L of each DW is smaller than the carriers Fermi
wavelength, kF L ≪ 1 and particularly when kFd ≥ 1 (otherwise the carriers are not influenced
by the detailed topology of the DWs). For moderate carrier density the Fermi energy (chemical
potential μ) is in one of the magnetically split subbands. This case corresponds to a full spin
polarization of the electron gas. The electron wave functions are

ψk(z) =
(

eikz + r e−ikz
)

|↑〉+ r f eκz |↓〉 , z < −d, (32)

ψk(z) =
(

A eκz + B e−κz) |↑〉+
(

C eikz + D e−ikz
)

|↓〉 , |z| < d, (33)

ψk(z) = t eikz |↑〉+ t f e−κz |↓〉 , z > d, (34)

where |↑〉 (|↓〉) is the spin-up (spin-down) component of the carrier states, k = [2m(ε +
JM)]1/2, and κ = [2m(JM − ε)]1/2. The electron energy ε is measured from the midpoint
in between spin-up and spin-down band edges. The non-spin-flip (spin-flip) transmission
and reflection coefficients t and r (t f and r f ) as well as the constants A, B, C and D
have to be deduced from the solutions of Schrödinger’s equation and from the continuity
requirements. Equations (32)-(34) describe spin-up carriers incoming from the left, being
transmitted and reflected from the double DW structure into waves with the same or opposite
spin polarizations with a subsequent decay of the spin-down part of the wave function.
To determine the unknown coefficients in Eqs. (32)-(34) we utilize the wave function
continuity at z = ±d, i.e.

1

2m

(
dψk

dz

∣
∣
∣
∣
z=−d+L

− dψk

dz

∣
∣
∣
∣
z=−d−L

)

+ λ σx ψk(−d) = 0, (35)
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where

λ ≃ J
∫ −d+L

−d−L
dz Mx(z) ≃ 2JML. (36)

Similar equation holds for z = d. The boundary conditions at z = ±d (eight equations for the
spinor components) define all the coefficients.

Fig. 3. Conductance as a function of the spin quantum well width for different values of the
magnetization M.

For a physical insight into the results one can inspect the limiting case of ∆ = 4mJML = 0,
where no spin-flip transitions occur at the DW. Correspondingly, only spin-up electrons tunnel
through the barrier. Then the standard formula for barrier tunnelling

t = 2ikκ e−2ikd[2ikκ cosh (2κd) + (k2 − κ2) sinh (2κd)]−1 (37)

can be easily retrieved. The corresponding contribution to the conductance is very small, and
for κd ≫ 1 it can be completely neglected. The spin-down electrons are localized within
the spin quantum well. One can find a symmetric solution with r f = t f corresponding
to a localized state with the wave vector k and obeying the relation tan kd = κ/k. The
antisymmetric solution for such k (with r f = −t f ) satisfies the equation tan kd = −κ/k. When
the distance d between the DWs is varied the energetic positions of the size-quantized levels
within the well are shifted. For certain values of d the energy of the localized states within the
well coincides with the Fermi level. Thus, if the spin-mixing amplitude is finite (i.e. ∆ = 0)
we expect spin-up carriers to transverse resonantly the DWs. It is important to note that when
∆ = 0, the aforementioned localized spin-down states turn quasi stationary with a finite decay
width Γ = 1/τ ∼ |t f |2, where τ is the life time of these quasilocalized states. The parameter
|t f | is controllable, e.g. by changing the parameters of the DWs.
In the regime of a linear response the conductance of the nanowire is determined by
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G =
e2

2π
|t(ε = μ)|2 . (38)

