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1. Introduction 

A biosensor is a device incorporating a biological sensing element either intimately 

connected to or integrated within a transducer, which is mainly determined by specific 

molecular recognition such as enzyme-substrate, antibody-antigen and so on. Currently, 

with the development of nanoscience and nanotechnology, more and more interest has been 

focused on using nanoparticles to fabricate biosensors (Alivisatos, 2004; Katz, 2004; Rosi 

2005). Several kinds of biological sensors based on semiconductor quantum dots (QDs), gold 

nanoparticles (GNPs), carbon nanotubes (CNTs), fullerene, dendrimer nanoparticles have 

been presented. Semiconductor QDs are a new class of fluorescent materials for biosensor. 

In comparison with conventional organic dyes and fluorescent proteins, they have unique 

optoelectronic properties with size-tunable light emission, superior signal brightness, 

resistance to photobleaching and broad absorption spectra for simultaneous excitation of 

multiple fluorescence colors (Alivisatos, 1996). However, the use of semiconductor QDs for 

biosensor application still has some limitations (Jaiswal, 2004), for instance, the potential 

toxicity of QDs may pose risks to human health and the environment under certain 

conditions (Derfus, 2004). In addition, the absorption of UV and visible light by biological 

samples often induces autofluorescence, which interferes with fluorescent signals obtained 

from exogenous biomarkers. Moreover, if biological samples are prolonged exposure to UV 

radiation, it would cause the samples photo-damage and mutation. 

The drawbacks of QDs in biosensing application have prompted the development of up-

converting nanoparticles (UCNs) emerged as another class of new biosensing materials. 

Usually, UCNs exhibit intense visible or near-infrared light excited by near-infrared light 

according to the anti-stokes law. The UCNs also show a sharp emission bandwidth, long 

lifetime, tunable emission, high photostability, low bio-toxicity and good biocompatibility, 

which are less harmful to biological samples and have greater penetration depth through 

biological samples than conventional ultraviolet excitation. Moreover, UCNs can be easily 

coupled to proteins or other biological macromolecular systems and used in a variety of 
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assay formats (Yen, 2004; Blasse, 1994). This review is composed of four sections, and is 

intended to summarize the recent advances in luminescent semiconductor QDs and rare 

earth UCNs for biosensing application. In the first section, the production mechanism, size-

dependent luminescence, spectral characteristics, bioconjugation technology and potential 

biosensing application of semiconductor QDs are comprehensively reviewed; In the second 

section, the controlled synthesis, characterization, luminescence mechanism, and biosensing 

application of rare-earth UCNs are systemically introduced; In the third section, the 

comparative assessment of advantage and limitation of semiconductor QDs and rare earth 

UCNs in biosensing application are discussed; In the fourth section, the concluding remarks 

and perspective for semiconductor QDs and rare-earth UCNs in biosensing application are 

presented.  

2. Semiconductor QDs as fluorescent labels for biosensing application 

2.1 Concept of semiconductor QDs 
Semiconductors have a filled band called the “valence band” and an empty band known as 

the “conduction band”. At nanoscale dimension, the normally collective electronic 

properties of semiconductors become severely distorted and the electrons tend to follow the 

“particle in-a-box” model accounting for approximated band structure (Murray, 1993). From 

a quantum mechanical point of view, when a semiconductor is irradiated with light of 

photon energy (hν) higher than Eg, an electron will be promoted from the valence to the 

conduction band, leaving a “hole” or “absence of an electron” in the valence band. Thus, 

this “hole” is assumed to be a “particle” with its particular effective mass and positive 

charge. The bound state of the electron-hole pair is called an “exciton” (Brus, 1984). The 

exciton can be considered a hydrogen-like system, and a Bohr approximation of the atom 

can be used to calculate the spatial separation of the electron–hole pair of the exciton by Eq. (1): 

 
2
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where r is the radius of the sphere, defined by the 3-D separation of the electron-hole pair, ε 
is the dielectric constant of the semiconductor, mr is the reduced mass of the electron-hole 

pair, h is Planck’s constant, and e is the charge on the electron. For many semiconductors, 

the masses of the electron and hole have been determined by ion cyclotron resonance and 

are generally in the range 0.1-3 me (me is the mass of the electron). For typical semiconductor 

dielectric constants, the calculation suggests that the electron-hole pair spatial separation is 

1-10 nm for most semiconductors (Gaponenko, 1998). 

Because the physical dimensions of a QD can be smaller than the exciton diameter, the QD is 

a good example of the “particle-in-a-box” calculations of undergraduate physical chemistry. 

In those calculations, the energies of the particle in the box depend on the size of the box. In 

the QD, the bandgap energy becomes size-dependent (Alivisatos, 1996; Gaponenko, 1998; 

Zhang, 1997; Weller, 1993; Murphy, 2002). 

2.2 Optical properties of QDs 
QDs are nearly spherical semiconductor particles with diameters on the order of 1-10 nm, 

containing roughly 200-10,000 atoms. When semiconductor QDs are smaller than their 
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exciton Bohr radii, the quantum confinement and size-dependent effects make QDs have 

unique optical properties (Fig. 1): (1) single excitation, multi-emission and size-dependent; 

(2) large stokes shift, narrow and symmetrical fluorescence peak; (3) visible light range 

fluorescence and resistance to photobleaching; (4) superior signal brightness. In addition, 

changing QD surface functional groups, luminescent properties and stability are greatly 

improved and more conducive to the coupling of biological molecules. For conventional dye 

molecules, their narrow excitation spectrum makes the simultaneous excitation difficult in 

most cases, and their broad emission spectrum may cause a long tail at red wavelengths; 

while for semiconductor QDs, the absorbance onset and emission maximum shift to higher 

energy with the decrease of particle sizes (Alivisatos, 1996). The excitation tracks the 

absorbance, resulting in a tunable fluorescence that can be excited efficiently at any 

wavelength shorter than the emission peak, and therefore the characteristic narrow and 

symmetric spectrum can be realized regardless of the excitation wavelength (Bruchez, 1998). 

 

     
 

Fig. 1. Size-dependent optical properties of QDs. (a) Surface color of suspensions in toluene 

in visible light; (b) Schematic diagram of band gap and emission color as a function of 

particle size; (c) Light emission of suspensions in toluene when excited with UV light;  

(d) Fluorescence spectra of the QDs samples (from left to right are respectively representative 

2.2, 2.9,4.1 and 7.3nm QDs). (Feldmann, 2010; Mansur, 2010; Smith, 2008). 

Due to their unique optical properties, semiconductor QDs can be used as fluorescent labels 

for biological detection. In order to establish the utility of QDs for biological sensing 

application, mouse 3T3 fibroblast cells were labeled with green and red emitting CdSe/CdS 

nanocrystals. The green and red labels were spectrally resolved to the eye clearly under the 

excitation of a single light source by a laser scanning confocal microscope. Nonspecific 

labeling of the nuclear membrane by both the red and green probes resulted in a yellow 

color [Fig. 2(a)]. The intensity of the fluorescein drops quickly to autofluorescence levels, 

whereas the intensity of the QDs drops only slightly. Comparatively, the red QD labels are 

20 times as bright, 100 times as stable against photobleaching [Fig. 2(b)] (Bruchez, 1998). 

In general, QDs synthesized in nonpolar solutions using aliphatic coordinating ligands are 
only soluble in nonpolar organic solvents, which are not suit for biological application. 
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Fig. 2. Schematic diagrams of dual-color labeling and photostability. (a) The mouse 3T3 

fibroblasts were labeled with dual color. (b) Sequential scan photostability comparison of 

fluorescein-phalloidin-labeled actin fibers compared with nanocrystal-labeled actin fibers 

(Bruchez, 1998). 

 

 

Fig. 3. (a) Scheme of a CdSe/ZnS QD covalently coupled to a protein; (b) Luminescent 

images obtained from the original QDs; (c) mercapto-solubilized QDs; (d) Time-resolved 

photobleaching curves for the original QDs, solubilized QDs and dye R6G (Chan, 1998). 

