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1. Introduction 

Radio Frequency Identification (RFID) has rapidly expanded its market in recent years; until 

2019, the market volume of RFID will probably reach 3.9 billion USD globally (for those 

passive tags). It will replace barcodes and find a lot more applications where barcodes 

cannot do today.[1] RFID takes the advantages such as the high-speed scanning, 

miniaturized size, high reliability, high memory volume, safe, and excellent read 

accessibility, as compared to barcodes. However, the high materials and fabrication costs are 

the major bottleneck for wider applications. Currently, the cost of chip is still the major part 

of the overall cost of a tag, which contributes about 30% to 70% of the total cost of a tag. The 

rest part is the sum of the materials cost including the antenna, substrate, and that for 

integrating them together. Since the cost of the chip keeps dropping due to the technical 

development, the need for reducing the other parts now is more urgent than ever. 

Therefore, it becomes a challenging part nowadays for reducing the cost of antenna, which 

takes the highest mass weight of all electrical components.  

Currently, there are several alternative fabrication methods of the RFID tag antennas. For 

example, there are etched/punched antennas, wound antennas, which are based on metallic 

foils and printed antennas, which are based on the electrically conductive adhesives (ECAs). 

Even though each method has its pros and cons, printed antennas are currently regarded as 

the most promising one, primarily due to both productivity and cost concerns. Moreover, 

printability renders the antenna fabrication process integrated into the whole tag 

manufacturing system,[2] especially suitable for mass production of the RFID tags. It will 

also be indispensible for manufacturing the chipless tags, which eliminates the silicon chip 

from the tag, not only for saving cost, but there would be other benefits such as thinner in 

shape and more environmentally benign. However, printed RFID tags often have a shorter 

life-time than the etched tags (life span of more than ten years), which causes limitations in 

such as passports requirements; there are also concerns about the read range, which is 

related to the relatively low electrical conductivity. Thus there are still a lot of rooms for 

improvement for the printed materials.  
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There are a few alternative printing techniques which are applicable for printing the antenna 
materials (such as gravure, screen, roll to roll, flexography, and stencil etc.), which are 
briefly shown in Fig. 1. Here this chapter primarily elucidates the works which are based on 
the (flat-bed) screen printing method, which is very representative at the stage of lab 
prototyping. Screen printing is a low cost printing technique which has a very long history; 
as firstly appeared about 2000 years ago in the Qin dynasty in China. Screen printing 
technique uses a woven mesh to support an ink-blocking stencil. The attached stencil forms 
open areas of mesh that can transfer ink or other printable materials which can be pressed 
through the mesh as a sharp-edged image onto a substrate. A roller or squeegee is moved 
across the screen stencil, forcing or pumping ink to pass through the open areas in the 
woven mesh. There is a wide range of screen materials which include steel, polyester, glass 
fiber, silk fiber, and nylon etc. They form a smooth, porous, finely woven fabric which is 
stretched over a wood or aluminium frame. Areas of the screen are blocked off with a non-
permeable material as a stencil. The open spaces of the screen allow the ink appear on the 
substrate beneath the screen. Generally, screen-printing method can render the printed 
resolution to be about 100 microns and above, which is determined by many factors such as 
the selection of the material of the screen mask and the automatic control of the processing 
conditions. The screen mask can be conveniently prepared by the ordinary 
photolithography method, thus it is a very promising and competitive printing method for 
producing the ultralow cost RFID antennas and even tags for prototyping. Moreover, screen 
printing can work on a large range of substrate materials such as textiles, ceramics, woods, 
papers, glasses, metals, and plastics. Fig. 2A shows a worker in a label printing company in 
Dongguan, China, whom is working on a flat-bed screen printer. The RFID tags printed in 
this way is shown in Fig. 2B. There were a few layers of inks including the hot-melt adhesive 
layer, the ECA layer, and the ink layers which were printed onto a piece of PET film 
consecutively. Then the printed pattern was heat-transferred onto a piece of fabric sample, 
which underwent dozens of washing cycles (e.g. 40 cycles) for evaluating the reliability of 
the sandwiched RFID tags. [3]  
As the major component for the printed RFID antenna, ECAs are composed of two major 
parts: one is the conductive filler, such as silver, copper, and nickel; the other is the 
nonconductive polymer resin, which can be epoxy, polyester, polyurethane, ceramic, and 
other dispersants which can fit for the printing condition and some other factors. 
Nevertheless, high electrical conductivity of the printed antenna material is indispensible, so 
that the read range performance can match most of the applications of the tag.[4] Among all 
available printed materials including metals, carbon, and intrinsically conductive polymers, 
silver is considered as the most promising one, due to its high electrical conductivity (6.2 x 
105 S/cm, which is the highest among all metals), relatively low material cost, and excellent 
reliability in long-term uses without the concern of electrochemical etches. Silver fillers are 
usually ground into micron-sized flakes when they are mixed with the resin dispersant; thus 
the overall electrical conductance of the ECA is not only determined by the intrinsic 
conductivity of silver, but also by the percolation effectiveness among them.[5] To improve 
the percolation of the silver fillers in the ECAs for practical uses, silver flakes with the 
diameter ranging from 30 micron to 3 micron are usually selected, which can be 
conveniently fabricated by mechanical machining methods such as ball-milling etc.[6] The 
anisotropic morphology renders the silver fillers more easily build up associated network 
inside the resin dispersant so that the percolation threshold (the minimum filler content 
requirement for achieving ohmic conductance) of the filler can be decreased.[7] Further 