Using this relation one calculates the variation of the conductance G with the DWs distance 2d
for several values of the magnetization M. The conductance shown in Fig. 3 exhibits narrow
resonance peaks corresponding to those values of d at which a quasi-discrete, size-quantized
level coincides with the Fermi energy. The effective barrier created by the DWs is basically
transparent at the conductance peak. The width of the resonance peaks is related to the
life time τ of the quasi-stationary spin-well states, and is determined by the spin-mixing
mechanism mentioned above (and specifically by |t f |). The strength of spin mixing, and
hence the width of the resonance peaks, can be controlled, e.g., by varying the width L of the
DWs. Decreasing the spin-mixing parameter ∆ = 4mJML, the life time of the localized spin
quantum-well states increases and the conductance resonance peaks become correspondingly
narrower. The energetic positions of the quasi discrete levels depend also on the parameters ∆

and d. This results in a slight shift of the resonance positions when changing L. Experimentally
the Fermi level position can be shifted by electrically gating the whole structure. In this case,
the resonance conductance peaks occur as a function of the gate voltage for a fixed distance
between the DWs.
The presented calculations are valid for d ≪ Le, where Le is the decoherence length. Taking
into account the decoherence effects, one expects that the double DWs resistance in this limit
to be the sum of resistances of the individual DWs.
By gating the structure one can tune the Fermi energy and manipulate the spin density. For
an experimental verification we note that spin-density modulations can be imaged with a
sub nanometer resolution using spin-polarized scanning tunneling microscopy. The extreme
sensitivity of the conductance to the inter-walls distance can be used to identify the relative
position of the DWs.

4. Influence of electron-electron interactions

4.1 Thin domain walls

Now we consider quasi-one-dimensional magnetic nanowire with the domain wall taking
into account the electron-electron interaction. This interaction is important at very low
temperatures, and it can affect dramatically the charge and spin transport. We assume that
the wire lies along z axis, and the domain wall is centered at z = 0. Its space modulation is
described by M(r). Assuming M(r) to lie in the xz plane, and the domain wall to be thinner
than the Fermi wavelength, we write the single-particle Hamiltonian as

H0 = − 1

2m
d2

dz2
+ Vδ(z) + JMz(z)σz + λδ(z)σx , (39)

where V is a potential scattering term that has been added for the sake of generality. The

electron wavevector in each domain is related to the energy E by k = [2m(E ± JM0)]
1/2.

The electron gas in the negative semi-axis (z < 0) is predominantly ↑-spin. An electron
incident from the left with the momentum k and spin ↑ (or ↓) can be transmitted to
the positive semi-axis while preserving its spin, but the energy conservation requires the
momentum to change from k to k− (or k+), the latter being defined as a function of k as

k± =
(
k2 ± 4mJM0

)1/2
. If the transmission occurs with spin reversal, the momentum k is

not changed.
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Using the scattering states relevant to the problem, in the form of equation (15), one can easily
find the scattering amplitudes for electrons incident from z = −∞:

t↑,↓(k) =
2(v + v∓ + 2iV)v

(v + v∓ + 2iV)2 + 4λ2
= r↑,↓(k) + 1 , (40)

t f
↑,↓(k) =

4iλv
(v + v∓ + 2iV)2 + 4λ2

= r f
↑,↓(k) , (41)

where the velocities v± = k±/m. This is simply a generalization of equation (18) including
now the potential scattering. These scattering amplitudes can be viewed as zero order with
respect to the electron-electron interaction. Analogously one can determine the scattering
states and amplitudes corresponding to the waves incident from +∞.
The electron interactions are modeled by adding the following term to the Hamiltonian:

Ĥint = g1,α,β

∫ dk1dq
(2π)2

a†
k1,αb†

k2,βak2+q,βbk1−q,α + g2,α,β

∫ dk1dq
(2π)2

a†
k1,αb†

k2,βbk2+q,βak1−q,α , (42)

where the coupling constants g1 and g2 describe back and forward scattering processes
between opposite moving electrons, respectively. We make use of field operators describing
right (âqσ) and left (b̂qσ) moving plane-wave states. The Greek indices denote spin, and the
summation over repeated indices is implied. Since the Fermi momentum depends on spin, we
allow for the dependence of g on the spins of the interacting particles. We therefore distinguish
between g1↑, g1↓ g1⊥ and g2↑, g2↓, g2⊥. The forward scattering process between particles
which move in the same direction will not affect the transmission amplitudes, although it will
renormalize the Fermi velocity (Matveev et al. (1993)). This effect is equivalent to an effective
mass renormalization, and the electrons with different spin orientations may turn out to have
different effective masses.
The Hamiltonian terms (42) produce corrections, in first order of perturbation theory, to the

scattering amplitudes, which we denote, for example, as δt( f )
↑ , δr( f )