Moreover, QDs have a huge surface/volume ratio, which makes them extremely unstable in 
solution because of the high surface energy. Hence, any route chosen to synthesize QDs 
should consider the stabilization of the QDs by minimizing the surface energy via “capping” 
and avoiding further structure growth (Weaver, 2009). Warren and coworkers presented a 
valuable way to solve this problem by coating CdSe QDs with higher bandgap materials 
such as ZnS shell in order to increase the photostability and luminescence properties of 
CdSe QDs (Chan, 1998). When reacting with CdSe/ZnS QDs in chloroform, the mercapto 
group binds to a Zn atom, and the free carboxyl group is available for covalent coupling to 
various biomolecules such as proteins by cross-linking to reactive amine groups [Fig. 3(a)] 
(Hermanson, 1996). A comparison of color luminescence images were obtained from the 
original QDs, water soluble QDs and protein-conjugated QDs [Figs. 3(b) and (c)], which 

(a) 
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indicated that the optical properties of QDs remain unchanged after solubilization and 
conjugation. The photophysical properties of QD conjugates with rhodamine 6G (R6G) was 
also studied. The emission of mercapto-CdSe is somehow weaker than that of single QDs, 
which is nearly 100 times as stable as R6G against photobleaching [Fig. 3(d)]. 

2.3 Synthesis of biocompatible QDs  
The most common method for synthesizing water-soluble QDs is coated with a monolayer 
of hydrophilic thiols, typically mercaptoacetic acid (MAA), to replace the hydrophobic 
trioctylphosphine oxide (TOPO) coating on QDs (Chan, 1998; Hood, 2002; Duncan, 2006). 
But, when the MAA replace the TOPO coating on QDs, the QDs become instable 
accompanied by significant decreases in the quantum yield to 7% compared with TOPO-
coated QDs (Kim, 2004). To overcome this problem, Alivisatos and coworkers developed an 
effective route to coat QDs with a cross-linked silica shell, which can be readily modified 
with a variety of organic functionalities such as primary amines, carboxylic acids or thiols 
(Gerion, 2001). The coated QDs were very stable and retained 60-80% of the quantum yield 
of the original QDs. Gao and coworkers developed another effective method to synthesize 
CdSe/ZnS QDs stabilized by a coordinating ligand (TOPO) and an amphiphilic polymer 
coating through hydrophobic attraction (Gao, 2004). Because of the strong hydrophobic 
interactions between TOPO and polymer hydrocarbon, the two layers bonds to each other 
and form a hydrophobic protection structure that resists hydrolysis and enzymatic 
degradation even under complex in vivo conditions. In most designs of the amphiphilic 
polymers, carboxylic acids provide solubility in water and can be utilized as  
 

 

Fig. 4. Schematic diagrams of biocompatible QDs. 

chemical handles for conjugation to primary amines in proteins through water soluble cross-
linking reagents such as 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDAC). 
Similarly, many of these QDs also may be modified to contain polyethylene glycol (PEG) to 
decrease surface charge and increase colloidal stability (Fig. 4) (Dubertret, 2002 ; Smith, 2006; 
You, 2007; Bagwe, 2003). 

2.4 Biosensing based on biocompatible QDs 
On the base of the synthetic methods of biocompatible QDs, water-soluble QDs can be 
covalently or electrostatically bound to a biological target, which have also acted as a new 
class of sensor. If the QDs encapsulated in amphiphilic polymers and PEG conjugated to 
antibodies, it would yield specificity for a variety of antigens. In addition, QDs cross-linked 
to other small molecule ligands, inhibitors, peptides, or aptamers can bind with many 
different cellular receptors and targets (Fig. 5) (Lidke, 2004; Xing, 2007). Gao and coworkers 
developed multifunctional nanoparticle probes based on semiconductor QDs for prostate 
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cancer targeting and imaging (Gao, 2004). The probes with passive and active tumor 
targeting behaviors were produced. This new class QDs probes contain an amphiphilic tri-
block copolymer for in vivo protection, targeting-ligands for tumor antigen recognition and 
multiple PEG molecules for improved biocompatibility and circulation [Fig. 5(a)]. In the 
passive mode, antigenic tumors produce vascular endothelial growth factors, which can 
hyper-permeabilize the tumor-associated neovasculatures and cause the leakage of 
circulating macromolecules and small particles, leading to macromolecule or nanoparticle 
accumulation [Fig. 5(b)] (Gao, 2004; Duncan, 2003; Jain, 1999, 2001). While for active tumor 
targeting, antibody-conjugated QDs can track a prostate-specific membrane antigen 
(PSMA), which could be selected as an attractive target for imaging and therapeutic 
intervention of prostate cancer [Fig. 5(b)] (Gao, 2004; Schulke, 2003). This study opens new 
possibilities for ultrasensitive and simultaneous imaging of multiple biomarkers involved in 
cancer metastasis and invasion.  
 

 

Fig. 5. Schematic illustration of bioconjugated QDs for in vivo cancer targeting and imaging. 
(a) Structure of a multifunctional QD probe; (b) Permeation and retention of QD probes via 
leaky tumor vasculatures (passive targeting) and high affinity binding of QD-antibody 
conjugates to tumor antigens (active targeting) (Gao, 2004). 

Subsequently, Wu and coworkers demonstrated the use of 535QD-IgG and red 630QD-
streptavidin to detect Her2 on the cell surface and nuclear antigens in the nucleus of SK-BR-
3 cells. When the sample was observed under a fluorescence microscope, 630QD-labeled 
(red) nuclear antigens and 535QD-labeled (green) membrane-associated Her2 were visible 
simultaneously (Wu, 2003). This indicated that QDs conjugated to different secondary 
detection reagents can effectively detectect two cellular targets in the same cell. These results 
demonstrated the practicality of QDs in biological cellular real time and dynamic state 
imaging fields.  
Fluorescence resonance energy transfer (FRET) is most commonly utilized in biosensors for 
detecting maltose (Medintz, 2003), aptamers (Hansen, 2006), 2,4,6-trinitrotoluene (Goldman, 
2005), toxins (Goldman, 2004), and DNA (Zhang, 2005). Because of their high sensitivity, 
good reproducibility, and real-time monitoring capabilities, QDs are usually acted as 
fluorescence donors and make up of FRET with organic dyes. Medintz and coworkers 
designed a maltose sensor [Fig. 6(a)], in which an organic dye QSY-9 (fluorescence acceptor) 
was first conjugated to β-cyclodextrin (β-CD), then bonded to maltose binding protein 
(MBP), and at last β-CD-QSY-9/MBP complex was attached to the 560 QDs (fluorescence 
donors) surface through a peptide His-tag (Medintz, 2003). The optimized sensor contained 
10 copies of β-CD-QSY9 bound to the QD complex, where 75% of the QD fluorescence was 
quenched by QSY-9. When free maltose was added, it would displace the β-CD-QSY9. 
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Moreover, the displacement of β-CD-QSY-9 with maltose could result in QD fluorescence 
increasing about 3-fold. This technique can be used to achieve the sensing of maltose. 
However, due to the uncertainty in the distance between the QDs and acceptors, some 
limitations in this sensor were arisen. In order to overcome the limitations, another maltose 
sensor was architected [Fig. 6(b)], in which 10 copies of Cy3 labeled MBP were first 
incorporated on the 530QDs surface, followed by binding of the Cy3.5 labeled β-CD, at last 
β-CD-Cy3.5/MBP-Cy3 complex was bound to QD through a peptide His-tag and Cy3.5 
fluorescence emitted through a two-step FRET process. Sufficient fluorescence energy was 
initially transferred from the 530QD to MBP-Cy3, and the minimized emission energy of 
Cy3 was then transferred to β-CD-Cy3.5. When free maltose was added, the displacement of 
β-CD-Cy3.5 with maltose resulted in fluorescence increasing from Cy3 and concomitantly 
fluorescence decreasing from Cy3.5. The results demonstrate that the appropriately 
designed QD complexes with peptide immobilization tags can be used in determining small 
molecule concentrations in the 100 nM-10 μM range (Medintz, 2003) 
Another biosensor based on combination of QDs and multi-walled carbon nanotubes (CNT) 
makes the detection of DNA and antigen more quickly and simply. Cui et al reported a 
highly selective, ultrasensitive, fluorescent detection method for DNA and antigen based on 
self-assembly of multi-walled carbon nanotubes (CNT) and CdSe QDs via oligonucleotide 
hybridization (Cui, 2008). This method could achieve the detection limit of 0.2 pM DNA 
molecules and 0.01 nM antigen molecules, and the novel detection system not only can be 
used for multicomponent detection and antigen-antibody immunoreaction, but also has 
great potential in photoelectrical biosensing application.  
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Fig. 6. QD based maltose nanosensor. (a) β-CD-QSY-9/MBP complex bound to QD through 
a peptide His-tag; (b) β-CD-Cy3.5/MBP-Cy3 complex bound to QD through a peptide His-
tag (Zhou, 2007).  