www.intechopen.com



 
Conductive Adhesives as the Ultralow Cost RFID Tag Antenna Material 

 

129 

decreasing the size of the fillers inevitably increases the viscosity of the filler-dispersant 
mixture, which may cause problems during printing.  
 

 

Fig. 1. A schematic comparing the printing speed and the RFID cost per tag. 

 

 

Fig. 2. Photographic images showing the RFID tag incorporated high reliability hot-press 
labels for garments. A) A worker is screen-printing the ultralow cost ECA based antenna in 
his work line in a company in Dongguan, China; B) A group of labels ready for heat-transfer 
printing; C) Samples cotton fabric pieces with the labels heat-transferred onto them. (Upper: 
before washes; bottom: after washing for forty cycles.) The RFID read range performance 
remained the same after the heat-transfer process and the subsequent washing cycles. 

There have been intensive studies about the ECAs in the last two decades,[8] majorly 

considered as the substitute for the Sn/Pb eutectic solders as an interconnect material in the 
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traditional electronic packaging industry. This is not only because they have fewer troubles 

about environmental problem (no lead is involved), but they have lower processing 

temperature and more convenient processing procedures (the curing temperature of ECAs 

is normally lower than the melting point of the eutectic solders, i.e. 183 oC). However, a 

simple mixture of the conventional resin dispersant, such as bisphenol-A type of epoxy resin 

and silver fillers such as microflakes (at 75% by weight) can often result in the electrical 

resistivity of the ECA in the range of 10-4 Ω ·cm. As compared to the Sn/Pb eutectic solders, 

the electrical conductivity of the ECAs needs to be improved to cater for general application 

of electrical devices.  

As a noble metal, silver suffers less from the electrochemical etching problem than many 

others such as copper and nickel etc. However, ECAs filled by silver flakes still exhibit a 

high contact resistance due to a variety of factors, including the contamination from the 

impurities and additives of the resin dispersant (such as the free radicals from the initiator, 

the organic ligands from the curing agents etc.). Moreover, silver oxide exhibits a very high 

electrical resistivity (i.e. about 1016 times higher than pure silver).[9] Unlike the eutectic 

solders, which have a much lower melting point, the melting point of silver is 962 oC, which 

makes it very difficult to be annealed or sintered by conventional processing conditions. 

Early studies majored in those methods which can improve the physical contact among the 

silver fillers;[10] for example, by selecting the highly contracted resins,[10] or through 

applying an additional hot-laminating step after curing the ECAs.[11, 12] These strategies 

were shown to be able to reduce the bulk electrical resistance of the printed ECA 

irreversibly.[13] 

 

 

Fig. 3. A schematic showing the influence of the curing step of the ECAs, which is critical to 
the percolation of the fillers.  
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2. Recent progress of silver filler modifications 