↑ . If the bandwidth is D,

and the energy of the scattered electron, ǫ, approaches the Fermi level (ǫ → 0) then these
corrections diverge logarithmically as log(|ǫ|/D0) (Matveev et al. (1993)) and are dealt with
in a poor man’s renormalization method, which works as follows. The bandwidth D is
reduced step by step and such removal of states near the band edge is compensated by a
renormalization of t↑. The problem of working out the first order perturbative corrections to
the amplitudes is repeated for each new bandwidth with renormalized scattering amplitudes.
Noting that t↑+ δt↑ remains invariant as D is reduced, one finds the following renormalization
group differential equation:

dt↑ +
∂ δt↑
∂D

dD = 0 ,

and analogous equations for all the other scattering amplitudes. The bandwidth is
progressively reduced from D0 to |ǫ′| (which will eventually be taken as temperature |ǫ′| = T).
Then the scaling equations for the transmission amplitudes can be found Araújo et al. (2006)
and solved in the vicinity of some fixed points. The nature and location of fixed point are
determined by some combination of initial coupling constants in (42). In our analysis they are
the interaction parameters g↑, g↓ and g⊥, which are defined as follows:
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g2↑ − g1↑
4hvF+

= g↑ , (43)

g2↓ − g1↓
4hvF−

= g↓ , (44)

g2⊥
2h(vF+ + vF−)

= g⊥ , (45)

where vF−, vF+ are the Fermi velocities of spin minority and spin majority electrons,
respectively.
For repulsive e-e interactions the system flows to fixed points where it is an insulator. The

fixed point where |rσ| → 0 is attained when 2g⊥ − g↑ − g↓ > 0, in which case |r f
↑ | →

√

vF+/vF−. The reflection coefficient with spin reversal depends on temperature as:

R f
↑(T) =

vF−
vF+

|r f
↑ |

2 =

R f
↑,0

1−R f
↑,0

(
T

D0

)2(g↑+g↓−2g⊥)

1 +
R f

↑,0

1−R f
↑,0

(
T

D0

)2(g↑+g↓−2g⊥)
, (46)

where R f
↑,0 and is a constant equal to the reflection coefficient for non-interacting electrons.

It is easily seen that when 2g⊥ − g↑ − g↓ > 0, then R f
↑(T) → 1 as T → 0. The domain wall

becomes insulating. It reflects all incident electrons while reversing their spin. Therefore,
such a DW may be considered as a perfect spin-flip reflector at zero temperature. In order to
find the low T behavior of transmissions we put r↑ = r↓ = 0 in the renormalization group

equations and obtain |t↑| ∼ |t f
↑ | ∼ |t f

↓ | ∼ T2g⊥ .

In the regime where g↑ + g↓ − 2g⊥ > 0 we have R f
↑(T) → 0, R↑(T) → 1. So, the domain wall

reflects all incident electrons while preserving their spin. For the transmission amplitudes we

can obtain: |t↑| ∼ Tg↑+g↓ , |t f
↑ | ∼ T2g↑ , and |t f

↓ | ∼ T2g↓ .

If g↑ + g↓ − 2g⊥ = 0 then both R f
↑(T) and R↑(T ) tend to finite values.