Recent advances in single-molecule detection, aptameric sensors with the surface 
functionalizing QDs hold exciting promise for many potential applications. Zhang et al 
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developed a single-QD-based aptameric sensor through (FRET) between 605QD and Cy5 
and Iowa Black RQ (Zhang, 2009). This aptamertic sensor can recognize cocaine through 
both signal-off and signal-on modes, indicating the higher sensitivity and more extremely 
low sample consumption than that of the aptameric sensors established before. With the 
development of aptamers for small molecules, nucleic acids, metal ions, and proteins, this 
single-QD-based aptameric sensor might find wide application in forensic analysis, 
environmental monitoring, and clinic diagnostics (Zhang, 2009). 
 

 

Fig. 7. Schematic illustrations of optical coding and DNA hybridization assays using QD-
tagged beads (a) Optical coding based on wavelength and intensity multiplexing. Large 
spheres represent polymer microbeads, in which small multicolor QDs are embedded 
according to predetermined intensity ratios; (b) DNA hybridization assays using QD-tagged 
beads. Probe oligos were conjugated to the beads by crosslinking, and target DNA molecules 
were detected with a blue fluorescent dye such as Cascade Blue (Han, 2001). 

Han and coworkers synthesized monodispersed CdSe/ZnS QDs with fluorescence emission 

at three primary colors (red, green and blue) (Han, 2001). Through embedding different-

sized QDs into polymeric microbeads at precisely controlled intensity ratios [Fig. 7(a)], 

multicolor-tagged beads were prepared. Code readout is accomplished by measuring the 

fluorescence spectra of single beads. Their fluorescence emission wavelength can be 

continuously tuned by changing the particle size, and a single wavelength can be used for 

simultaneous excitation of different-sized QDs (Alivisatos, 1996; Han, 2001, Nirmal, 1999). 

On the other hand, molecular probes (A-E) may be attached to the bead surface for 

biological binding and recognition, such as DNA-DNA hybridization. In order to 

demonstrate the use of QD-tagged beads for DNA hybridization, oligonucleotide probes 

were conjugated to the beads by cross-linking. Target DNA molecules are directly labeled 

with a blue fluorescent dye such as Cascade Blue [Fig. 7(b)] (Han, 2001). Optical 

spectroscopy at the single-bead level yields both the coding and the target signals. 

Moreover, each color code corresponds to a specific DNA sequence. The coding signals 

can identify the DNA sequence, whereas the target signal can indicate the abundance of 

that sequence. A surprising finding is that the number of codes increases exponentially 

when multiple wavelengths and intensities are used simultaneously, for example, a  
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3-color/10-intensity scheme yields 999 codes, whereas a 6-color/10-intensity scheme has a 

theoretical coding capacity of about one million. In general, n intensity levels with m 

colors generate (nm-1) unique codes (Han, 2001). If every code corresponds one type 

specific DNA sequence, it would be labeled every biomolecules with fluorescent code. 

This system made by multicolor-tagged QDs will completely change the ability of human 

identifying gene. 

3. Rare-earth up-converting nanoparticles as fluorescent labels for 
biosensing application 

3.1 Up-converting luminescence mechanism 
Up-conversion (UC) refers to nonlinear optical processes characterized by the successive 
absorption of two or more pump photons via intermediate long-lived energy states followed 
by the emission of the output radiation at a shorter wavelength than the pump wavelength. 
UC processes are mainly divided into three broad classes: excited state absorption (ESA), 
energy transfer up-conversion (ETU), and photon avalanche (PA). All these processes 
involve the sequential absorption of two or more photons (Fig. 8). 
In the case of ESA, the excitation takes the form of successive absorption of pump photons 
by a single ion. This is the basic process of up-conversion [Fig. 8(a)]. If the excitation energy 
is resonant with the transition from ground level G to excited metastable level E1, the 
phonon absorption occurs and populates E1 from G in a process known as ground state 
absorption (GSA). A second pump photon that promotes the ion from E1 to higher-lying 
state E2 results in UC emission, corresponding to the E2-G optical transition (Wang, 2009). 
ETU is similar to ESA in that both processes utilize sequential absorption of two photons to 
populate the metastable level. The essential difference between ETU and ESA is that the 
excitation in ETU is realized through energy transfer between two neighboring ions. In an 
ETU process, each of two neighboring ions can absorb a pump phonon of the same energy, 
thereby populating the metastable level E1 [Fig. 8(b)]. A non-radiative energy transfer 
process promotes one of the ions to upper emitting state E2, while the other ion relaxes back 
to ground state G. The dopant concentration that determines the average distance between 
the neighboring dopant ions has a strong influence on the UC efficiency of an ETU process 
(Wang, 2009). 
The phenomenon of PA was first discovered by Chivian and co-workers in Pr3+-based 
infrared quantum counters (Chivian, 1979). PA-induced UC features an unusual pump 
mechanism that requires pump intensity above a certain threshold value. The PA process 
starts with population of level E1 by non-resonant weak GSA, followed by resonant ESA to 
populate upper visible-emitting level E2 [Fig. 8(c)]. After the metastable level population is 
established, the cross-relaxation energy transfer or ion pair relaxation occurs between the 
excited ion and a neighboring ground state ion, resulting in both ions occupying the 
intermediate level E1. The two ions readily populate level E2 to further initiate cross-
relaxation and exponentially increase level E2 population by ESA, producing strong UC 
emission as an avalanche process (Wang, 2009). 
The UC luminescent efficiency in these three processes varies considerably. ESA is the least 
efficient UC process. Efficient UC is possible in PA with metastable, intermediate levels that 
can act as a storage reservoir for pump energy. However, the PA process suffers from a 
number of drawbacks, including pump power dependence and slow response to excitation 
(up to several seconds) due to numerous looping cycles of ESA and cross-relaxation 
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processes. In contrast, ETU is instant and pump power independent, and thus has been 
widely used to offer highly efficient UC (Wang, 2009; Auzel, 2004). 

 

 

                            (a)                                          (b)                                            (c) 

Fig. 8. Three energy transferring process diagrams of UC processes. (a) ESA; (b) ETU; (c) PA. 
The dashed/dotted, dashed, and full arrows represent photon excitation, energy transfer, 
and emission processes, respectively (Wang, 2009).  

