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1. Introduction

Biometrics attracts attention since person authentication becomes very important in

networked society. As the biometrics, the fingerprint, iris, face, ear, vein, gate, voice and

signature are well known and are used in various applications (Jain et al., 1999; James et al.,

2005). Especially, assuming mobile access using a portable terminal such as a personal digital

assistant (PDA), a camera, microphone, and pen-tablet are normally equipped; therefore,

authentication using the face, voice and/or signature can be realized with no additional

sensor.

Fig. 1. A PDA with a pen-tablet

On the other hand, the safety of biometric data is discussed actively. Every human being has

limited biometrics, for example, only ten fingerprints and one face. If the biometric data are

leaked out and it is known whose they are, they are never used for authentication again.

To deal with this problem, cancelable biometric techniques have been proposed, which use not

biometric data directly but one-to-one transformed data from the biometric data. However,

such a technique is unnecessary if the biometrics itself is cancelable.

Among various biometric modalities, only the signature is cancelable from a viewpoint of

spoofing. Even if a signature shape is known by others, it is possible to cope with the problem

by changing the shape. Especially, in on-line signatures, the habit during writing is biometrics

and it is not remained in the signature shape; therefore, to imitate it is quite difficult even if the

signature shape is copied. As a result, the on-line signature verification is actively researched
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2 Biometrics

(Dimauro et al., 2004; Fierrez & Ortega-Garcia, 2007; Jain et al., 2002; Plamondon & Srihari,

2000). However, the verification performance tends to be degraded since the on-line signature

is a dynamic trait.

We have proposed a new on-line signature verification method in which a pen-position
parameter is decomposed into sub-band signals using the discrete wavelet transform (DWT)

and total decision is done by fusing verification results in sub-bands (Nakanishi et al., 2003;

2004; 2005). The reason why we use only the pen-position parameter is that detecting

functions of other parameters such as pen-pressure, pen-altitude, and/or pen-direction are

not equipped in the PDA.

However, since the signature shape is visible, it is relatively easy to forge the pen-position

parameter by tracing genuine signatures by others. In the proposed method, individual

features of a signature are enhanced and extracted in the sub-band signals, so that such

well-forged signatures can be distinguished from genuine ones. Additionally, in the

verification process of the proposed method, dynamic programming (DP) matching is

adopted to make it possible to verify two data series with different number of sampled points.

The purpose of the DP matching is to find the best combination between such two data series.

Concretely, a DP distance is calculated in every possible combination of the two data series

and as a result the combination which has the smallest DP distance is regarded as the best.

But there are problems in use of the DP matching. The DP distance is obtained as dissimilarity;

therefore, signatures with large DP distances are rejected even if they are of genuine. For

instance, in a pen-tablet system, a pen-up while writing causes large differences in coordinate

values of pen-position and so increases false rejection. On the other hand, signatures with

small DP distances are accepted even if they are forgery. The DP matching forces to match

two signatures even if either is forgery. It increases false acceptance.

Consequently, we propose simply-partitioned DP matching. Two data series compared are

divided into several partitions and the DP distance is calculated every partition. The DP

distance is initialized at the start of a next partition, so that it reduces excessively large DP

distances, that is, the false rejection. On the other hand, limitation of combination in matching

is effective for rejecting forgeries; therefore, it reduces the false acceptance.

There is another important problem when we use the DP matching. The DP distance is

proportional to the number of signature’s sampled data, that is, signature complexity (shape),

so that if it is used as a criterion in verification, each signature (user) has a different optimal

threshold. But, it is general to use a single threshold commonly in an authentication system.

If the common threshold is used for all signatures, it results in degradation of verification

performance. Therefore, we have studied threshold equalization in the on-line signature

verification (Nakanishi et al., 2008). We propose new equalizing methods based on linear and

nonlinear approximation between the number of sampled data and optimal thresholds.

2. DWT domain on-line signature verification

In this section, we briefly explain the proposed on-line signature verification in the DWT

domain.

2.1 System overview

A signal flow diagram is shown in Fig. 2. An on-line signature is captured as x and y

coordinate (pen-position) data in a digital pen-tablet system and their sampled data are

184 Biometrics
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DWT Domain On-Line Signature Verification 3

Fig. 2. DWT domain on-line signature verification

given by x(n) and y(n) where n = 0, 1, · · · , Sn − 1 and Sn is the number of sampled

data. They are respectively normalized in both time and amplitude domains and then

decomposed into sub-band signals using sub-band filters by the DWT (Nakanishi et al.,

2003; 2004; 2005). In advance of verification, sub-band signals are enrolled as a template

for each user. Templates are generated by ensemble-averaging several genuine signatures.