In recent years, Wong et al. conducted the researches on the self-assembled monolayer 
(SAM) protecting layers to the silver fillers. By seasoning a small quantity of the organic 
molecules (usually those which can form ligands with the metallic fillers) into the ECA 
formulations, the electrical resistivity of the ECAs can be drastically reduced.[14] The 
mechanism is rather complicated, which is supposed to be related to the red-ox process of 
the silver surface. Some of the SAM molecules exhibit a certain level of reducing 
property.[15, 16] There is a large range of the feasible compounds, including malonic acid 
etc., which can be used for this purpose.[15, 17, 18] On the other hand, Jiang et al. studied 
the effect of adding a certain ration of nano-sized silver particles to supplement the silver 
micro-flake fillers. By adding 40 wt% and 60 wt% of the nanosilver and microsilver, at 80 
wt% filler content level, the electrical resistivity of a modified formulation can achieve ~5 x 
10-6 Ω cm.[17] It was anticipated that the silver nanoparticles can benefit from the melting 
point depression effect due to the small size. Thus the silver fillers fuse with each other and 
build up a percolated network through ohmic contact.[19] Consequently, the electrical 
conductivity of the composite material approaches the lower limit of the conductive-
nonconductive mixture (as shown in Fig. 3). 
Yang et al. recently worked on a novel method to achieve better percolation of the silver 
fillers. An iodination step is applied to the silver microflakes prior to the mixing step of the 
ECAs, so that the electrical conductivity of the silver based ECAs can be significantly 
improved.[20] Silver has a strong interaction with iodine and the reaction results in the 
formation of silver iodide and some other compounds. Silver iodide is a semiconductive 
material which has indirect band-gap; the size of the silver cations is much smaller than that 
of iodide.[21] Silver cations can conveniently move around through the interstitial sites so as 
to exhibit a certain superionic conductivity.[21, 22] On the other hand, the solution-based 
silver microflake treatment process can eliminate the oxide layers from the silver 
surface.[23] After the iodination process, those iodinated regions occupy active sites such as 
the terraces and steps of the silver surface more selectively, and experience a subsequent 
ripening process,[24-27] leaving the remaining part a clean silver surface due to an 
electrochemical process,[26, 27] although the dynamic process still needs further 
investigation.  
The reaction between the solid (Ag) and solute (I2) is partially determined by the diffusion 

function, thus the resulting iodinated surface layer exhibits a level of nonstoichiometry. This 

part appears in the form of nano-islands, which are distributed on the silver flake surface. 

For example, TEM-EDS and SEM-EDS (Fig. 4) results both suggested that the nano-islands 

are distributed very sparsely on top of the silver flakes, which suggests that under optimum 

conditions for the best conductivity (i.e., when filled with A3) and there are excess amount 

of silver inside the nano-islands. The excess silver can actively involve in the charge transfer 

process and facilitates the reconstruction of the silver surfaces.[21]  

As shown in Fig. 5A, four groups of samples were analyzed by TOF-SIMS: (1) bare silver 

wafer, (2) sparsely covered by the nano-islands (1: Ag : I = 100 : 0.2) (resembling to the 

surface of A3), (3) moderately covered by the nano-islands( 2: Ag : I = 100 : 0.4) (resembling 

to the surface of A9), (4) fully iodinated surface (3: Ag : I = 100 : 20), respectively. The sum of 

the relative peak intensities of 107Ag2OH+ and 107Ag2O+ over that of the silver base peak 

(107Ag+) is used as the index to demonstrate the overall oxidation level of the surface. After 

experiencing the curing and purging processes, the surface oxidation level of the 
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unmodified bare silver sputtered wafer samples increased 15.5%, which suggests the 

oxidation of the silver surface in the curing process in the absence of Ag/AgI nanoclusters. 

While the surface oxidation level of the modified silver decreased 60.4% in condition 1, and 

54.3% condition 2, respectively. This is direct evidence that the Ag/AgI nanoclusters on the 

silver surface prevented the silver metal surface from oxidation in curing process. But on the 

sample which was fully iodinated (condition 3), the curing process incurred an increase of 

the total oxidation level. Since the ratio of (107Ag2OH+ + 107Ag2O+)/107Ag+ is an index of the 

overall oxidation level of the sample surface, it appears that the less the nanoclusters 

covering the surface, the more fragment signals from the exposed silver metal surface were 

collected. For those samples with low and medium coverage levels of nanoclusters 

(condition 1 and 2), after curing, the overall oxidation levels were lowered by 60% and 54%, 

respectively. Considering the surfaces of these two samples were partially covered by the 

nanoclusters, after the curing process, the oxidation of the silver surface (except for the 

nanoclusters) was greatly inhibited. It suggests that during the curing process, the 

nanoclusters influence oxygen adsorption on the silver surface and recover the part of the 

oxidized surface. This phenomenon may be attributed to excess amount of silver in the 

nanoclusters, which exhibit stronger reducing property than the bulk silver substrate.[28, 

29]  

Fig. 5B demonstrates the situation of the silver surface when it is saturated by iodine 

treatment (Ag : I = 100 : 20). We tentatively partitioned the depth into two regions to 

facilitate the study of this spectrum: The left side illustrates the region of the nano-islands 

and the right side the region of the silver metal. In Fig. 5B, this ratio (107AgIO-/107Ag-) 

decreases with the sputtered depth, showing that the deeper the sputtering the stronger the 

collected substrate signals (i.e. 107Ag-). After curing, this ratio (107AgIO-/107Ag-) increased at 

the sample surface which is about several nanometers in depth. For example, at the depth of 