3.2 Synthesis of up-converting nanoparticles 
For biological applications, UCNs should have a suitable size and surface for conjugation 
with biological molecules, and exhibit high intensity emission (Pires, 2006). Therefore, the 
synthesis of UCNs is particularly important. In general, the co-precipitation, thermal 
decomposition and hydro/solvo-thermal methods are most effective ways for synthesis of 
UCNs. 
Co-precipitation is one of the most convenient techniques for synthesizing ultra-small UCNs 
with narrow size distribution. One of the earliest examples of this technique was 
demonstrated by van Veggel and co-workers, who made down-conversion LaF3 
nanocrystals doped with Ln3+ (Ln =Eu, Er, Nd, and Ho) (Stouwdam, 2002). The approach 
was expanded and refined by Chow et al (Yi, 2005), and UC LaF3 nanocrystals with smaller 
particle size and narrower size distribution were obtained by using simple water soluble 
inorganic precursors. Besides, LaF3, NaYF4:Yb/Er(Tm), LuPO4:Yb/Tm, and YbPO4:Er 
nanocrystals were also synthesized via the co-precipitation approach (Heer, 2003, 2004; Yi, 
2004; Zeng, 2005). The co-precipitation method is simple and quick, needing no expensive 
equipment and complex procedures, but requires post-heat treatment. 
The thermal decomposition method is based on temporal separation of nucleation and 
crystal growth. It was firstly demonstrated for synthesis of highly monodispersed LaF3 
nanocrystals by Yan’s group (Zhang, 2005). Later, this approach was extended as a common 
route to the synthesis of high quality UC NaYF4 nanocrystals (Mai, 2006, Boyer, 2007). Zhao 
et al synthesized UC NaYF4 nanorods, nanotubes, and flower-patterned nanodisks by an 
oleic acid-mediated hydrothermal method (Zhang, 2007). Recently, LaF3:Yb/Er(Tm,Ho) 
nanoplates with multicolor UC luminescence were also successfully synthesized via a 
hybrid thermal decomposition/solvothermal method (Liu, 2007), which shows the 
superiorities in controlling the particle size and shape of the UCNs. However, this method 
needs specialized reaction vessels, expensive and air-sensitive precursors.  
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3.3 Optical properties of up-converting nanoparticles 
Luminescent materials can absorb energy and subsequently emit the absorbed energy as 
radiation. According to the relative frequencies of the exciting and emitting radiations, 
radiant emission can be categorized into two classes of up-conversion and down-
conversion. In the down-converting process, the emitting radiation obeys Stokes’ law, in 
which the emitting radiation is of a lower energy and hence longer wavelength than the 
exciting light. However, for UCNs, the emitting radiation actually possesses a higher energy 
and smaller wavelength than the exciting wavelength, which is so-called anti-Stokes 
emission. As luminescent labeling materials, UCNs also show their superiority in several 
aspects comparing with conventional fluorescent dye or protein labels and QDs tags. 
Firstly, UCNs are little analogous to QDs, even though QDs also hold a sharp emission 
bandwidth, long lifetime, tunable emission, high photostability and biocompatibility. The 
excitation and emission wavelength of UCNs are well separated from each other, which are 
ideal for multiplexing biological detection. Moreover, UCNs is generally made up of an 
inorganic host and lanthanide dopant ions embedded in the host lattice [Fig. 9(a)]. In the 
realization of UC processes, the crystal structure and optical property of host materials play 
important roles and require careful consideration. The luminescence emitted by UCNs is 
also dependent on the particle sizes, but it is different from quantum confinement effects as 
seen in QDs. The emission spectrum and color of the UCNs are associated with the host 
composition and particle surface properties (Lim, 2010; Mai, 2007). Generally, visible optical 
emissions under low pump power densities (ca. 10 W/cm2) are only generated by using 
Er3+, Tm3+and Ho3+ as activators. In order to enhance up-converting efficiency, Yb3+ with a 
larger absorption cross-section in the NIR spectral region is frequently doped as a sensitizer 
in combination with the activators. In addition, UCNs can emit multicolor through the use 
of lanthanide-doped NaYF4 nanoparticles with varied dopant ratios [Fig. 9 (d)]. 
Secondly, UCNs absorb NIR light and emit in the NIR or visible ranges, therefore, the 
penetration of NIR and the absence of autofluorescence background make the UCNs own 
unique ability of being imaged at a greater tissue depth. UC processes primarily rely on the 
ladder-like arrangement of energy levels of lanthanide dopant ions, and UC luminescence 
primarily originates from electron transitions between energy levels of localized dopant ions 
[Fig. 9(b)]. In case of the commonly used NaYF4:Yb,Er nanoparticles, there are two emission 
peaks, one in the green region and the other in the red region [Fig. 9(c)] (Li, 2006). Recent 
studies show that lanthanide ions typically show a distinct set of sharp emission peaks, thus 
providing distinguishable spectroscopic fingerprints for accurate interpretation of the 
emission spectra in the event of overlapping emission spectra (Wang, 2009). 
Thirdly, the UCNs are also resistant to photobleaching. A dried sample of PEI/NaYF4 
nanoparticles displayed no reduction in emission intensity when continually exposed to a 
980 nm laser for over 7 h (Chatterjee, 2008). In addition, UCNs have lower cytotoxicity than 
QDs and exhibit almost no temporary and random loss of fluorescence (photo-blinking), as 
observed in semiconductor QDs. 

3.4 Surface modification and functionalization of up-converting nanoparticles 
For biological labeling applications, UCNs not only should exhibit high UC luminescence 
efficiency, but also need compatible with biomolecules. Most UCNs prepared by 
conventional strategies have no intrinsic aqueous solubility or lack functional organic 
moieties. Therefore, it is necessary that an additional surface treatment step should be 
required before bioconjugation.  
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Fig. 9. (a) Structural diagram of UC nanoparticles; (b) Energy level diagram; (c) Emission 
spectra of cubic NaYF4:Yb/Tm (20/0.2 mol%) and NaYF4: Yb/Er (18/2 mol%) nanoparticles; 
(d) Fine tunable UC colors by adjusting the dopant ratios of lanthanide-doped NaYF4 
nanoparticles (Wang, 2008, 2010). 

Ligand engineering, including ligand exchange, surface oxidation, ligand attraction, layer-
by-layer assembly, and surface polymerization, is a common approach to generate a 
pendant functional group on the surface of UCNs (Fig. 10). Ligand exchange is normally 
realized by the reaction of UCNS with hydrophilic bifunctional molecules; while surface 
oxidation could be achieve by oxidizing the terminal group of native ligands to generate a 
pendant carboxylic functional group. Ligand attraction involves absorption of an additional 
amphiphilic polymer onto the nanoparticle surface through the hydrophobic van der Waals 
attraction between the original ligand and hydrocarbon chain of the polymer. Layer-by-
layer assembly could be employed for electrostatic absorption of alternately charged 
polyions on the nanoparticle surface. Surface polymerization involves growing a dense 
cross-linked shell on the nanoparticle core by condensation of small monomers. Importance 
for these methods is the surface coverage with molecules consisting of additional functional 
groups that allow further reactions with biological entities (Cao, 2010; Boyer, 2010; Zhou, 
2010; Kobayashi, 2009; Qian, 2008; Ehlert, 2008; Johnson, 2010). To some extent, the coating 
methods usually lead to highly stable colloidal particles in comparison with the ligand 
engineering method. Moreover, among various surface-coating methods, silica coating 
enjoys common usage by several groups, partly due to the well-established  
surface chemistry of silica coating for facile bioconjugation. Distinctive feature of modified 
and functionalized up-converting nanoparticles is the retention of the native surface 
structures, thereby reducing the possibility of creating surface defects that quench the UC 
luminescence. However, surface modification sometimes adversely affects photophysical 
properties of up-converting nanoparticles. 
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Fig. 10. Typical strategies for solubilization and functionalization of UCNs (Wang, 2010).  

3.5 Application of up-converting nanoparticles for biological sensing 
Application of UCNs for biological sensing can be roughly divided into two classes: one is 
directly observed luminescence from the UCNs, and the other is based on FRET. UCNs have 
been used as luminescent reporters in a variety of assays, including immune-assay, bio-
affinity assay, and DNA hybridization assay as alternatives to conventional labeling agents 
(Zijlmans, 1999; Hampl, 2001; Corstjens, 2008; Li, 2008; Huang, 2009). A example was 
demonstrated by submicron-sized Y2O2S particles doped with Yb3+ and Er3+ ions for 
detection of human chorionic gonadotropin with a limit of 10 pg in a lateral flow (LF) 
immune-chromatographic assay format (Hampl, 2001). Another intriguing example has 
been demonstrated by Niedbala’s group (Niedbala, 2001), in which an LF-based strip assay 
for the simultaneous detection of amphetamine, methamphetamine, phencyclidine, and 
opiates in saliva was developed by using multicolor UC particles. The architecture of the 
lateral flow strip is designed to accommodate up to 12 distinct test lines, in which green 
emitting particles were coupled to antibodies for phencyclidine and amphetamine, and blue 
emitting particles were coupled to antibodies for methamphetamine and morphine. In 
addition, each strip also contains two control lines. By analyzing the test strip for each 
colored phosphor, the drug molecules (amphetamine, methamphetamine, phencyclidine, 
and opiates) were successfully detected. The whole process was very short less than 10 min 
and with high sensitivity. 
UCNs have also been coupled with metallic nanoparticles or organic fluorophores for FRET 

based biosensing. Wang et al developed a highly sensitive biosensor for detection of avidin 

by using biotinylated NaYF4:Yb/Er nanoparticles as energy donors and biotinylated Au 

nanoparticles as energy acceptors. The 7 nm Au nanoparticles show a broad and strong 

absorption centered at 520 nm, which matches well with the 540 nm emission of 

NaYF4:Yb/Er nanoparticles. Biotinylated NaYF4:Yb/Er and Au nanoparticles with 

molecular probes can specifically interact between avidin and biotin. When the target is 

absent, the donor and acceptor are well separated and no FRET process is expected. In the 

presence of the target, the donor and acceptor will be linked in close proximity and FRET 

becomes significant, resulting in a decrease in emission intensity of the donor. In addition, 

due to UCNs with ability of reducing background autofluorescence, UCNs have also been 

used as luminescent reporters in genomic applications (Corstjens, 2001). As a derivative of 

