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1. Introduction  

For detection of diverse biomolecules, researchers have developed a wide variety of 
biosensors, using, for example, fluorescent imaging (Oh et al., 2005), piezoelectric properties 
(Yang et al., 2006), nano-mechanical properties (Fritz et al., 2000), electrochemical properties 
(Drummond et al., 2003), conducting properties (Reed et al., 1997; Cui et al., 2001; Patolsky 
et al., 2007), and so on. Although some of these techniques show ultra-high sensitivity, they 
require labelling processes for analytes or bulky and expensive equipment for measurement. 
Label-free detection without necessity of an external apparatus is important in point-of-care 
testing (POCT) devices (Kost et al., 1999; St-Louis 2000; Tierney et al., 2000), which enable 
fast and easy on-site detection of biomolecules for health monitoring. 
In terms of integration with peripheral CMOS circuitry for realizing a more affordable 
POCT system, biosensors based on a field-effect transistor (FET) scheme have notable 
advantages (Schöning & Poghossian, 2002). Hence, FET-based biosensors have been actively 
studied (Begveld, 2003; Schöning & Poghossian, 2002) since the first report of an ion-
sensitive solid-state device (Begveld, 1970). In most FET-based biosensor devices (Schöning 
& Poghossian, 2002; Kim et al., 2006; Sakata et al., 2007), variation of threshold voltage on a 
scale of tens of mV was obtained in the detection of biomolecules, and the fabrication 
process was not fully compatible with conventional CMOS technology. Recently, our group 
reported a new concept for a FET-based biosensor utilizing dielectric constant change inside 
nanogaps embedded in a FET device (Im, H. et al., 2007). 
In our previous work (Im et al., 2011), we successfully detected the antigen and antibody of 
avian influenza (AI), which can cause human fatality. Avian influenza antigen (AIa) and 
antibody (anti-AI) showed a large degree of signal change (i.e. a high signal-to-noise ratio) 
with a fabricated nanogap-embedded separated double-gate field effect transistor (hereafter 
referred to as “nanogap-DGFET”), shown in Fig. 1 (Im et al., 2011). Fig. 2 shows scanning  
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Fig. 1. (a) Schematic diagram of a nanogap-embedded separated double-gate field effect 
transistor (nanogap-DGFET). (b) Magnified view of the nanogap near the drain and gate 2. 
Dotted box conceptually shows immobilized avian influenza antigen conjugated with silica 
binding protein (SBP-AIa) (Gu et al., 2009) and avian influenza antibody (anti-AI) inside the 
nanogap. Reprinted with permission from (Im et al., 2011) © Copyright 2011 IEEE. 

 

 

Fig. 2. Scanning electron microscopy images of the fabricated device. (a) Top view of 
nanogap-embedded seperated double-gate filed effect transistor. The width (W) and the 
length (L) of this transistor are 150 nm and 1μm, respectively. (b) Cross-sectional view of a 
nanogap in test pattern. The width of nanogap is 30 nm. 

electron microscopy (SEM) images of the fabricated nanogap-DGFET device. Large signal 

change is a desirable feature in a handheld size apparatus for POCT application (Tierney et 

al., 2000). Moreover, the electrical signal of the nanogap-DGFET biosensor does not depend 

on the Debye length (Siu & Cobbold, 1979), which is a function of the ionic strength of the 

sample solution (Schöning & Poghossian, 2002). This is because the nanogap-DGFET devices 
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are measured in a quasi-dry state, and the detection principle is based on the permittivity 

change rather than charge effect of biomolecules. On the other hand, the electrical signal of 

FET biosensors changes significantly with the ionic concentration of the sample solution 

(Stern et al., 2007). For general POCT application, it is not easy to control the ionic 

concentration precisely with any real human sample, such as blood serum, urine, or saliva. 

Therefore, this feature of Debye-screening-free sensing is another advantage of the nanogap-

DGFET, together with moderate sensitivity and large signal change (Im, H. et al., 2007; Gu et 

al., 2009). 

In studies of nanogap-based biosensors (Haguet et al., 2004; Yi et al., 2005), it is very 

important to understand the fluidics in the nanogap (Brinkmann et al., 2006) because most 

biomolecules are immobilized and coupled inside a nanogap immersed in a water-based 

solution. In order to examine the fluidic characteristics in the nanogap of nanogap-DGFET 

devices, theoretical calculations and numerical simulations are performed in this study. 

Three-dimensional simulation results dynamically visualize the process of liquid filling the 

nanogap. 

2. Fluidics in the nanogap of the nanogap-DGFET 

The mechanism by which the nanogap is filled with the sample solution is an important 

aspect of the nanogap-DGFET. In the wet etching process of the nanogap, the liquid fills the 

nanogap by chemically-assisted injection of liquid, i.e. the nanogap is filled with a diluted 

fluoric acid solution while being etched (Im et al., 2011). The SEM image in Fig. 2(b) clearly 

shows the resultant nanogap structure from wet etching. However, in real experiments for 

the detection of biomolecules, the sample solution containing analytes should enter the 

nanogap for immobilization of biomolecules such as DNAs, antibodies, antigens, and so on. 