Zero temperature fixed points corresponding to the transparent domain wall can be achieved
when the interaction constants are all negative, and that corresponds to an attractive
electron-electron interaction. The reflection coefficients vanish under scaling as powers of
temperature. If some of the interaction constants are positive and the others negative, the
situation becomes more complex. We now describe several possible situations for the case
V = 0 in the Hamiltonian (39).
If g↑, g↓ > 0, g⊥ < 0 then the system flows to the fixed point r↑ = r↓ = −1 with all other
amplitudes vanishing. The low-T behavior of the transmission can be found as |t↑| ∼ Tg↑+g↓ ,

|t f
↑ | ∼ T2g↑ , and |t f

↓ | ∼ T2g↓ . For r f
↑ , one finds r f

↑ ∼ Tg↑+g↓−2g⊥ , therefore we must have

g↑ + g↓ − 2g⊥ > 0 in order for r f
↑ → 0.

In the case of g↑, g↓ < 0, g⊥ > 0 the system flows to the perfect spin-flip reflector fixed point

|r f
↑ | =

√

vF+/vF− with all other amplitudes vanishing.

In the case of g↑ > 0, g↓ < 0 and for negative or small positive g⊥, the system flows to a fixed

point where |t f
↓ | = 1, r↑ = −1. The wall transmits all spin-down particles with a spin-flip and
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reflects all spin-up particles. The exponents for the transmission amplitudes are |t↑| ∼ Tg↑

and |t f
↑ | ∼ T2g↑ .

When g↑ < 0 and g↓ > 0, the situation is analogous to the previous one. For negative or

small positive g⊥ the system flows to a fixed point where |t f
↑ | = 1, r↓ = −1 with all the other

amplitudes vanishing. The wall transmits all spin-up particles with a spin-flip and reflects all

spin-down particles. The exponents for transmission amplitudes are |t↑| ∼ Tg↓ , |t f
↓ | ∼ T2g↓ .

Thus, we identified possible fixed points corresponding to (i) perfectly insulating wall (with
or without complete spin reversal), and (ii) transparent wall. In any case, the electron electron
interaction changes completely the transport through the domain wall at sufficiently low
temperatures and may in some cases suppress charge transport without suppressing spin
current. These results may account for a huge magnetoresistance associated with a domain
wall in ballistic nanocontacs.

4.2 Thick domain walls

Electron-electron correlations play also role in the case of thicker domain walls (Sedlmayr
et al. (2011)). Starting from equation (1), with an additional short range interaction HI
similar to equation (43), one can again make the gauge transformation, equations (2)-(5). This
gauge transformation allows one to linearize the problem around the spin-split Fermi points
and hence use the standard technique of bosonization. After this gauge transformation the
interaction is left unaffected, the magnetization is locally rotated to a Zeeman term, and the
kinetic energy operator introduces a new potential when it acts on the local rotation:

H = ∑
σ

∫

dzψ†
σ(z)

[

− 1

2m
∂2

z − JMsσz
σσ − μ

]

ψσ(z) + HI + Hw (47)

Hw = − 1

2m ∑
σσ′

∫

dzψ†
σ(z)

[
iϕ′(z)σx

σσ′∂z +
iϕ′′(z)

2
σx

σσ′ − 1

4
[ϕ′(z)]2δσσ′

]
ψσ′ (z). (48)

ψ†
σ(z) is a creation operator for an electron of spin σ at a position z in the wire. The gauge

potential Hw can be approximated if we assume that the Fermi wavelength is much smaller
than the domain wall width λF ≪ L. In this case only the first term of equation (48) is relevant,
the next two terms are of order (λF/L)2. The next step is linearization via the ansatz ψσ(z) =
eikFσ xψσ+(z) + e−ikFσ xψσ−(z), where kFσ =

√

2m(εF ± JM). The + and − indices denote the
chiral right and left moving electrons respectively. The interaction HI can be decomposed into
spin parallel and spin perpendicular components which, when suppressing the spatial indices
and defining the local density ρσ± = ψ†

σ±ψσ±, can be written as

H2 = ∑
σ,r=±

∫

dz
[ g2‖σ

2
ρσrρσ−r +

g2⊥
2

ρσrρσ̄−r

]

, (49)

H4 = ∑
σ,r=±

∫

dz
[ g4‖σ

2
ρσrρσr +

g4⊥
2

ρσrρσ̄r

]