FRET, luminescence resonance energy transfer (LRET) was firstly introduced as by Selvin 
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(Selvin, 1994, 2002). LRET mainly relies on the same dipole-dipole mechanism as 

conventional FRET, but it has its own advantage, which offers a large energy transfer 

distance range (>10 nm) and high reliability. Particularly, the long-lived luminescent 

lanthanide donors allow facile and accurate lifetime measurements to monitor biological 

events that are inaccessible with conventional fluorescent dyes.  

UC particles have also been used in genomic biosensor. Due to the elimination of unwanted 

autofluorescence, UC particles can facilitate the detection and handling of target molecules 

by shortening the polymerase chain reaction (PCR) amplification process. In a parallel 

development, Wang and Li demonstrated a sandwich-hybridization assay for the ultra-

sensitive detection of DNA using sub-50 nm NaYF4:Yb/Er nanoparticles (Wang, 2006). 

Among this assay system, UCNs are modified with probe DNA strands, while magnetic 

nanoparticles are used and modified capture DNA strands. Upon incubation with target 

DNA strands, the UC and magnetic nanoparticles form binary nanoparticle aggregates. By 

virtue of magnetic nanoparticles, the aggregates can be easily purified and examined via UC 

luminescence assays (Fig. 11). Moreover the lowest detection limit of this method is ca. 10 

nM and without PCR amplification. 
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Fig. 11. Schematic illustration of the UC nanoparticle and magnetic nanoparticles-based 
DNA detection (Wang, 2006).  

4. Comparative assessment of semiconductor QDs and rare-earth up-
converting nanoparticles for biosensing application 

Semiconductor QDs possess high photostability, tunable emission spectra, high quantum 

yields, narrow emission bandwidths, superior signal brightness, long fluorescence lifetimes, 

and rich surface coupling capability, so they have been widely used in a variety of 

biosensors (Alivisatos, 2005). QDs are down-converting materials, which emit visible 
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fluorescence when excited by ultraviolet (UV) light or short wavelength visible light. 

However, when using UV light for monitoring living processes in cells and tissues, there 

have some potential drawbacks. In particular, if using UV light long-term irradiates living 

cells, it may cause DNA damage, cell death and reduce the signal-to-background ratio. 

Furthermore, in vivo fluorescence imaging is limited by the short penetration depth of the 

excitation light. In the most case, QDs have resistance to photobleaching, but sometimes 

they do exhibit temporary and random loss of fluorescence (photo-blinking). Currently, 

there are a class of NIR fluorophores such as NIR fluorescent dyes and the developed NIR 

quantum dots (Zhang, 2007). Though they own the abilities of deep tissue penetration and 

low autofluorescence as compared to visible fluorophores, they also have some 

disadvantages to signal detection. NIR detectors and filters are needed and the excitation 

and emission wavelengths are too close to each other. Furthermore, NIR dyes experienced 

photo-bleach and NIR QDs are cytotoxic. These factors greatly limit their application in 

biosensor.  

Compared with QDs, UCNs absorb NIR light and emit in the NIR or visible ranges, and the 

excitation and emission wavelength are well separated from each other. Meanwhile, since 

different colored emission peaks have little overlap, sharp emission peaks, it is ideal for 

multiplexing bio-detection. More importantly, NIR radiation is less harmful to cells and 

minimizes autofluorescence from biological tissues, thereby increasing the signal-to-noise 

ratio significantly. UCNs exhibit almost no temporary and random loss of fluorescence 

(photo-blinking) as observed in QDs, which is beneficial for accurate tracking of individual 

UCNs (Frangioni, 2003). Of course, UCNs also own themselves shortcoming, for example, 

the determination of the quantum yield of UCNs becomes difficult because the standards 

that show up-conversion property are not available. Boyer et al have determined and 

reported the quantum yield of NaYF4 UCNs with various sizes, and their quantum yields 

vary from 0.005% to 0.3% (Boyer, 2010). This is comparatively lower than the quantum yield 

of QDs, which quantum yields could attain 5-85% (Wang, 2003; Shavel, 2006). Therefore, 

these factors also limit, to some degree, the application of UCNs in biosensing fields. 

5. Concluding remarks and perspective 

This paper reviews the latest research advances in utilization of QDs and UCNs conjugates 

in biosensing fields based on their unique optical properties. The advantages and limitation 

of QDs and UCNs for biosensing applications are comparatively summarized. QDs 

conjugates were widely attempted in uses for imaging, targeting drug, and biosensing 

fields. However, the photo-blinking phenomenon, high background autofluorescence from 

biological tissues and toxicity to living system of QDs largely affect their potentials in 

biosensing application. To conquer these challenges, great efforts need to be made in control 

synthesis, surface modification and functionalization, luminescence modulation, and 

bioconjugation technology of semiconductor QDs to further improve their chemical 

photostability, spectra availability, surface chemistry, understand their pharmacokinetics, 

metabolism, degradation and safety in living system, and reduce the and toxicity. Moreover, 

the design and synthesis of high quality QDs with efficient NIR emission and non-toxic 

element composition is also desired for raising the availability of QDs in biological 

application. The last but not the least, with the development of QDs in biosensing 

application, new instrumentation and platform by integration of QDs with multifunctional 
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nanosystem that can target, sense, image and treat diseases are also necessary to push basic 

research moving to clinic trial. 

Partially different from semiconductor QDs, UCNs show features of chemical stability, 

resistance to photobleaching, large anti-Stokes shift, sharp emission peaks, and non-toxicity. 

Moreover, due to their unique visible emission excited by NIR light, UCNs show 

advantages of the deep penetration in tissue and the absence of background 

autofluorescence in biosensing application. However, there are still challenges for UCNs to 

become ideal biological labels for practical biosensing application. One of the biggest 

challenges that hurdles UCNs to practically used in biosensor is that the quantum yield of 

the UCNs is quite low, which results in the low fluorescence signals. In a relatively 

complicated biosensing process, the fluorescence signal may be hard to capture with normal 

instrumentation when using UCNs as fluorescent labels. In addition, the surface 

modification and functionalization of UCNs for improving their quantum yield need to be 

further consummated. The lack of common recognized approach and standard for 

determining the quantum yield of UCNs might be another challenge. The controlled 

synthesis and surface modification of UCNs that exhibit high colloidal stability and 

tailorable optical properties is always desired. Substantial efforts are also needed to focus on 

development of strategies for patterning UCNs on various substrates, allowing for 

multiplexed high-sensitivity detection in biosensor. 

6. Acknowledgements  

We gratefully acknowledge the financial supports from National High Technology Research 

and Development Program (863 program, 2010AA03A407), National Natural Science 

Foundation of China (20961005), Department of Science and Technology of Inner Mongolia 

(Public Security Foundation 208096), Inner Mongolia University Funds (10013-121008). 

7. References  

Alivisatos A. P. (2004). The use of nanocrystals in biological detection. Nat. Biotechnol., Vol. 

22, pp. 47-52. 

Alivisatos A. P. (1996). Perspectives on the physical chemistry of semiconductor 

nanocrystals. J. Phys. Chem., Vol. 100, pp. 13226-13239. 