~7 nm, it is 1.1 times higher than the ratio of the sample before cure, showing that the nano-

islands are further oxidized after cure. This is quite different from the TOF-SIMS analysis on 

a control sample of pure silver iodide crystalline powder (Aldrich, [7783-96-2], 99.999%), 

which shows negligible 107AgIO- peak intensity (ratio AgIO-/Ag- = 6.3 ± 0.88%). As an 

unstable and naturally rare substance, the observation of a large quantity of silver 

hyperiodite (107AgIO-) anions in the TOF-SIMS spectra indicates that in the nanocluster 

regions a large amount of oxygen incorporates into the Ag/AgI nano-islands.[24, 26, 28-30] 

Comparison of the spectra before and after the mimic curing process demonstrates that the 

nano-islands are reactive to ambient oxygen and the curing process can accelerate the 

oxidation process. The inter-conversion between AgI and AgIOx (x = 1, 3) species has been 

demonstrated to be a complicated charge transfer and oxidation process which is related to 

many factors.[31, 32] The redistribution of the silver surface species could alter the path of 

oxidation of the silver surface, which may play a key role in reducing the contact resistance 

of the silver microflake network in the ECAs. Both the concentration and amount of iodine 

are crucial factors in determining the coverage and morphology of the nano-islands on the 

silver surface. The experimental results suggested that the coverage of these 

nonstoichiometric nano-islands plays a key role in modulating the surface property of silver.  

The ECA samples filled with A3 showed the highest electrical conductivity among all listed 
conditions e.g., A1, A4, A5, A6, and A9, etc., as shown in Fig. 6 (this figure only shows the 
resistivity data of the ECA samples lower than 10-3 Ω·cm). The A3 filled ECA has a volume 
resistivity of 5.92 x 10-5 Ω·cm with a silver filler content of 40 wt% (6.5 v/v%). The volume 
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resistivity increased to 4.81 x 10-4 Ω  cm when the silver filler content decreased to 27.5 wt% 
(3.8 v/v%). Further reduction of the filler content resulted in higher and unstable resistivity. 
For example, the resistivity of the ECA filled with 70 wt% of A1 is only 1.51 x 10-4 Ω·cm (not 
shown in this figure), and filled with 60 wt% of A5 is only 2.99 x 10-4 Ω·cm. While the 

resistivity of the ECA filled with 70 wt% of A3 is 6.90 x 10-6 Ω  cm, and filled with 60 wt% of 
A3 is 1.13 x 10-5 Ω·cm. When further decreasing the content of A3 in the ECAs to be lower 
than 27.5 wt%, i.e., 27 wt%, 26 wt%, 25 wt% etc., from the SEM analysis of the cross sections, 
sedimentations of the fillers were observed, which is due to the mismatch of the density 
between silver micro-flake and the epoxy resin. These sedimentations denote that when the 
silver filler content is lower than 27 wt%, the silver fillers can not form an associated 
network, which is crucial for electrical percolations. Even though this sedimentation effect 
may have problems in omnidirectional percolation; experimental evaluations suggest that 
the ultralow filler content ECAs all exhibit excellent 2D electrical conductivity in the form of 
printed thin film resistors. 
 

 

Fig. 4. A)-C): TEM-EDS analysis of the ECA cross sections. A) TEM-EDS of the nano-islands 
on a sectioned ECA sample (filled with A9). (Scale bar = 200 nm) EDS spectra are 
accompanied on the left. B) HRTEM image of bare silver micro-flake surface. (scale bar = 2 
nm) C) HRTEM image of A9 filled ECA surface, except for the nanocluster parts. (scale bare 
= 2 nm) The crystal lattice of silver metal is marked in both the images of (b) and (c). (All 
samples are embedded in a resin filled with 75 wt% of the filler.) D)-E): SEM-EDS analysis of 
the iodinated silver flakes. D) Sample A3, the elemental ratios bentween silver and iodine 
are listed in this image; (scale bar = 2.5 µm) E) Sample A9, the elemental ratios bentween 
silver and iodine are listed in this image. (scale bar = 2.5 µm) (Copyright © 2010 WILEY-
VCH) 
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Fig. 5. TOF-SIMS analyses of the silver sputtered silicon wafer samples. A) Silver sputtered 
silicon wafers after treatment of different concentration of iodine solutions. (The cured 
samples refer to those experienced a curing and post-washing process prior to this analysis.) 
Conditions: 1. Ag : I = 100 : 0.2; 2. Ag : I = 100 : 0.4; 3. Ag : I = 100 : 20. B) Depth profile of the 
surface-modified sputtered wafer sample (treatment condition: Ag : I = 100 : 20; y-axis in 
logarithmic scale). (Copyright © 2010 WILEY-VCH)  
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Fig. 6. A) SEM images of the iodinated silver micro-flake sample (left) and original bare 
silver micro-flake sample (right) (scale bar = 500 nm); B) A photographic image of a piece of 
UHF RFID tag using the A3-filled ECA as the antenna material. (A3, A4, and A5 are those 
silver fillers underwent different iodination conditions) C) The volume resistivity data of the 
modified ECAs with selected iodination conditions and a control bare silver-filled ECA 
(containing 75 wt% of silver filler). The partition lines drawn here is for comparing the 
resistivity of the modified ECAs versus the control silver adhesives (olive line) and silver 
metal (red line). (*This series of data of A3 filled ECAs are based on Novolac type epoxy 
resin to adjust the viscosity at low filler content.) A4: Ag : I = 0.5 : 100; A5: Ag : I = 1 : 100; D) 
Read range testing result of the RFID tags. Turn on power measurement on the A3 filled 
ECA RFID tag samples (tag 1, 2, 3) and the control samples (ctrl 1, 2, 3, 4). Except for tag2 
and tag3, conformance was found when measuring all other tag samples. An EPCglobal 
Ultrahigh Frequency Class 1 Generation 2 RFID strap (Alien Technology Inc.) was adhered 
to the center of each tag antenna and the measurement was in a UHF RFID system (CSL 
CS461) in an anechoic chamber with a fixed reader-to-tag distance of 1 meter. Inset: A 
photographic image showing the turn-on power test.  