(50)

H1 = ∑
σ,r=±

∫

dz
[

−
g1‖σ

2
ρσrρσ−r +

g1⊥σ

2
e2iz(kFσ̄−kFσ)ψ†

σrψ†
σ̄−rψσ̄rψσ−r

]

. (51)

Umklapp processes scattering two left movers into right movers and vice versa are always
neglected here due to the non-commensurate nature of the Fermi wavevectors.
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This fermionic model can now be bosonized (Penc et al. (1993)). Two adjoint bosonic fields are
introduced which can be defined by the vertex operator

ψσr(z) =
1√
2πα

e−i
√

π[θσ(z)−rφσ(z)]. (52)

These bosonic fields satisfy [φσ(z), Πσ(z′)] = iδ(z − z′) where Πσ(z) = ∂yθσ(z). Despite
the absence of spin-charge separation, due to the spin-split bands, we will use the spin and
charge representation as it conveniently represents the scattering terms. Defining φc,s(z) =

[φ1(z) ± φ2(z)]/
√

2 (and similar for the θc,s(z) fields) gives us for the quadratic part of the
bosonic Hamiltonian

Hq =
∫

dz
[

[∂zθc(z)]2
vcKc

2
+ [∂zθs(z)]2

vsKs

2
+ [∂zθc(z)∂zθs(z)]va

+[∂zφc(z)]2
vc

2Kc
+ [∂zφs(z)]2

vs

2Ks
+ [∂zφc(z)∂zφs(z)]vb

]

. (53)

Ks and Kc are the spin and charge Luttinger parameters. va and vb describe the coupling
between the spin and charge sectors. These parameters are functions of the interaction
strengths and Fermi velocities. This quadratic Hamiltonian contains all of the quartic
fermionic interaction terms except for g1⊥σ.

The final bosonic Hamiltonian is H = Hq + H1⊥ + H f
w + Hb

w where

H f
w =

kF↑ + kF↓
2mπα

∫

dz
sech[z/L]

L
sin[

√
2πθs(z)] sin[z(kF↑ − kF↓) +

√
2πφs(z)] (54)

Hb
w =

kF↑ − kF↓
2mπα

∫

dz
sech[z/L]

L
sin[

√
2πθs(z)] sin[−z(kF↑ + kF↓) +

√
2πφc(z)] (55)

H1⊥ =
2

(2πα)2

∫

dz cos[2
√

2πφs(z)]
[
g1⊥↑e−2iz(kF↑−kF↓) + g1⊥↓e2iz(kF↑−kF↓)

]
. (56)

We have both forward and backward scattering terms, H f
w and Hb

w respectively. We also find
an oscillating sine-Gordon interaction term H1⊥, describing “slow” Umklapp processes which
are not averaged out. The normal modes of this SU(2) asymmetric model have no clear
physical interpretation, in contrast to the non-spin split case in which they represent pure
spin and charge modes. The Hamiltonian of equation (53) can be diagonalized to find the
appropriate normal modes.

Standard renormalization group analysis on the scattering Hamiltonians H1, H f
w and Hb

w
yields the scaling equations of the form

dg1⊥σ

dl
= g1⊥σ[2 − γ1]. (57)

γ1, and also the γ f ,b used below, are known, but rather complicated, functions of vFσ, g2‖σ,
g2⊥, g4‖σ, g4⊥, g1‖σ, and g1⊥σ which can be found in the appropriate references. This first
term is an irrelevant perturbation for any realistic microscopic model. Next we define the
bare scattering coupling constants g f /b ≡ kF↑ ± kF↓. For forward and backward scattering we
find:
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dg f ,b

dl
= g f ,b[2 − γ f ,b]. (58)