Alivisatos A. P. (1996). Semiconductor clusters, nanocrystals, and quantum dots. Science, 

Vol. 271, pp. 933–937. 

Alivisatos A. P. Gu W. Larabell C. (2005). Quantum dots as cellular probes. Annu. Rev. 

Biomed. Eng., Vol. 7, pp. 55–76. 

Auzel F. (2004). Upconversion and anti-Stokes processes with f and d ions in solids. Chem. 

Rev., Vol. 104, pp. 139-174. 

Bagwe R. P. Zhao X. J. Tan W. H. (2003). Bioconjugated luminescent nanoparticles for 

biological applications. J. Dispers. Sci. Technol., Vol. 24, pp. 453–464. 

Blasse G. B. Grabmaier C. (1994). Luminescent Materials, Springer, Berlin 

Boyer J. C. Cuccia L. A. Capobianco J. A. (2007). Synthesis of colloidal upconverting NaYF4:

Er3+/Yb3+ and Tm3+/Yb3+ monodisperse nanocrystals. Nano Lett., Vol. 7, pp. 847-

852. 

www.intechopen.com



Biosensing Based on Luminescent Semiconductor  
Quantum Dots and Rare Earth Up-conversion Nanoparticles   

 

143 

Boyer J. C. Manseau M. P. Murray J. I. van Veggel F. C. J. M. (2010). Surface 
modification of upconverting NaYF4 nanoparticles with PEG−phosphate 
ligands for NIR (800 nm) biolabeling within the biological window. Langmuir, 
Vol. 26, pp. 1157–1164. 

Boyer J. C. van Veggel F. C. J. M. (2010). Absolute quantum yield measurements of 

colloidal NaYF4:Er3+,Yb3+ upconverting nanoparticles. Nanoscale, Vol. 2, pp. 

1417–1419. 

Bruchez Jr M. Moronne M. Gin P. Weiss S. Alivisatos A. P. (1998). Semiconductor 

Nanocrystals as Fluorescent Biological Labels. Science, Vol. 281, pp. 2013-2016. 

Brus L. E. (1984). Electron-electron and electron-hole interactions in small metallic 

crystallites: The size-dependence of the lowest optically excited electronic states. J. 

Chem. Phys., Vol. 80, pp. 4403–4409. 

Cao T. Y. Yang T. S. Cao Y. Yang Y. Hu H. Li F. (2010). Water-soluble NaYF4:Yb/Er 

upconversion nanophosphors: Synthesis, characteristics and application in 

bioimaging. Inorg. Chem. Commun., Vol. 13, pp. 392–394. 

Chan W. C. W. Nie S. (1998). Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic 

Detection. Science, Vol. 281, pp. 2016-2018. 

Chatterjee D. K. Rufaihah A. J. Zhang Y. (2008.) Upconversion fluorescence imaging of cells 

and small animals using lanthanide doped nanocrystals. Biomaterials, Vol. 29, pp. 

937–943. 

Chivian J. S. Case W. E. Eden D. D. (1979). Appl. Phys. Lett., Vol. 35, pp. 35124. 

Corstjens P. van Lieshout L. Zuiderwijk M. Kornelis D. Tanke H. J. Deelder A. M. van Dam. 

C. J. (2008). Up-converting phosphor technology-based lateral flow assay for 

detection of schistosoma crculating anodic antigen in serum. J. Clin.Microbiol., Vol. 

46, pp. 171–176. 

Corstjens P. Zuiderwijk M. Brink A. Li S. Feindt H. Niedbala R. S. Tanke H. (2001). Use of 

up-converting phosphor rporters in lateral-flow assays to detect specific nucleic 

acid sequences: A rapid, sensitive DNA test to identify human papillomavirus type 

16 infection. Clin. Chem., Vol. 47, pp. 1885–1893. 

Cui D. X. Pan B. F. Zhang H. Gao F. Wu R. Wang J. He R. Asahi T. (2008). Self-Assembly of 

Quantum Dots and Carbon Nanotubes for Ultrasensitive DNA and Antigen 

Detection. Anal. Chem., Vol. 80, pp. 7996–8001. 

Derfus A. M. Chan W. C. W. Bhatia S. N. (2004). Probing the cytotoxicity of semiconductor 

quantum dots. Nano Lett., Vol. 4, pp. 11–18. 

Dubertret B. Skourides P. Norris D. J. Noireaux V. Brivanlou A. H. Libchaber A.  (2002). In 

vivo imaging of quantum dots encapsulated in phospholipid micelles Science, Vol. 

298, pp. 1759–1762. 

Duncan R. (2006), Polymer conjugates as anticancer nanomedicines. Nat. Rev. Cancer, Vol. 6, 

pp. 688–701. 

Duncan R. (2003). The dawning era of polymer therapeutics. Nat. Rev. Drug Discov., Vol. 2, 

pp. 347–360. 

Ehlert O. Thomann R. Darbandi M. Nann. T. (2008). A four-color colloidal multiplexing 

nanoparticle system. ACS Nano, Vol. 2, pp. 120–124. 

Feldmann C. Goesmann H. (2010). Nanoparticulate functional materials. Angew. Chem. Int. 

Ed., Vol. 49, pp. 1362-95. 

www.intechopen.com



 
 New Perspectives in Biosensors Technology and Applications 

 

144 

Frangioni J. V. (2003). In vivo near-infrared fluorescence imaging. Curr. Opin. Chem. Biol. 

Vol. 7, pp. 626–634. 

Gaponenko S. V. (1998). Optical Properties of Semiconductor Nanocrystals. Cambridge 

University Press, New York 

Gao X. H. Cui Y. Y. Levenson R. M. Chung W. K. L. Nie S. (2004). In vivo cancer targeting 

and imaging with semiconductor quantum dots. Nat. Biotechnol., Vol. 22, pp. 969-

976. 

Gerion D. Pinaud F. Williams S. C. Parak W. J. Zanchet D. Weiss S. Alivisatos A. P. 

(2001). Synthesis and properties of biocompatible water-soluble silica-coated 

CdSe/ZnS semiconductor quantum dots, J. Phys. Chem. B, Vol. 105, pp. 8861–

8871. 

Goldman E. R. Clapp A. R. Anderson G. P. Goldman E. R. Clapp A. R. Anderson G. P. 

Uyeda H. T. Mauro J. M. Medintz I. L. Mattoussi H. (2004). Multiplexed toxin 

analysis using four colors of quantum dot fluororeagents. Anal. Chem., Vol. 76, pp. 

684–688. 

Goldman E. R. Medintz I. L. Whitley J. L. Hayhurst A. Clapp A. R. Uyeda H. T. Deschamps 

J. R. Lassman M. E. Mattoussi H. (2005). A hybrid quantum dot−antibody rragment 

fluorescence resonance energy transfer-based TNT sensor. J. Am. Chem. Soc., Vol. 

127, pp. 6744–6751. 

Goronkim H. et al. (1999). In Nanostructure Science and Technology, a worldwide study. Eds. 

By Siegiel R. W., Hu E. and Rocco M. C., NSTC 

Hampl J. Hall M. Mufti N. A. Yao Y. M. MacQueen D. B. Wright W. H. Cooper D. E. (2001). 

Upconverting phosphor reporters in immunochromatographic assays. Anal. 

Biochem., Vol. 288, pp. 176–187. 

Han M. Y. Gao X. H. Su J. Z. Nie S. (2001). Quantum-dot-tagged microbeads for multiplexed 

optical coding of biomolecules. Nat. Biotechnol., Vol. 19, pp. 631-635. 

Hansen J. A. Wang J. Kawde A. N. Xiang Y. Gothelf K. V. Collins G. (2006). Quantum-

dot/aptamer-based ultrasensitive multi-analyte electrochemical biosensor. J. Am. 

Chem. Soc., Vol. 128, pp. 2228–2229. 

Heer S. Kömpe K. Güdel H. U. Haase M. (2004). Highly efficient multicolour upconversion 

emission in transparent colloids of lanthanide-doped NaYF4 nanocrystals. Adv. 

Mater., Vol. 16, pp. 2102-2105. 