 

 

Fig. 7. Designed geometry of RFID tag antenna based on the ECA sample with 30 wt% 
silver. 

3. Recent progress in the environmentally benign dispersants 

Besides the electrical conductivity, there are also some other considerations which 

determine the overall performance of the ECAs. For example, the materials involved in the 
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printed RFID must be safe to human health and environmentally benign. This issue is 

especially critical to the area of food packaging and logistics at item-level. Li et al. evaluated 

the performance of some biocompatible curing agents to substitute the toxic curing agents 

for epoxy resins.[33, 34] However, the use of conventional bisphenol-A type of epoxy resin 

still faces lots of environmental and health problems. Yang et al. recently investigated the 

blocked aliphatic polyurethane (PU) as the dispersant material for preparing the ECAs for 

the RFID application. Two types of the methyl ethyl ketone oxime (MEKO) -blocked 

polyurethane prepolymers were used as they have been evaluated by the European Food 

Safety Authority as a safe material for food can coatings recently.[35] Moreover, as the -

NCO group of the resin is blocked, the ECAs exhibit a long shelf-life than the unblocked 

resins. On the other hand, their moderate viscosity (1000 cPa·s to 3000 cPa·s, dependent on 

the amount of the silver filler content) is suitable for general screen-printing processes. 

Bayermaterialscience Desmodur BL 4265 SN is a kind of MEKO blocked isophorone 

diisocyanate (IPDI) trimer (#1) while Desmodur BL 3175 SN is a kind of MEKO blocked 

hexamethylene diisocyanate (HDI) trimer (#2). Both of them can couple with polyols to 

form low viscosity, transparent, long shelf-life paste for preparing light-stable colorless 

flexible, colorfast and weather-stable stoving coatings. These blocked polyurethane 

prepolymers are stable at room temperature when being mixed with the polyol hardener 

and catalyst. After mixing the dispersant with silver microflakes, the resulting ECA paste 

were screen-printed to PET films and cured. The structure of the blocked polyurethane 

prepolymers is demonstrated in scheme 1.  
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Scheme 1. Structure of the blocked polyurethane prepolymers #1 and #2: (Copyright @ 2011 
Springer Publishing House) 
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Fig. 8. Resistivity of the printed resistor of the ECAs (#1 and #2) with different silver filler 
contents. (Copyright @ 2011 Springer Publishing House) 

Fig. 8 illustrates the electrical resistivity of the ECA antenna samples containing different 
silver contents (from 30 wt% to 75 wt%), which displays a series of optional conditions for 
the aimed cost-effectiveness. Here we can observe that with different content of silver fillers, 
the electrical resistivity of the ECAs varies in a range from about 2 x 10-5 Ω·cm to 2 x 10-3 