In this case we find a relevant forward scattering term. However, the backward scattering
term can be either relevant or irrelevant depending on the particular microscopic model
used. If backward scattering is relevant then we find the usual spin-charge gapped insulating
behaviour of an impurity in a Luttinger liquid. However, if only the forward scattering is
relevant the spin mode is gapped, but the charge mode remains ungapped (C1S0 phase).
Physically, this means that electrons no longer undergo a change of spin on passing through
the domain wall. The spin of the conduction electrons becomes locked.
Due to the extended nature of the domain wall we must consider a hierarchy of length scales,
as well as the relevance of the renormalized operators. Let us define λ± = (kF↑ ± kF↓)−1,
which are the relevant lengthscales for the forward and backward scattering components.
From the above considerations we have several possibilities. Firstly we can have backward
scattering as either relevant or irrelevant. Secondly we must take into account the relative
length scales. If λ+ < L then at some stage of the renormalization process (i.e. when the
appropriate length scale cut-off becomes of order λ+) the backward scattering terms will
become small due to averaging over their oscillations. A similar case holds for the forward
scattering with λ+ → λ− in the preceding. For the case in which both the forward and
backward scattering lengthscales are shorter than the domain wall length we end up in the
completely adiabatic limit as one would expect. However we can also be in the opposite
regime when both forward and backward scattering lengthscales are longer than the domain
wall length in which case one need only consider the relevancy of the appropriate operators.
Note that this is possible without requiring a delta function like domain wall profile. In
addition we can of course be in the intermediate regime where the backward scattering is
prone to this averaging out, but the forward scattering is not. As such the low temperature
fixed point depends not only on the relevance of the operators, but also on the hierarchy
of length scales, and leaves three possibilities: firstly a spin-charge insulator, secondly a
spin gapped charge conducting phase, and thirdly a ferromagnetic Luttinger liquid with an
adiabatically behaving domain wall.

5. Current-induced interaction of multiple domain walls

Now consider the Hamiltonian of a one-dimensional wire in a spatially non-uniform
magnetization profile M(z)

H =
∫

dz ψ†
α(z)

[

− ∂2
z

2m
δαβ − J σαβ · M(z)

]

ψβ(z), (59)

and apply the local gauge transformation as described in Sec. 1. The transformed Hamiltonian
can be presented as

H =
∫

dz ψ†
α(z)

[

− ∂2
z

2m
δαβ + Uαβ(z)− JMσz

αβ

]

ψβ(z) (60)

where the DW-induced perturbation is

U(z) = − 1

2m

[

2A ∂z + (∂z A) + A2
]

, (61)
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and A(z) = T†(z)∇z T(z) is a gauge potential. For a wire with two DWs we can parametrize
the magnetization profile by the angles ϕ(z) and θ(z) (see Fig. 4)

n(z) =
(

cos θ sin ϕ, sin θ sin ϕ, cos ϕ
)
, (62)

ϕ(z) = cos−1
(

tanh
[ z

L

])

︸ ︷︷ ︸

=−ϕ1(z)

+ cos−1
(

tanh
[ z − z0

L

])

︸ ︷︷ ︸

=−ϕ2(z)

. (63)

The angle θ(z) describes the relative orientation between the wall pinned at z = 0 and the
other situated around z = z0. We set θ1 to zero at the first wall and θ2 = θ0 around the second.
For θ0 = π the walls are antialigned. For z0 ≤ L DWs may merge, hence we consider the case
z0 > L for which we may write U(z) ≈ U1(z) + U2(z), where (j = 1, 2)

Uj(z) =
[ϕ′

j(z)]
2

8m
+ iσy

[ ϕ′′
j (z)

4m
+

ϕ′
j(z) ∂z

2m

]

cos θj − iσx
[ ϕ′′

j (z)

4m
+

ϕ′
j(z) ∂z

2m

]

sin θj. (64)

This approach is generalizable to any number of DWs, which are sufficiently far apart. For

kF L ≥ 1, i.e. when M(z) hardly varies within k−1
F (adiabatic DW), the terms in Eq. (64)

proportional to ϕ′′
1 (z) are negligibly small and the perturbative approach is appropriate for

treating the electron scattering from the DWs potential (Eq. (64)). In fact, it can be shown
that this approach is justifiable even for kF L = 1. Assuming ψ0(z) to be the wave function of
an independent electron with energy ε in the wire without the DWs, we find the first-order
correction due to the perturbation U1(z), i.e. due to scattering from the first DW, as