Heer S. Lehmann O. Haase M. Güdel H. U. (2003), Blue, green, and red upconversion 

emission from lanthanide-doped LuPO4 and YbPO4 nanocrystals in a transparent 

colloidal slution. Angew. Chem. Int. Ed., Vol. 42, pp. 3179-3182. 

Hermanson G. T. (1996). Bioconjugate Techniques. Academic Press, New York 

Hood J. D. Bednarski M. Frausto R. Guccione S. Reisfeld R. A. Xiang R. Cheresh D. A. (2002). 

Tumor regression by targeted gene delivery to the neovasculature, Science, Vol. 296, 

pp. 2404–2407. 

Huang L. H. Zhou L. Zhang Y. B. Xie C. K. Qu J. F. Zeng A. J. Huang H. J. Yang R. F. Wang 

X. Z. (2009). Simple optical rader for upconverting phosphor particles captured on 

lateral flow strip. J. IEEE Sens., Vol. 9, pp. 1185–1191. 

Jain. R. K. (2001). Delivery of molecular medicine to solid tumors: lessons from in vivo 

imaging of gene expression and function. J. Control. Release, Vol. 74, pp. 7–25. 

www.intechopen.com



Biosensing Based on Luminescent Semiconductor  
Quantum Dots and Rare Earth Up-conversion Nanoparticles   

 

145 

Jain R. K. (1999). Transport of molecules, particles, and cells in solid tumors. Annu. 

Rev.Biomed. Eng., Vol. 1, pp. 241–263. 

Jaiswal J. K. Simon S. M. (2004). Potentials and pitfalls of fluorescent quantum dots for 

biological imaging. Trends. Cell Biol., Vol. 14, pp. 497–504. 

Johnson N. J. J. Sangeetha N. M. Boyer  J. C. van Veggel F. C. J. M. (2010), Facile ligand-

exchange with polyvinylpyrrolidone and subsequent silica coating of 

hydrophobic upconverting β-NaYF4:Yb3+/Er3+ nanoparticles. Nanoscale, Vol. 2, 

pp. 771–777. 

Katz E. Willner I. (2004). Integrated nanoparticle-biomolecule hybrid systems: Synthesis, 

properties and applications. Angew. Chem. Int. Ed., Vol. 43, pp. 6042-6108. 

Kim J. H. Morikis D. Ozkan M. (2004), Adaptation of inroganic quantum dots for stable 

molecular beacons. Sens Actuators B, Vol. 102, pp. 315–319. 

Kobayashi H. Kosaka N. Ogawa M. Morgan N. Y. Smith P. D. Murray C. B. Ye X. Collins J. 

Kumar G. A. Bell H. Choyke P. L. (2009). In vivo multiple color lymphatic imaging 

using upconverting nanocrystals. J. Mater. Chem., Vol. 19, pp. 6481–6484. 

Li J. J. Ouellette A. L. Giovangrandi L. Coope D. E.  Ricco A J.  Kovacs G. T. A. (2008). 

Optical scanner for immunoassays with up-converting phosphorscent labels. IEEE 

Trans. Biomed. Eng., Vol. 55, pp. 1560–1571. 

Li Z. Q. Zhang Y. (2006). Monodisperse silica-coated polyvinylpyrrolidone/NaYF4 

nanocrystals with multicolor upconversion fluorescence emission. Angew. Chem. 

Int. Ed., Vol. 45, pp. 7732 –7735. 

Lidke D. S. Nagy P. Heintzmann R. Arndt-Jovin D. J. Post J. N. Grecco H. E. Jares-Erijman 

E. A. Jovin T. M. (2004). Quantum dot ligands provide new insights into 

erbB/HER receptor-mediated signal transduction. Nat. Biotechnol., Vol. 22, pp. 

198–203. 

Lim S. F. Ryu W. S. Austin R. H. (2010). Particle size dependence of the dynamic 

photophysical properties of NaYF4:Yb, Er nanocrystals. Opt. Express, Vol. 18, pp. 

2309-2316. 

Liu C. Chen D. (2007). Controlled synthesis of hexagon shaped lanthanide-doped LaF3 

nanoplates with multicolor upconversion fluorescence. J. Mater. Chem., Vol. 17, pp. 

3875-3880. 

Mai H. X. Zhang Y. W. Si R. Yan Z. G. Sun L. D. You L. P. Yan C. H. (2006). High-quality 

sodium rare-earth fluoride nanocrystals: controlled synthesis and optical 

properties. J. Am. Chem. Soc., Vol. 128, pp. 6426-6436. 

Mai H. X. Zhang Y. W. Sun L. D.  Yan C. H. (2007). Highly efficient multicolor up-

conversion emissions and their mechanisms of monodisperse NaYF4:Yb,Er core 

and core/shell-structured nanocrystals. J. Phys. Chem. C, Vol. 111, pp. 13721-

13729. 

Mansur H. S. (2010). Quantum dots and nanocomposites. Wiley Interdisciolinary Reviews: 

Nanomedicine and Nanobiotechnology, Vol. 2, pp. 113-129. 

Medintz I. L. Clapp A. R. Mattoussi H. Goldman E. R. Fisher B. Mauro J. M. (2003). Self-

assembled nanoscale biosensors based on quantum dot FRET donors. Nat. Mater., 

Vol. 2, pp. 2, 630–638. 

www.intechopen.com



 
 New Perspectives in Biosensors Technology and Applications 

 

146 

Murray C. B. Norris D. J. Bawendi M. G. (1993). Synthesis and characterization of nearly 

monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. 

J. Am. Chem. Soc., Vol. 115, pp. 8706–8715. 

Murphy C. J. Coffer J. L. (2002). Quantum dots: A primer. Appl. Spectrosc., Vol. 56, pp. 16A-

27A. 

Niedbala R. S. Feindt H. Kardos K. Vail T. Burton J. Bielska B. Li S. Milunic D. Bourdelle P. 

Vallejo R. (2001). Detection of analytes by imunoassay using up-converting 

phosphor technology. Anal. Biochem., Vol. 293, pp. 22–30. 

Nirmal M. Brus L. E. (1999). Luminescence Photophysics in Semiconductor Nanocrystals.  

Acc. Chem. Res., Vol. 32, pp. 407–414. 

Pires M. A. Heer S. Gudel H. U. Serra O.A. (2006). Er, Yb doped yttrium based nanosized 

phosphors: Particle size, “host lattice” and doping ion concentration effects on 

upconversion efficiency. J. Fluoresc., Vol. 16, pp. 461- 468. 

Qian H. S. Li Z. Q. Zhang Y. (2008). Multicolor polystyrene nanospheres tagged with up-

conversion fluorescent nanocrystals. Nanotechnology, Vol. 19, pp. 255601. 

Rosi N. L. Mirkin C. A. (2005). Nanostructures in biodiagnostics. Chem. Rev., Vol. 105, pp. 

1547-1562. 

Selvin P. R. (2002). Principles and biophysical application of lanthanide-based probes. Annu. 

Rev. Biophys. Biomol. Struct., Vol. 31, pp. 275-302. 

Selvin P. R. Rana T. M. Hearst J. E. (1994). Luminescence resonance energy transfer. J. Am. 

Chem. Soc., Vol. 116, pp. 6029–6030. 

Shavel A. Gaponik N. Eychmüller A. (2006). Factors governing the 1uality of aqueous CdTe 

nanocrystals:Calculations and experiment. J. Phys. Chem. B, Vol. 110, pp. 19280–

19284. 

Smith A. M. Duan H.W. Mohs A. M. Nie S. (2008). Bioconjugated quantum dots for in 

vivo molecular and cellular imaging. Adv. Drug Delivery Rev., Vol. 60, pp. 1226-

1240. 

Smith A. M. Duan H.W. Rhyner M. N. Ruan G. Nie S. (2006). A systematic examination of 

surface coatings on the optical and chemical properties of semiconductor quantum 

dots. Phys. Chem. Chem. Phys., Vol. 8, pp. 3895–3903. 

Stouwdam J. W. van Veggel F. C. J. M. (2002). Near-infrared emission of redispersible Er3+, 

Nd3+, and Ho3+ doped LaF3 nanoparticles. Nano Lett., Vol. 2, pp. 733-737. 