Please refer to Ref. (Nakanishi et al., 2003) for the details. At the verification stage, each

decomposed signal is compared with its template based on the DP matching and a DP distance

is obtained at each decomposed level. Final score is calculated by combing the DP distances

at appropriate sub-bands in both coordinates. Total decision is done by comparing the final

score with a threshold and it is verified whether the signature data are of genuine or not.

2.2 Feature extraction by DWT

In the following, the x(n) and y(n) are represented as v(n) together for convenience. The

DWT of the pen-position data: v(n) is defined as

uk(n) = ∑
m

v(m)Ψk,n(m) (1)

where Ψk,n(m) is a wavelet function and · denotes the conjugate. k is a frequency (level) index.

It is well known that the DWT corresponds to an octave-band filter bank (Strang & Nguyen,

1997) of which parallel structure and frequency characteristics are shown in Fig. 3, where

(↓ 2k) and (↑ 2k) are down-sampling and up-sampling, respectively. M is the maximum level

of the sub-band, that is, the decomposition level. Ak(z) and Sk(z) (k = 1, · · · , M) are analysis

filters and synthesis ones, respectively.

The synthesized signal: vk(n) in each sub-band is the signal in higher frequency band and

called Detail which corresponds to the difference between signals. Therefore, we adopt the

Detail as an enhanced individual feature which can be extracted with no specialized function:

pen-pressure, pen-altitude, and/or pen-direction which are not equipped in the PDA.

185DWT Domain On-Line Signature Verification

www.intechopen.com



4 Biometrics

(a) Parallel structure

(b) Frequency characteristics

Fig. 3. Sub-band decomposition by DWT

Let us get another perspective on the effect of the sub-band decomposition using Fig. 4. Each

signature is digitized at equal (common) sampling period using a pen-tablet system. In the

proposed system, writing time of all signatures is normalized in order to suppress intra-class

variation. Concretely, the sampling period of each signature is divided by the number of

sampled data and so becomes real-valued.

Even genuine signatures have different number of sampled data; therefore, all signatures have

different normalized sampling periods, that is, different sampling frequencies.

In general, variation of writing time in the genuine signatures is small, so that their sampling

periods (frequencies) are comparable as shown in Fig. 4 (a). On the other hand, in the case

of forged signatures, the variation of writing time is relatively large since it is not easy for

forgers to imitate writing speed and rhythm of genuine signatures. Thus, sampling periods

(frequencies) of the forged signatures become greatly different from those of the genuine

signatures as in Fig. 4 (b).

The maximum frequency: fm of the octave-band filter bank is determined by the sampling

frequency based on the “sampling theory". If the sampling frequencies are greatly different,

each octave band (decomposition level) includes greatly different frequency elements as

illustrated in (b). In other words, even if levels compared are the same, frequency elements

included in one level are different from the other, so that the differences between genuine
signatures and forged ones are accentuated.

186 Biometrics
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DWT Domain On-Line Signature Verification 5

(a) Comparison of genuine signatures (b) Comparison of a genuine signature with its
forgery

Fig. 4. Effect of sub-band decomposition

The advantage was confirmed comparing with a time-domain method (Nakanishi et al., 2005).

Of course, if forgers imitate writing speed and rhythm of genuine signatures, it is impossible

for the proposed method to distinguish forged signatures from genuine ones.

2.3 Verification by DP matching

Since on-line signatures have large intra-class variation, one-to-one matching cannot be
applied in verification. In order to deal with the problem, the verification was performed

every stroke (intra-stroke or inter-stroke) in the conventional system (Nakanishi et al., 2003;

2004; 2005; 2008). However, a part of signature databases eliminates the data in inter-strokes

and so we could not apply the conventional system to such a database.

Therefore, we introduce DP matching into the verification process. The DP matching is

effective in finding the best combination between two data series even if they have different

number as illustrated in Fig. 5.

Letting the two data series be a(i) (i = 0, 1, · · · , I − 1) and b(j) (j = 0, 1, · · · , J − 1), the local

distance at kth is defined as

d(k) = |a(i)k − b(j)k| (k = 0, 1, · · · , K − 1) (2)

187DWT Domain On-Line Signature Verification
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6 Biometrics

Fig. 5. DP matching

where instead of i and j, k is used as another time index since these data are permitted to be

referred redundantly.

By accumulating the local distances in one possible combination between the two series, a DP

distance is given by

D(a, b) =
K−1

∑
k=0

w(k)d(k) (3)

where w(k) is a weighting factor. After calculating the DP distance in all possible

combinations, we can find the best combination by searching the combination with the

smallest DP distance.