If the nanogap cannot be wetted by the sample solution, the nanogap-DGFET cannot be 

used as a biosensor. Filling the nanogap with the solution presents challenges, as the gap is 

initially filled with air before applying the sample solution and is in a nanometre dimension, 

and thus the surface tension of the liquid has significant effects. 

As performed in a previous work (Brinkmann et al., 2006), it is worthwhile to estimate the 

fluidic properties inside the nanogap of the nanogap-DGFET with a simplified model and 

theoretical calculations before three-dimensional simulation results are discussed. 

2.1 Capillary pressure in the nanogap 
The liquid is expected to be injected by capillary force rather than by gravity into the 

nanogap of the nanogap-DGFET owing to the nanometre scale of the gap. Therefore, 

capillary pressure inside the nanogap is an essential aspect of the fluidic behaviour of the 

sample solution that will be loaded in the nanogap. This section discusses modelling and 

computation of the capillary pressure inside the nanogap. 

Fig. 3 is a schematic illustration showing notations of symbols used in the modelling and 

calculation. The sample solution in the nanogap can be modelled as shown in Fig. 4. It is 

apparent that the entire region except for the nanogap will become wet immediately after 

introduction of the sample liquid on top of the device, because the exposed surface of the 

nanogap-DGFET is a native oxide, which is hydrophilic. If the nanogap is initially filled with 

air, we can assume that two sidewalls (i.e. gate side and channel side) in the nanogap are 

native oxide and the other two sidewalls are water applied to the system. Therefore, the 
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capillary pressure (ΔP) inside the nanogap (shown in Fig. 4) with the sample solution of 

water can be expressed as the following equation (Im, M. et al., 2007): 

 
2

2 2
cos cosSiO waterP

G L
γ θ γ θΔ = +  (1) 

where γ  is the liquid surface tension of the sample solution, θSiO2 is the contact angle of 

silicon dioxide, θwater is the contact angle of water (full wetting), G is the width of the 

nanogap, and L is the length of the nanogap, as shown in Fig. 3 and Fig. 4. For the sample 

solution of water, capillary pressures estimated with Equation (1) are plotted in Fig. 5. In the 

case of nanogap length of 1μm, the capillary pressure (ΔP) is about 3.38MPa. 

 

 

Fig. 3. Schematic diagram showing notation of symbols used in calculations and 
simulations. 

2.2 Theoretical calculation of the nanogap filling depth 
The sample solution continues to enter the nanogap if the capillary force is larger than the 

pressure difference between the pressure inside the nanogap (Px) and the atmospheric 

pressure (P0=0.1MPa). In the worst case where air cannot be evacuated from the nanogap, 

the pressure inside the nanogap will be increased by compressed air and will have a 

relationship delineated as follows: 

 
xH

H
PP

x −
×=

0
 (2) 

where H is the height of the nanogap. Since the water meniscus will stop at the condition of 

ΔP=Px−P0, we can calculate that the water meniscus can move to x=97nm of a 100-nm-deep 

nanogap (H=100nm) even in the worst case, i.e. the nanogap is filled with compressed air. 

www.intechopen.com



Numerical Analysis and Simulation of Fluidics in  
Nanogap-Embedded Separated Double-Gate Field Effect Transistor for Biosensor   

 

233 

This calculation result means that capillary pressure is sufficient to deliver the water to the 

bottom surface of the nanogap. We will confirm this result with three-dimensional 

simulations in the following section. 

 

 

Fig. 4. A capillary force modeling of the nanogap highlighted by the dotted box in the SEM 
image displaying AA‘ direction as shown in Fig. 3. G is the nanogap width, L is the nanogap 
length, H is the nanogap height, x is the water penetration depth, P0 is the atmospheric 

pressure, Px is the pressure inside the nanogap, and ΔP is the pressure difference between Px 
and P0. 
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Fig. 5. A plot of capillary pressures as a function of the nanogap length, where G=30nm, 

θSiO2=45°, θwater=0°, and γ =72.5mN/m for the sample solution of water. 
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3. Numerical simulations of the nanogap filling process 

Although a study on the fluidics on a nanogap was previously carried out (Brinkmann et al., 

2006) to support earlier results with a nanogap biosensor (Haguet et al., 2004), only 

theoretical calculations were presented. In order to visualize the nanogap filling and 

support the calculation results provided in previous section, three-dimensional simulations 

were also performed using CFD-ACE+TM (CFD Research Corporation, Huntsville, Alabama, 

USA) with the structure shown in the inset of Fig. 3. CFD-ACE+TM is a commercial software 

for multiphysics simulation, and has been used in previous microfluidic studies (Jen et al., 

2003; Kobayashi et al., 2004; Rawool et al., 2006; Rawool & Mitra, 2006; Yang et al., 2007; Im 

et al., 2009). 