Varlamova O. A. Donovan D. P. Ma D. Gardner J. P. Morrissey D. M. Arrigale R. R. Zhan C. 

Chodera A. J. Surowitz K. G. Maddon P. J. Heston W. D. W. Olson W. C. (2003). 

The homodimer of prostate-specific membrane antigen is a functional target for 

cancer therapy. Proc. Natl. Acad. Sci., Vol. 100, pp. 12590–12595. 

Wang F. Banerjee D. Liu Y. S. Chen X. Y. Liu X. G. (2010). Upconversion nanoparticles in 

biological labeling, imaging, and therapy. Analyst, Vol. 135, pp. 1839–1854. 

Wang F. Liu X. G. (2009). Recent advances in the chemistry of lanthanide-doped 

upconversion nanocrystals. Chem. Soc. Rev., Vol. 38, pp. 976-989. 

Wang F. Liu X. G. (2008). Upconversion multicolor fine-tuning: Visible to near-infrared 

emission from lanthanide-doped NaYF4 nanoparticles. J. Am. Chem. Soc., Vol. 130, 

pp. 5642–5643. 

Wang L. Y. Li Y. D. (2006). Green upconversion nanocrystals for DNA detection. Chem. 

Commun., Vol. 24, pp. 2557–2559. 

www.intechopen.com



Biosensing Based on Luminescent Semiconductor  
Quantum Dots and Rare Earth Up-conversion Nanoparticles   

 

147 

Wang L. Yan R. Huo Z. Wang L.Zeng J. Bao J. Wang X. Peng Q. Yadong Li. (2005). 

Fluorescence resonant energy transfer biosensor based on upconversion-

luminescent nanoparticles. Angew. Chem. Int. Ed., Vol. 44, pp. 6054-6057. 

Wang X. Qu L. Zhang J. Peng X. Xiao M. (2003). Surface-related emission in highly 

luminescent CdSe quantum dots. Nano Lett., Vol. 3, pp. 1103–1106. 

Weaver J. Zakeri R. Aouadi S. Kohli. P. (2009) Synthesis and characterization of quantum 

dot–polymer composites J. Mater. Chem., Vol. 19, pp. 3198-3206. 

Weller H. (1993). Colloidal semiconductor Q-particles: chemistry in the transition region 

between solid states and molecules. Angew. Chem. Int. Ed., Vol. 32, pp. 41-53. 

Wu X. Y. Liu H. J. Liu J. Q. Wu, X. Y. Liu H. J. Liu J. Q. Haley K. N. Treadway J. A. Larson J. 

P. Ge, N. F. Peale F. Bruchez M. P. (2003). Immunofluorescent labeling of cancer 

marker Her2 and other cellular targets with semiconductor quantum dots. Nat. 

Biotechnol., Vol. 21, pp. 41–46. 

Xing Y. Chaudry Q. Shen C. Kong K. Y. Zhau, H. E. W. Chung L. Petros. J. A. O'Regan R. M. 

Yezhelyev M .V. Simons J. W. Wang M. D. Nie S. (2007). Bioconjugated quantum 

dots for multiplexed and quantitative immunohistochemistry. Nat. Protoc., Vol. 2, 

pp. 1152–1165. 

Yen W. M. Weber M. J. (2004). Inorganic phosphors: compositions, preparation and optical 

properties. CRC Press, Florida 

Yi G. Chow G. (2005). Colloidal LaF3:Yb,Er, LaF3:Yb,Ho and LaF3:Yb,Tm nanocrystals with 

multicolor upconversion fluorescence. J. Mater. Chem., Vol. 15, pp. 4460-4464. 

Yi G. Lu H. Zhao S. Ge Y. Yang W. Chen D. Guo L. (2004). Synthesis, characterization, and 

biological application of size-controlled nanocrystalline NaYF4:Yb,Er infrared-to-

visible up-conversion phosphors. Nano Lett., Vol. 4, pp. 2191-2196. 

You C. C. Chompoosor A. Rotello V. M. (2007). The biomacromolecule-nanoparticle 

interface, Nano Today, Vol. 2, pp. 34–43. 

Zeng J. Su J. Li Z. Yan R. X. Li Y. D. (2005). Synthesis and upconversion luminescence of 

hexagonal-phase NaYF4:Yb, Er3+ phosphors of controlled size and morphology. 

Adv. Mater., Vol. 17, pp. 2119-2123. 

Zhang C. Y. Johnson L. W. (2009). Single Quantum-Dot-Based Aptameric Nanosensor for 

Cocaine. Anal. Chem., Vol. 81, pp. 3051–3055. 

Zhang C. Y. Yeh H. C. Kuroki M. T. Wang T. H. (2005). Single-quantum-dot-based DNA 

nanosensor. Nat. Mater., Vol. 4, pp. 826–831. 

Zhang F. Wan Y. Yu T. Zhang F. Shi Y. Xie S. Li Y. Xu L. Tu B. Zhao D. (2007). Uniform 

nanostructured arrays of sodium rare-earth fuorides for highly efficient multicolor 

upconversion luminescence. Angew. Chem. Int. Ed., Vol. 46, pp. 7976-7979. 

Zhang J. Su J. F. Liu L. Huang Y. Mason R. P. (2007). Evaluation of red CdTe and NIR 

CdHgTe QDs by fluorescent imaging. J. Nanosci. Nanotechnol., Vol. 8, pp. 1155-1159. 

Zhang J. Z. (1997). Ultrafast studies of electron dynamics in semiconductor and metal 

colloidal nano-particles: effects of size and surface. Acc. Chem. Res., Vol. 30, pp. 423-

429. 

Zhang Y. W. Sun X. Si R. You L. P. Yan C. H. (2005). Single-crystalline and monodisperse 

LaF3 triangular nanoplates from a single-source precursor. J. Am. Chem. Soc., Vol. 

127, pp. 3260-3261. 

www.intechopen.com



 
 New Perspectives in Biosensors Technology and Applications 

 

148 

Zhou J. Sun Y. Du X. Xiong L. Hu H. Li F. (2010). Dual-modality in vivo imaging using rare-

earth nanocrystals with near-infrared to near-infrared (NIR-to-NIR) upconversion 

luminescence and magnetic resonance properties. Biomaterials, Vol. 31, pp. 3287–

3295. 

Zhou M. Ghosh I.(2007). Quantum dots and peptides: A bright future together. Peptide 

Science, Vol. 88, pp. 325-339. 

Zijlmans H. Bonnet J. Burton J. Burton J. Kardos K. Vail T. Niedbala R. S. Tanke H. J. (1999). 
Detection of cell and tissue srface antigens using up-converting phosphors: A new 
rporter technology. Anal. Biochem., Vol. 267, pp. 30–36. 

www.intechopen.com



New Perspectives in Biosensors Technology and Applications

Edited by Prof. Pier Andrea Serra

ISBN 978-953-307-448-1

Hard cover, 448 pages

Publisher InTech

Published online 27, July, 2011

Published in print edition July, 2011

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

A biosensor is a detecting device that combines a transducer with a biologically sensitive and selective

component. Biosensors can measure compounds present in the environment, chemical processes, food and

human body at low cost if compared with traditional analytical techniques. This book covers a wide range of

aspects and issues related to biosensor technology, bringing together researchers from 12 different countries.

The book consists of 20 chapters written by 69 authors and divided in three sections: Biosensors Technology

and Materials, Biosensors for Health and Biosensors for Environment and Biosecurity.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Jun Zhang, Changyan Li, Wenzhi Zhao, Baocang Liu, Yunxia Liu and Gaole Aletan (2011). Biosensing Based

on Luminescent Semiconductor Quantum Dots and Rare Earth Up-Conversion Nanoparticles, New

Perspectives in Biosensors Technology and Applications, Prof. Pier Andrea Serra (Ed.), ISBN: 978-953-307-

448-1, InTech, Available from: http://www.intechopen.com/books/new-perspectives-in-biosensors-technology-

and-applications/biosensing-based-on-luminescent-semiconductor-quantum-dots-and-rare-earth-up-

conversion-nanoparticle



© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.