Ω·cm. [3] When the silver content is lowered down to 40% and 30%, we observed that the 
resistivity reaches a plateau. This chart suggests that the conductivity of the PU based ECAs 
is comparable to those ECAs based on bisphenol-A epoxy, thus they are useful to general 
applications.  
Fig. 9A and 9B show the changes of resistivity versus the aging time in a TERCHY MHU-
150L humidity chamber (85oC/85%RH) for up to 720 hours of the two series of ECA 
samples. From these figures, we can observe that after the aging test, most of the electrical 
resistances are even lower than those before aging. For the ECA samples with relatively low 
filler content (30% and 40% of the filler content), the resistance even dropped about 20%. For 
the other samples, the variation of the resistance value is smaller than 10%, which suggest 
that these PU based ECAs having superior reliability up to 720 hours in their electrical 
conductivity.  
From the SEM analysis (Fig. 11) of the cross sections of the ECA samples, we can observe 
that disregarding the variation of the silver content (e.g. from 30 wt% to 75 wt%), the silver 
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microflakes can be homogeneously distributed in the PU dispersant. In order to evaluate the 
performance of the PU-dispersed ECA in high frequency applications, we conducted the 
read range examination of the ECA printed RFID tag antennas.  
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Fig. 9. Reliability analysis (85oC/85% relative humidity) of the ECAs. A) Variation of the 
relative resistance of the printed resistors of the ECA #1; B) variation of the relative 
resistance of the printed resistors of the ECA #2. . (Copyright @ 2011 Springer Publishing 
House) 
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Fig. 10. Thermal cycling analysis of the ECAs. A) Variation of the relative resistance of the 
printed resistors of the ECA #1; B) Variation of the relative resistance of the printed resistors 
of the ECA #2. (Copyright @ 2011 Springer Publishing House)  

Usually, the RFID antenna is designed based on the dipole antenna which is about half 

wavelength in length, as demonstrated in Fig. 8. Since the passive tag where the power is 

obtained solely from the received electromagnetic wave, the tag antenna must match the tag 
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circuit to maximize the transfer of power into and out of it. We selected an Alien’s Gen 2 

RFID chip which has an impedance value of 30 - 110j Ω, so we designed the tag antenna 

with the impedance value of 30 + 110j Ω to conjugate match with the chip. In the simulation, 

we considered both the resistivity of the materials, surface roughness, and configuration of 

the antenna. Based on the simulation result, we designed a series of RFID tag antenna based 

on #1 and #2 series. The antenna is a 82 mm-long dipole with a short line connecting two 

parts, as shown in Fig. 9.[36] For example, the simulated impedance of the ECA antenna 

filled with 30 wt% of silver filler is 33 + 108j at 915 MHz which well matches the Alien’s 

RFID strap (30 - 110j). The calculated return loss values is -24 dB, which means over 99% 

power is transmitted to RFID chip. We found that the -10 dB power transmission bandwidth 

of the antenna is 60 MHz which covers the operation frequency of North American, China, 

and Hong Kong standards.[37] Herein we use the minimum turn-on power of the reader as 

the index of the RFID tag antenna performance. The reader is located one meter in distance 

towards the RFID tag (a piece of EPCglobal Class 1 Gen 2 RFID Chip is adhered to the center 

of the antenna). From the experimental result, we can observe that the minimum turn-on 

power of the reader is consistent with the electrical resistivity of the ECA samples, i.e. with 

the increment of the resistivity of the antenna, the reader needs a higher minimum turn-on 

power to detect the tag (Fig. 12). Therefore, using the same antenna design, we can adjust 

the content of silver filler in the ECA to cater to different requirement of read range. As for 

the real application of RFID technique, the power out-put of the reader is often fixed to a 

certain value. Controlling the resistivity of the ECA can probably be a convenient way to 

cater to the different requirement of read range requirement. Apparently that by using the 

low silver filler content paste the cost of RFID tags can be dramatically reduced. Meanwhile, 

the environmentally benign polyurethane based ECAs take the advantage in food supply 

chain and medical applications etc. 

 

 

Fig. 11. SEM images of the cross sections of some of the ECA bulk samples. A) 30% of filler; 
B) 40% of filler; C) 55% of filler; D) 70% of filler; and E) 75% of filler. (Scale bar = 10 µm) 
(Copyright @ 2010 Springer Publishing House) 

The ECA samples with different silver content were prepared, printed into pre-designed 
geometries and their performances such as electrical resistivity, adhesion strength to PET 
film, and high frequency performances were studied. From the experimental results, the 
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ECA with the silver content as low as 47.5% still maintain an acceptable conductivity (6.56 x 
10-4 and 5.96 x 10-4 Ω·cm), which is efficient for high frequency applications. This suggests 
that by adjusting the silver content, the electrical and mechanical properties of the ECAs can 
be modulated. On the other hand, we observed that the silver content at 70% showed similar 
conductivity to those with higher silver content, which suggests that the silver content at 
this level reaches the summit of the conductivity. In a 720-hour 85 oC/85%RH aging test, we 
observed that in a large range of silver contents from 30% to 75%, the electrical resistivity of 
this PU based ECA was very stable. They also passed the 720-hour thermal cycling test for 
electrical conductivity. After all, blocked-PU based resin has been demonstrated efficient for 
fabricating the low-cost and flexible ECAs, which has also been demonstrated feasible in the 
ultra high frequency RFID tag antennas.  