3.1 Simulation setup 
The finite element method is applied with structured grids, as shown in Fig. 6. In order to 

observe the fluidic behaviour in nanogaps, fine meshes are used in the nanogaps, as 

highlighted by the red dotted box in Fig. 6. On top of the nanogap-DGFET structure shown 

in Fig. 3, 1.5-μm-high regions are additionally assigned for an initial water position 

mimicking introduction of a water droplet on the nanogap-DGFET. The total number of 

cells is 205,760 in 28 structured zones. Flow and Free Surfaces (VOF) modules are used in 

this simulation. In the VOF module, the surface reconstruction method is chosen to be 2nd 

Order (PLIC), and surface tension is considered. The wetting angle of the sidewall in the 

nanogaps is assumed to be 45 deg due to the presence of native oxide. In addition to surface 

tension, gravitational force is also considered along the Z-direction, as shown in Fig. 3. The 

reference pressure of 100,000 N/m2 (0.1 MPa) is set as the atmospheric pressure. Table 1 

summarizes the physical properties of water used in this simulation study. 

 

 

Fig. 6. Grid shapes for structured meshes for simulation. The dotted red box shows fine 
meshes in the nanogap region. 
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Physical property Value Comment 

Density (kg/m3) 1000 Constant 

Viscosity (m2/s) 1×10-6 Constant (Kinematic) 

Surface tension (N/m) 0.0725 Constant 

Table 1. Properties of water in the numerical simulation 

 

 
 

 
 

 
 

 

Fig. 7. Nanogap filling of the sample solution of water at the nanogap edge indicated as AA’ 
in Fig. 5. At various instants of (a) 0 nsec (Initially, air is in the nanogap) (b) 95 nsec (c) 163 
nsec (d) 315 nsec (e) 573 nsec (f) 643 nsec (g) 650 nsec (h) 681 nsec (Finally, the nanogap is 
filled with the sample solution) 
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3.2 Simulation results: nanogap filling 
Fig. 7 shows the water meniscus positions at various instants from the nanogap edge which 
is denoted as AA’ in Fig. 3. Air inside the nanogap is continuously squeezed and 
compressed by marching water along the sidewalls of the nanogap. Finally, the entire region 
of the nanogap becomes filled with water, as confirmed in Fig. 7(h). 
It is noteworthy that the wetting speeds are different at the centre and at the edge of the 
nanogap in the simulation results. Positions of the water meniscus are plotted in Fig. 8; the 
nanogap is completely filled with water within 700 nsec at the edge of the nanogap; 
however, it takes longer than that at the centre of the nanogap.  
From the calculation results in the previous section and the simulation results in this section, 
we can find an interesting aspect of the fluidics in the nanogap. The length of the nanogap is 
effectively reduced after some portion of the nanogap is wetted, because wetting occurs 
from the edge of the nanogap. With a shorter nanogap, it is straightforward that the 
capillary pressure becomes greater, as shown in Fig. 5. As a consequence, we can conclude 
that the nanogap can be fully wetted with the sample solution by this sort of positive 
feedback. 
 

 

Fig. 8. Water meniscus positions as a function of time in the simulation structure shown in 

the inset (L=1μm, W=250nm, H=100nm, and G=30nm). Hollow circles mean meniscus 
positions at the nanogap edge and solid circles mean meniscus positions at the nanogap 
centre. 

The plateau in the graph of Fig. 8 is attributed to the pressure of the compressed air being 
too high for the capillary pressure to overcome for further advancement. This phenomenon 
is confirmed by monitoring pressure changes inside the nanogap together with 
corresponding water meniscus positions. As shown by the dotted boxes in Fig. 9, the 
pressure inside the nanogap increases gradually as the meniscus advances to the bottom of 
the nanogap. In the process of nanogap filling, there is a period where only pressure 
increment is observed without meaningful progress of the water meniscus locations. 
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Fig. 9. Water meniscus positions (shown in solid boxes) in the nanogap with corresponding 
pressure changes (shown in dotted boxes). 
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3.3 Simulation results: expelling air bubbles from the nanogap 
As shown in Fig. 9, air trapped inside the nanogap is pressurized by the capillary pressure 
of water above the air. Then, where does the air finally go? By careful observation of the 
simulation results, we can see air bubbles appear and disappear repeatedly inside the 
nanogap, as shown in Fig. 10.  
 