Moreover, since the DP distance depends on the number of sampled data, the normalized DP

distance is used in general.

nD(a, b) = D(a, b)/
K−1

∑
k=0

w(k) (4)

Assuming the weight is symmetric: (1-2-1) and the initial value is zero,

K−1

∑
k=0

w(k) = I + J. (5)

In the proposed method, the DP distance is obtained at each sub-band level. Let the DP

distance at lth level be D(v, vt)l where v is sampled data series of a signature for verification

and vt is that of a template, the normalized DP distance is given by

nD(v, vt)l = D(v, vt)l/(Vn + Tn) (6)

where Vn is the number of sampled data in the verification signature and Tn is that of the

template.

188 Biometrics
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DWT Domain On-Line Signature Verification 7

A total distance (TD) is obtained by accumulating the normalized DP distances in sub-bands.

TD = cx ·
1

L

M

∑
l=M−L+1

nD(x, xt)l + cy ·
1

L

M

∑
l=M−L+1

nD(y, yt)l (7)

where cx and cy are weights for combining the DP distances in x and y coordinates and cx +
cy = 1, cx > 0, cy > 0. L is the number of levels used in the total decision.

2.4 Verification experiments

In order to confirm verification performance of the proposed system, we carried out

experiments in the following conditions. The wavelet function was Daubechies8. The

maximum level of the sub-band: M was 8 and the number of levels used in the total decision:

L was 4. The combination weights were cx = cy = 0.5, which mean to take the average. For

generating templates, data of five genuine signatures were ensemble-averaged.

We used a part of the on-line signature database: SVC2004 in which the data in inter-strokes

were eliminated. The number of subjects was 40 and 17 subjects signed their names in Chinese

characters and the rest in alphabetical ones. For collecting skilled forgeries, imposters could

see how genuine signatures were being written. The total number of signatures was 1600.

Please refer to Ref. (SVC2004, 2004) for more information.

The verification performance was evaluated by using an equal error rate (EER) where a false

rejection rate (FRR) was equal to a false acceptance rate (FAR). The EER of the proposed

system was 20.0 %. For reference, the EER of the conventional system was 28.3 %, so that it is

confirmed that introducing the DP matching is effective for not only applying to the standard

database but also improving verification performance.

On the other hand, assuming to use individually-optimal thresholds for all subjects, we

averaged EERs of all subjects and then so obtained EER of 15.3 %. This is a rough evaluation

but suggests that if a single common threshold is optimal for all subjects, the verification

performance could be improved further. This issue is examined in Sect. 4.

3. Simply partitioned DP matching

There is another issue to be overcome in order to improve the verification performance. For

instance, in a pen-tablet system, when the pen tip is released from the surface of the tablet, it

is not guaranteed to get precise coordinate values of pen-position. It sometimes brings large

differences from template data and then leads to a large DP distance. The signature with such
a large DP distance is rejected even if it is genuine. This increases false rejection.

Conversely, signatures with small DP distances are accepted even if they are forgery. In

particular, skilled forgeries (well-forged signatures) could make the DP distance smaller. The

DP matching forces to match two signatures even if either is forged one. This increases false

acceptance.

Consequently, we propose simply-partitioned DP (spDP) matching. The concept is illustrated

in Fig. 6, where the number of partitions is four. Both data series: a(i) and b(j) are divided

into several partitions of the same integer number and a sub DP distance is calculated every

partition. If the division leaves remainders, they are singly distributed to partitions. The sub

DP distances are initialized at the start of next partitions and a total DP distance is obtained

by summing the sub DP distances in all partitions.

189DWT Domain On-Line Signature Verification
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8 Biometrics

Fig. 6. Simply-partitioned DP matching (Q=4)

Assuming that genuine signatures have equivalent rhythms in writing, even if their data are

partitioned, rhythms in corresponding partitions compared are still equivalent. Therefore,

when a verification signature is genuine, appropriate matching pairs tend to exist in diagonal

direction in Fig. 6. As a result, the spDP matching has no ill effect for false rejection.

Furthermore, even if excessively a large sub DP distance is caused by the irregular pen-up

mentioned above in a partition, it is initialized at the start of the next partition, so that the

spDP matching prevents the total DP distance from becoming excessively large and has an

effect on reducing false rejection.

On the other hand, it is difficult for forgers to copy rhythms in writing of genuine signatures,

so that the rhythm in each partition of forged signatures becomes different from that of

genuine ones. Resultingly, matching pairs between the genuine signature and its forged one

are not in the diagonal direction and so are excluded even if they have small DP distances.

The spDP matching is also effective in reducing false acceptance.