4. Water-based ECAs 

PU displays various characters such as adjustable mechanical properties, shape-memory 
property, and excellent stability.[38-40] Moreover, many PU-based resins are biocompatible 
and can be obtained from renewable resources such as from vegetable oils.[41-43] The 
water-based PU resins exhibit even more advantages since there is no organic small 
molecule involved or released during the printing process. Recently, Yang et al. investigated 
the feasibility of applying the water-based PU resin as the dispersant material for the ECAs. 
Here cycloaliphatic PU is prepared in the emulsion based reaction. As shown in Scheme 2, 
the water-borne PU dispersant is prepared mainly in four steps: 1. polyether polyol (here is 
polytetrahydrofuran 2000), dihydroxylmethylpropionic acid (DHPA), and isophorone 
diisocyanate (IPDI) are mixed together for preparing the prepolymer; 2. chain extender 
(butylene diol) is added until the chain propagation is terminated; 3. triethylamine (TEA) is 
added to neutralize the system; 4. water is added dropwise so that the PU is transferred into 
aqueous solution. Finally, the organic solvent and the unreacted chemicals are removed by 
vacuum. The resulting PU emulsion is translucent bluish with long shelf-life and stable 
rheological property. The structure of the PU resin prepared in this way was confirmed by 
FT-IR spectrum. As shown in Fig. 13, the FT-IR spectrum of the dried film of the as-prepared 
water-borne PU is investigated. The peaks at 2933 cm-1 and 2854 cm-1 confirm the existence 
of the –CH2- group, the 1698 cm-1 the carbonyl group, and 1239 cm-1 and 1108 cm-1 confirm 
the C-O vibrations. The as-prepared PU has excellent thermal stability, which was 
confirmed by using thermalgravimetric analysis (TGA). The temperature of the sample was 
ramped from room temperature to 600 oC with the speed of 20 oC/min in the air (Fig. 14). 
The sample lost less than 10% weight before it reached 250 oC. Further raising the 
temperature resulted in the total decomposition, until the temperature reached 430 oC. This 
result suggests that the PU dispersant is suitable for the general solder reflow process as 
well when it is applied in the traditional packaging process.  
The WBECAs were prepared by mixing the PU resin and a certain portion of the modified 
silver microflakes together by using a THINKY ARE250 mixer.[20] By adjusting the ratio 
between the two components we are able to achieve an optimum between the mechanical 
strength and electrical conductivity. NaBH4 has been considered as a very powerful 
reducing agent for protecting many metals from oxidations. For example, addition of small 
amount of NaBH4 has been demonstrated effective for improving the percolation among the 
copper and nickel powders via an in-situ reducing process for ink-jet printing conductive 
lines.[44] Here we tentatively added in 0.5% (by weight) and 1% (by weight) of NaBH4 (vs. 
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Ag) into the WBECAs, as an agent for preventing the oxidation issue during the processing 
steps. The cross section images of the samples were studied on both transmission electron 
microscopy (TEM) and scanning electron microscopy (SEM). As shown in Fig. 15, the 
electrical resistivity of the printed resistor which is based on different silver content and 
NaBH4 treatment condition are listed in Table 1. From Fig. 15, we can observe that the 
addition of NaBH4 can effectively reduce the electrical resistivity of the printed resistors 
which were prepared by using the WBECAs. The improvement of the resistivity is about 
one order of magnitude.  
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Scheme 2. Preparation route of the water-borne PU dispersant. 

The measurement of the variation of electrical resistivity of the printed ECA samples were 

conducted in a TERCHY MHU-150L humidity chamber (85°C/85% relative humidity) for 60 

days for the temperature-humidity testing (THT) (Fig. 16). As shown in Fig. 16, we can observe 

a trend of decrease of the electrical resistivity over the period of time. The reasons of the 

decrement of the electrical resistivity of all the samples are related to the following points: 1) 
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the water-borne PU dispersant is intrinsically an emulsion which contains both the 

hydrophilic part and the hydrophobic part; water molecules trapped in the interstitial sites are 

eliminated during the aging process or thermal curing process which renders shrinkage of the 

total size; 2) since the glass transition temperature (Tg) of the water-borne PU dispersant is 

much lower than room temperature (~-20 oC), the creeping of the hydrophobic polymer chain 

enhances the phase separation of the hydrophobic/hydrophilic regions, which results in a 

stronger interaction among the polymer chains by hydrophobic interaction and hydrogen 

bond as well. These two factors take effect both in the thermal curing process (if there is any) 

and the aging process as well. Thus we observed kind of variation of the electrical resistivity. 