δψε(z) =
∫ ∞

−∞
dz′ Gε(z, z′)U1(z

′)ψ0(z′). (65)

The Green’s function Gε corresponds to the unperturbed Hamiltonian with U(z) = 0. It is
diagonal in spin space with elements

Gεσ(z, z′) = − im
kσ

eikσ |z−z′ |, (66)

where kσ ≈ k0
σ + i

2τσ

m
k0

σ
for lifetimes τσ ≫ ε−1

F , and k0
σ = [2m (ε + μ ± JM)]1/2. Hence

δψε↑(z) =
∫ ∞

−∞
dz′

⎛

⎝
− i

8k↑
eik↑ |z−z′ |[ϕ′

1(z)]
2 eik↑z′

− k↑
2k↓

eik↓ |z−z′ | ϕ′
1(z) eik↑z′

⎞

 (67)

δψε↓(z) =
∫ ∞

−∞
dz′

⎛

⎝

k↓
2k↑

eik↑ |z−z′ | ϕ′
1(z)] eik↓z′

− i
8k↓

eik↓ |z−z′ | [ϕ′
1(z)]

2 eik↓z′

⎞

 (68)

for incoming electrons of spin up and down, respectively. The interaction energy of the two
DWs due to the single scattered state ψεσ(z) = ψ0

εσ(z) + δψεσ(z) is calculated as

∆Eσ =
∫ ∞

−∞
dz δψ†

εσ(z)U2(z) δψεσ(z). (69)
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zx
y

s0

I

L

z0

Fig. 4. Top panel: A schematics showing the DWs magnetization profile (thick arrows). L is
the DW width, z0 and θ0 are respectively the DW position and orientation with respect to the
DW at z = 0, I is the current. Lower panel: Interaction energy ∆E(z0, θ0) as a function of z0

and θ0. Solid curve is for z0 = 3.67 nm, the dashed is for z0 = 4.13 nm, and the dotted is for
z0 = 4.40 nm.

Summing up the contributions of all scattering states in the energy range between εF and
εF + e∆φ/2, for an applied voltage e∆φ/2 ≪ εF, we obtain the current-induced coupling of
the DWs as

∆E =
e∆φ√

2π

(
∆E↑
v↑

+
∆E↓
v↓

)

, (70)

where vσ = k0
σ/m is the velocity of electrons at the Fermi level.

Figure 4 shows the dependence of the coupling energy ∆E as a function of distance z0 and
relative angle θ0 of the second DW. In the calculations we used the parameters: λF = 0.367 nm

(Fe), τ−1
σ = 10−9εF, L = λF, JM = 0.2 εF, εF = 11.2 eV, and e∆φ = 0.01εF corresponding to

an applied voltage of 112 meV. As we see, the interaction energy depends periodically on the
DWs mutual angle θ0 and distance z0, which results in an oscillating motion of the DW along
the axis z as well as an oscillating direction of DW polarization.
Now we focus on the effect of DW scattering on the electron spin density, leading to a
nonequilibrium spin accumulation and to a spin torque acting on the wall. Subsequently,
we study the dynamics of the DW related to the DW coupling. The spin-density due to the
single transmitted wave of spin σ is

Sσ(z) = ψ†
εσ(z) T(z)σ T†(z)ψεσ(z), (71)

and the total current-induced spin density is

S(z) =
e φ

2π

(
S↑
v↑

+
S↓
v↓

)

. (72)
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Fig. 5. The time dependence of the magnetization with the initial condition for the second
wall to be at an angle of θ0 = π/4 to the first wall. This is the solution to Eq. 74 with
M ≈ 5.56 × 104Am−1. The solid curve is the x-component, dashed the y-component, and
dotted the z-component. Taken at the centre of the domain wall.