Such a concept that inappropriate pairs are excluded by partitioning the DP distance has been

already proposed (Sano et al., 2007; Yoshimura & Yoshimura, 1998) but they assume to write

Chinese (Kanji) characters in standard style and the partitioning is done every character or

stroke. Therefore, they could not be directly applied to the case of a cursive style (connected

characters). Of course, they need additional processing for character or stroke detection.

Let the number of partitions and the sub DP distance be Q and D(v, vt)q, respectively, the

normalized DP distance at the sub-band level: l is obtained by summing sub DP distances in

all partitions.

nD(v, vt)l =

(

Q

∑
q=1

D(v, vt)q

)

/(Vn + Tn) (8)

A total distance (TD) is given by Eq. (7).

190 Biometrics
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DWT Domain On-Line Signature Verification 9

By the way, the matching window is generally adopted in the DP matching as shown in Fig. 5

in order to reduce calculation amount by excluding unlikely pairs. Comparing between Figs.

5 and 6, it is clear that the spDP matching is more effective for excluding inappropriate pairs

than the matching window.

3.1 Evaluation of spDP matching

We evaluated verification performance using the spDP matching. Conditions are similar with

those in Sect. 2.4. EERs in various numbers of partitions are summarized in Table 1 where the

case of 0 partitions corresponds to the conventional normalized DP matching.

Number of Partitions 0 2 3 4 5 6

EER (%) 20.0 17.8 16.4 16.6 17.0 16.4

Table 1. EERs in various numbers of partitions

From these results, it is confirmed that the spDP matching decreased the EER by 2-3%. In the

following, we set the number of partitions at 4.

4. Threshold equalizing

There is an important issue to be overcome as mentioned in Sect. 2.4 in order to improve

verification performance. In not only on-line signature verification but also all biometric

authentication systems, final scores are compared with a threshold which is preliminary

determined. In addition, the threshold should be common to all users. Therefore, when

the final score (the DP distance) of each user is greatly different from those of others, the

verification performance tends to be degraded by using the common threshold.

In general, the normalized DP distance given by Eq. (4) is used for dealing with this problem.

However, the normalization also makes the DP distances of forged signatures small and

thereby might increases false acceptance.

We have studied to equalize the threshold instead of using the normalization (Nakanishi et al.,

2008). A total distance (TD) is rewritten as

TD = cx ·
1

L

M

∑
l=M−L+1

D(x, xt)l + cy ·
1

L

M

∑
l=M−L+1

D(y, yt)l (9)

where please be aware that unnormalized DP distance D(v, vt)l is used.

Generally, complex signatures have large number of sampled data since they consume

relatively long time for writing. The larger the number of sampled data of a signature

becomes, the larger intra-class variation becomes and as a result, it makes a DP distance

large. Final decision is achieved by comparing the DP distance with a threshold; therefore,

to make the DP distance inversely proportional to the number of sampled data suppresses the

variation range of the DP distance and then it leads to equalization of thresholds.

Based on this concept, the conventional equalization is defined as

TD
p
eq =

γ

T
p
n

TDp (10)

where p is user number and TDp, TD
p
eq and T

p
n are the total distance, the equalized total

(final) distance and the number of sampled data of the template of the user, respectively. γ is a

191DWT Domain On-Line Signature Verification
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constant for adjusting the final distance to an appropriate value. When the number of sampled

data in a signature is too small, the final distance of the signature is enlarged. Conversely, large

number of sampled data in a signature reduces the final distance. The effect of the threshold

equalizing was already confirmed (Nakanishi et al., 2008).

4.1 New threshold equalizing methods

Figure 7 shows the relation between the number of sampled data in signatures (templates) and

their optimal thresholds (total DP distances) using the spDP matching (Q = 4) in SVC2004,

where the thresholds which bring EERs are regarded as optimal.

Fig. 7. Relation between the number of sampled data and optimal thresholds

The optimal thresholds are widely distributed; therefore, it is easy to guess that common

use of a single threshold is not good for verification performance. In addition, the relation

between the number of sampled data and the optimal threshold is not simple differently from

that assumed in the conventional equalization.

4.1.1 Equalization using linear approximation

Assuming that the relation between the number of sampled data and the optimal threshold is

approximated by a linear function, the total DP distance is equalized as

TD
p
eq =

γ

α · T
p
n + β

TDp (11)

where γ is the adjustment constant as well as the conventional method. α and β are the

gradient and intercept of the linear function.