After all, we did not observe any increase of the electrical resistivity of all samples after the 

aging test, which suggests sufficient reliability for real applications. Since many rubbery 

substrates are very sensitive to the high temperature (due to their extremely low Tg), they can 

be used as the stretchable circuit boards and fabricated at room temperature by using the 

WBECAs as the circuits and interconnects.  
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Fig. 12. Minimum turn-on power of the reader in detecting the RFID tags with the antenna 
printed using the ECAs. (Copyright @ 2011 Springer Publishing House) 

The relation between the silver content and the tensile property of the WBECA thin film 

samples were investigated on an Advanced Rheometric Expansion System (ARES) (TA 

instruments, USA). The specimens were prepared on a piece of smooth low density 

polyethylene (LDPE) substrate, so that they could form an even and flat thin film. When 

they were naturally dried, they were peeled off carefully from the substrate and then cut 

into small strips with the dimension near 40 x 3 x 0.1 mm3 (each was accurately confirmed 

by a caliper), and mounted onto ARES by a thin film tensile test fixture. The measurement 

was conducted at 25 oC with a 2000 g·cm transducer. The extension speed was 0.2 mm/s 

in a strain-controlled mode. As shown in Table 1, we can observe that the Young’s 
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modulus of all the three samples does not change significantly along with the different 

silver content level. This suggests that the addition of NaBH4 does not have significant 

influence to the mechanical strength of the WBECA samples.  

Compared to the other traditional dispersants for the ECAs, such as epoxy, polyester, and 

polyacrylates etc., water-borne PU as the resin dispersant displays a few advantages: 1. the 

resin is dispersed in water, thus the printing process does not involves toxic volatile 

materials and the residues can be conveniently removed by water; 2. the PU materials can be 

prepared from a large variety of sources such as from plants, thus PU has better 

environmental benign character and adjustable mechanical strength; 3. the urethane bond is 

relatively strong, thus the materials have a high reliability for general electronic packaging 

applications; 4. the curing step for the ECAs can take place at even room temperature (of 

course a higher temperature may help accelerate the process) thus it saves energy; 5. the 

WBECAs have adjustable rheological property thus they are suitable for many types of 

printing process such as screen printing, gravure printing, and roll-to-roll printing etc. 

In summary, by sensitizing a small amount of NaBH4, the electrical conductivity of the 
WBECAs can be effectively improved of about one order of magnitude; the percolation 
threshold of the silver filler is reduced as well. The lowest electrical resistivity ever 

measured in this material was in the order of 10-5 Ω  cm. The mechanical strength of the thin 
films of the free-standing WBECAs improves along with the PU dispersant amount. These 
WBECAs can be applied in the general printing process for general applications as ordinary 
ECAs can do, while they display many unique properties, such as amenity for processing, 
environmentally benign, excellent shelf-life and reliability in long-term storage and 
applications, water-proof, and the mechanical property can be adjusted by choosing 
different prepolymers. 
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Fig. 13. FT-IR spectrum of the dried film of the water-borne PU. 
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Fig. 14. TGA analysis of the PU dried film. The sample was ramped from 25 oC to 600 oC in 
the air. 
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Fig. 15. Volume resistivity of the WBECAs (80 wt% of silver) versus different addition 
amount of NaBH4. (A) no NaBH4 addition; (B) 0.5% of NaBH4; (C) 1% of NaBH4. 
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Fig. 16. Thermal-humidity reliability of the WBECAs versus aging time. (A) no NaBH4 
addition; (B) 0.5% of NaBH4; (C) 1% of NaBH4. 

 

Young's modulus 
(MPa) 

60% silver 70% silver 80% silver 85% silver 

no treatment 0.291 0.322 0.311 0.309 

0.5% NaBH4 0.289 0.338 0.364 0.358 

1% NaBH4 0.297 0.319 0.347 0.339 

Table 1. A table showing the Young's modulus of the WBECA thin film samples including 
the untreated, 0.5% of NaBH4 treated, and 1% of NaBH4 treated ones. 

5. Conclusions 

In summary, the authors introduced the recent progress of the silver microflake-filled 

ECAs as a candidate for the RFID tag antenna applications. ECAs exhibit many 

advantages such as printability and low-temperature processability as compared to the 

conventional antenna preparation methods, which render them significant in both the 

conventional Complementary Metal Oxide Semiconductor (CMOS) based and the organic 
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all-printed ones. However, their electrical, mechanical, and environmental performances 

are still undergoing intensive investigations. In this chapter, the authors gave several 

simple introductions about how to improve the electrical conductivity of the ECAs and 

introduced some PU based resin dispersants for ECAs. By adjusting the balance between 

the electrical conductivity and the materials cost, ECAs could find a larger market in both 

far field and near field applications. Any significant advancement of the materials would 

enhance the widespread uses of the tags, which is benefit from both the lower cost and 

higher performances. The examples given in this article have their merit and limitations; 

we expect that they may give elicitations for developing techniques for manufacturing 

low-cost, flexible ubiquitous information terminals.  
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