 

Fig. 10. Movement of water meniscus in the direction of BB’ shown in Fig. 5. (Closed-up 
views near the B’ side) (a) 3.941 μsec (b) 4.310 μsec (c) 4.572 μsec (d) 4.625 μsec (e) 4.802 μsec 
(f) 4.916 μsec (g) 4.964 μsec (h) 4.974 μsec. Air bubbles appears and disappears repeatedly to 
lower the pressure of the air trapped inside the nanogap. 
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Because water continuously compresses the air in the nanogap with capillary pressure, it is 

analyzed that a certain threshold pressure is necessary for the trapped air to evacuate an air 

bubble against the capillary pressure. After the appearance of air bubbles, which occurs with 

reduced pressure of the trapped air, the water meniscus proceeds further toward the 

nanogap centre by additional compression of trapped air. Generated air bubbles from the 

trapped air last for a period of a few tens of nanoseconds to three hundreds nanoseconds. By 

repetition of this process (i.e. pressure reduction by air bubbles and further compression), 

the nanogap is gradually filled with water. 

From the simulation, the threshold pressure for generation of air bubbles is estimated to be 

around 5MPa, which is 50 times the atmospheric pressure (0.1MPa). As shown in Figs. 9(f) 

through 9(h), trapped air is eliminated after the pressure reaches roughly 5MPa. Air bubbles 

cannot be seen in Fig. 9, because they will appear in different places, as shown in Fig. 10. 

3.4 Simulation results: velocity vectors 
The blue arrows in Fig. 11 represent velocity vectors of water and air in designated meshes. 

These velocity vectors are obtained from the plane 5 nm away from the nanogap edge, as 

shown in the figure. In the initial stage of nanogap filling, as shown in Fig. 11(a), air exits 

quickly from the nanogap by advancing water. After velocity reduction of air, as seen in Fig. 

11(b), the velocity direction of air changes toward the nanogap centre in the stage of 

compressing air, as shown in Fig. 11(c). Finally, if some plane is filled with water, water will 

fill the trapped air region at the nanogap centre, and consequently the velocity vectors are 

oriented toward the centre of the nanogap, as shown in Fig. 11(d). 

Fig. 12 shows velocity vectors when water cannot advance because compressed air resists 

against the water. It is shown that the velocity vectors are oriented upward at the water/air 

interface due to high pressure, represented by green colour in Fig. 12(b), which indicates 

pressure of around 2MPa. 

4. Conclusions 

In this chapter, nanogap-DGFET’s fluidic characteristics are discussed with theoretical 

calculations as well as numerical simulations. Theoretical computation based on appropriate 

modelling predicts that almost complete filling of the nanogap with water is possible. Three-

dimensional simulations using CFD-ACE+TM support the theoretical calculations. Various 

characteristics such as water meniscus position, pressure distribution, and velocity vectors 

in the simulation results have been analyzed in detail for comprehensive understanding of 

the process of nanogap filling in the nanogap-embedded biosensor. The sample solution of 

water is expected to completely fill the nanogap by capillary pressure. These results indicate 

that biomolecules in a water-based sample solution can be successfully delivered to sensing 

regions (i.e. nanogaps) in nanogap-DGFET devices. 
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(a) 191.8 nsec after beginning of 
water penetration, air exits with 
fast velocity from the nanogap by 
capillary force of water from the 
top. Velocity vectors of water are 
toward the bottom of the 
nanogap. 

(b) 559.3 nsec after beginning of 
water penetration, air still exits 
with reduced velocity from the 
nanogap. Water is being supplied 
from the top of the nanogap. 

 

(c) 600.0 nsec after beginning of 
water penetration, the direction 
of air velocity vectors is changed 
toward the nanogap centre due to 
additional capillary force from 
the nanogap edge which is 
completely filled with water. As 
shown in Fig. 8, the nanogap 
edges become wet before the 
nanogap centre does. 

(d) 738.7 nsec after beginning of 
water penetration, water at the 
lower part of nanogap moves to 
the nanogap centre to fill the 
remainder of the nanogap at this 
region, as described in Fig. 10. 

Fig. 11. Distribution of velocity vectors (shown as blue arrows) of air and water at 5 nm 
away from a nanogap edge. 

www.intechopen.com



Numerical Analysis and Simulation of Fluidics in  
Nanogap-Embedded Separated Double-Gate Field Effect Transistor for Biosensor   

 

241 

funded by the Korean Ministry of Education, Science and Technology. The work of M. Im 

was supported in part by the Brain Korea 21 Project, the School of Information Technology, 

KAIST, 2009. The authors would like to thank Mr. Jae-Hyuk Ahn, Dr. Jin-Woo Han, Dr. Tae 

Jung Park, and Prof. Sang Yup Lee for their help in the fabrication and analysis of real 

nanogap-DGFET devices in a previous study that motivated this work. 

 

 

Fig. 12. Velocity vectors in the direction of BB’ shown in Fig. 5 with (a) water/air boundary 
and (b) pressure distribution. 
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