4.1.2 Equalization using nonlinear approximation

On the other hand, the relation between the number of sampled data and the optimal

threshold could be fitted by a nonlinear function. The total DP distance is adjusted by using

an exponential function as

TD
p
eq =

γ

exp(α · T
p
n + β)

TDp (12)

192 Biometrics
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where α and β are constants for fitting the nonlinear function to the relation between the

number of sampled data and the optimal threshold.

4.2 Evaluation of threshold equalizing

In order to verify effectiveness of the threshold equalizing methods, we evaluated verification

performance using the SVC2004, again. Conditions are the same as those in Sect. 2.4. The

number of partitions in DP matching was 4.

The distribution of optimal thresholds after equalization is compared with that before

equalization in Fig. 8 where the uncolored triangles are before equalization and the black

ones are after equalization. The broken lines indicate approximation functions where α = 10

and β = −293 in the linear case and α = 0.0069 and β = 3.3 in the nonlinear case.

(a) Linear case

(b) Nonlinear case

Fig. 8. Distribution of optimal thresholds before and after equalization in the linear and
nonlinear approximation cases

From a viewpoint of their universality, it is better to determine them using a training data set,

which is independent of a test data set. However, the proposed equalizing methods are based

on rough approximation of the relation between the number of sampled data and the optimal

threshold in the SVC2004. If the relation in the training data set is equivalent with that in the

193DWT Domain On-Line Signature Verification
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test data set, the proposed methods does not depend on the data used. The approximation

depends on not training data sets but databases. The larger the number of data becomes, the

more universal the constants. In both cases, γ was set to a value which adjusts the thresholds

to around 2000.
It is confirmed that the optimal thresholds, that is, the DP distances were adjusted to around

2000 and the variation range of the DP distances was narrowed.

For achieving quantitative evaluation, we analyzed statistical variance of optimal threshold

values before and after the equalization. The variance before the equalization was 0.27 but

after the equalization it was reduced to 0.05 in the linear case and 0.07 in the nonlinear case.

Method EER(%) Variance

Unnormalized DP 25.4 0.54

Normalized DP 20.0 0.17
4-partitioned DP 16.6 0.05

Conventional equalization 19.9 0.24

Linear equalization 19.0 0.22
Nonlinear equalization 19.5 0.23

4-partitioned DP + Linear equalization 14.6 0.05

4-partitioned DP + Nonlinear equalization 14.9 0.07

Table 2. EERs and variances in various methods

Finally, EERs and variances in various methods are summarized in Table 2. Comparing the

EER and variance in the 4-partitioned DP matching to those in the normalized DP one, it

is confirmed that the proposed spDP matching is more effective in improving verification

performance than the general-used DP matching. Similarly, the proposed new threshold

equalization methods are confirmed to be more efficient than the normalized DP matching and

the conventional method. Moreover, combining the spDP matching with the new threshold

equalization is much more effective. Especially, the smallest EER of 14.6% and variance of 0.05

were obtained when the threshold equalization using the linear approximation was applied.

As confirmed in Fig. 8 (b), the adjustment in the nonlinear case might be excessive when

the number of sampled data was large. It is a future problem to adopt other functions for

approximating the relation between the number of sampled data and the optimal threshold.

On the other hand, the EER of about 15% may not be absolutely superior to those of other

on-line signature verification methods. However, it is possible to introduce the spDP matching

and/or the threshold equalizing into the methods based on the DP matching and it might also

improve their performance.

5. Conclusions

We have studied on-line signature verification in the DWT domain. In order to improve the

verification performance, we introduced spDP matching and threshold equalizing into the

verification process.

In the spDP matching, two data series compared were divided into partitions, a sub DP

distance was calculated every partition, and then a total DP distance was obtained by

summing the sub DP distances. The sub DP distances were initialized at the start of next

partitions; therefore, accumulative distances were also initialized and the total DP distance

194 Biometrics
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DWT Domain On-Line Signature Verification 13

was prevented from becoming excessively large. It was effective in reducing false rejection.

Also, the spDP matching reduced false acceptance since limitation of combination in matching

excluded inappropriate matching pairs.

In the threshold equalizing, by approximating the relation between the number of sampled
data in a signature and its optimal threshold by linear or nonlinear functions, the variation

range of optimal thresholds of all signatures were suppressed and as a result, it prevented

the verification performance from being degraded by using a single common threshold for all

signatures.

In experiments using a part of the signature database: SVC2004, it was confirmed that

each proposed method was efficient in improving the verification performance. Moreover,

combining the spDP matching with the threshold equalizing was more effective and reduced

the error rate by about 5% comparing with the general-used DP matching.

We have an issue that there might be more effective approximate functions for threshold

equalization. Also, we evaluated signature’s complexity by using the number of sampled

data but it is expected to use sub-band signals for evaluating the complexity.
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