We find that the correction to the spin density follows the magnetization profile with

additional Friedel oscillations, which are a superposition of two waves with periods k−1
F↑ and

k−1
F↓ . The oscillations in the spin density are smaller in magnitude than the overall spin density

profile. One can also calculate the current-induced torque acting on the second DW at z from

∆T(z, z0, θ0) = − γJ
σcs

M(z, z0, θ0)× ∆S(z, z0, θ0), (73)

where γ = gμB, g is the Landé factor and μB is the Bohr magneton. The results of numerical
calculations show that the force upon one of the DWs from the other one depends strongly on
their relative polarizations.
Thus, the current through a magnetic nanowire containing DWs results in a DW interaction
mediated by the scattered charge carriers. We developed a method for calculating the
interaction energy and the consequences of this new coupling mechanism. The DWs
interaction energy oscillates as a function of the DWs mutual orientation and distance. This
has immediate consequences on how DWs rearrange upon applying a bias voltage and on
the fundamental limit of the DWs packing density. In fact, different parts of the DW oscillate
at different rates and in different ways: becoming more regular, smaller, and quicker away
from the DW centre. This effect will be modified by the exchange interaction for longer
domain walls, where there is an obvious limit to how much one can distort the domain wall
before the energy costs becomes too high. The nonequilibrium DWs oscillations around the
energy minima generates radiation with a frequency dependent on the applied bias voltage,
DW length and scattering strength. These parameters are externally tunable for utilizing the
interacting DWs as a versatile radiation source.
The effect of the modified spin density, which is the cause of the current induced interaction
between the DWs, on the motion of the DW can be found using the standard Landau-Lifschitz
equation (Lifschitz (1980)). To inspect the current-induced dynamics of the DW at z = z0, we
evaluate the accumulated spin density that acts on the DW at z = z0. Thus for a relatively
sharp domain wall which can be effectively treated as a magnetic moment we have only to

503Charge and Spin Transport in Magnetic Nanowires

www.intechopen.com



20 Will-be-set-by-IN-TECH

solve, at z = z0:

∂tM = − γJ
σcs

M × S[M]. (74)

As an initial condition we assume that the magnetization profile in the wire without electric
current is described by Eq. (63). The results for the time dependence of the magnetization are
shown in Fig. 5 for the centre of the DW, z = z0. We should note that the relative orientation of
the walls at the start of motion does play a role in the type of motion we see. Here we present
it for an arbitrary configuration, θ0 = π/4. The DW motion is a result of the excess spin
torque generated by the first DW, which is felt as an effective applied magnetic field. As such
precession, as demonstrated in Fig. 5, is precisely what one would expect. The crucial point
is that the characteristics of this precession depend upon the distance between, and relative
orientation of, the two DWs.
The extension of our analysis to include the effects of magnetic anisotropy is straightforward,
and constrains the motion in the appropriate direction. If one also wishes to consider the
motion of a longer domain wall it is no longer possible to neglect the exchange interaction. In
such a scenario one still finds distortion of the domain wall, but due to the extended nature
of the spin density correction, it cannot produce any coherent motion. However, when one
considers current induced motion (Zhang et al. (1980)) these spin density terms can allow
for motion with smaller applied currents. This spin density takes on the role of an applied
magnetic field, which is well known to ease the current induced motion of domain walls.

6. Conclusions

Using the presented models of electrons moving in a spatially varying magnetization field,
one can study the properties of magnetic domain walls in magnetic nanowires. This allows for
the calculations of charge and spin currents, current-induced spin torque, and current-induced
interactions in magnetic nanowires. These are characteristics that strongly depend on
the presence of domain walls. Our considerations were predominantly concentrated on
very thin domain walls, where presence of a domain wall may affect very strongly the
transmission of electrons in nanowires. Experimentally such thin domain walls can appear
for instance in nanoconstrictions (Bruno (1999)). Domain walls in magnetic semiconductors
with relatively low carrier density can be considered as thin because the electron wavelength
in semiconductors λ is usually of the same order of magnitude or larger than the width of the
walls.
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