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1. Introduction 

Intensive industrialisation and farming associated to domestic uses of a growing number of 
chemicals have led to the release of many toxic compounds in the environment, causing an 
important pollution of aquatic ecosystems. In Europe, the Water Framework Directive WFD 
2000/60/EC lays down the monitoring of a large number of substances, the so-called 
“priority substances”, with the objective of restoring a good chemical and ecological status 
of all water bodies by 2015 (Allan et al., 2006). To implement effective monitoring and 
treatment programs, complementary analytical methods are required: 
- low cost and high throughput screening methods for semi-quantitative determination 

of families of compounds and/or prediction of their harmful biological effects (overall 
toxicity, genotoxicity, estrogenicity), 

- conventional methods based on chromatographic separation techniques (LC/MS, 
LC/MS/MS, GC/MS or ICP-MS), which are more time consuming, costful and require 
trained operators. These methods do not provide informations on water toxicity but 
allow the rescan of positive samples for more accurate analytes identification 
(Rodriguez-Mozaz et al., 2007).  

Biological techniques, such as bioassays and biosensors, constitute the first category of 
methods. Many works in the past have been focused on the development of bioassays and 
have led to the commercialization of bacterial bioassays and immunoassays (Allan et al., 
2006; Farre et al., 2005). In recent years, biosensors have received particular attention owing 
to their high sensitivity, low cost and possible easy adaptation for on-line measurements 
(Barcelo & Hansen, 2009).  
A biosensor is an electronic device used to transform a biological interaction into an 
electrical signal. This device is based on the direct spatial coupling of the immobilised 
biologically active element, the so-called “bioreceptor”, with a transducer that acts as 
detector and electronic amplifier. Different types of bioreceptors (enzymes, receptors, 
antibodies, DNA or microorganisms) combined with electrochemical, optical or mechanical 
transduction have been used for the elaboration of biosensors in view of water monitoring 
applications (Badihi-Mossberg et al., 2007; Rogers, 2006). To answer to the ever increasing 
requirements of water monitoring legislation, not only in terms of amount and reliability of 
informations provided, but also in terms of rapidity of response, selectivity, sensitivity and 
cost, tremendous efforts have been devoted in the last few years to improve the different 
elements contributing to the overall response of the biosensors, i.e. bioreceptor, transducer 
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and cell/transducer interface. All these aspects will be addressed in the present chapter. 
New advances recorded in the field during the last five years will be more particularly 
emphasized. 

2. Transduction modes 

2.1 Electrochemical transduction 

Electrochemical sensors are classified according to their transduction mode, which may be 
potentiometric, amperometric, conductimetric or impedimetric. In a general way, 
electrochemical transducers measure the electron transfers occuring between electroactive 
species (molecules or ions) present in a solution and an electrode, in well defined analytical 
conditions (Grieshaber et al., 2008). Over the past 10 years, electrochemical transduction 
technology has evolved significantly. Novel electrode materials such as boron doped 
diamond (BDD) have emerged as possible alternative materials to conventional gold, 
platinum or carbon (Luong et al., 2009). Owing to the recent advances in microfabrication 
techniques, it is also now possible to prepare microelectrodes of various sizes and 
geometries as well as to construct parallel arrays of microsensors on a same chip (Wei el al., 
2009). Such systems are powerful tools able to answer to most of the environmental 
monitoring requirements such as rapidity of response, sensitivity, and parallel analysis of a 
large number of parameters and/or samples. Moreover, the small size is useful for the 
design of portable biosensors intended for on-field applications. 

2.1.1 Potentiometric transduction 

The two classical types of potentiometric transducers are ion selective electrodes (ISEs) and 
semiconductor-based field-effect devices (FEDs). The inherent miniaturization of ISEs and 
FEDs and their compatibility with advanced microfabrication technology make them very 
attractive for the integration into sensing arrays and microfluidic platforms and thus, the 
creation of miniaturized analytical systems suitable for environmental monitoring (Bakker 
et al., 2008; Bratov et al., 2010). 
ISEs involve ion exchange equilibria at the interface between the solution and a membrane 
made of an ionic conducting material (inorganic solid electrolyte or organic liquid 
membrane). The nature of the membrane depends on exchanged ions, special glasses being 
typically used for H+, ionic solid for halide ions, polymers including specific ionophores for 
other ions. Practically, potentiometric biosensors measure the difference of potential Ep 
between the selective electrode on which the bioreceptor is immobilised and a reference 
electrode when no significant current flows between them. Ep can be expressed by Nernst 
equation: 

 Ep = E0 + RT/nF ln aAn+ (1) 

where E0 is the selective electrode constant, aAn+ is the activity of An+ ion 
Significant efforts have been made during the past decade to improve the robustness of 
conventional ISEs, widen the range of ions detected and miniaturize the electrodes (Bakker 
et al, 2008; Tymecki et al., 2006).  
FEDs belong to the second class of potentiometric transducers and include ion-sensitive 
field-effect transistors (ISFETs) and light-addressable potentiometric sensors (LAPSs). At 
present, only ISFET sensors measuring H+ ions are commercially available. By deposition of 
enzymes or bacteria, it is possible to monitor enzymatic and metabolic reactions generating 
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H+. LAPS devices are also extensively used to monitor cellular acidification in response to 
pollutants. Several recent reviews document the main features of these devices and their 
application to biosensing (C.-S. Lee et al., 2009; Schoening & Poghossian, 2006; Poghossian et 
al., 2009). 

2.1.2 Conductometric transduction 

Conductometric biosensors rely on the direct measurement of conductance variations in 
electrolytic media containing mobile electric charges. For that, an alternating voltage is 
applied between the working electrode, on which the bioreceptor is immobilised, and a 
reference electrode. The frequency value is chosen in order to minimize polarization effects. 
The conductance can be expressed by the following equation: 

 
S

G
l

γ=  (2) 

where γ (S. cm-1) is the specific conductance or conductivity, characteristics of the medium; 
S (cm2) is the working electrode surface; l (cm) is the distance between the electrodes. 
Recent advances in the field have led to the production of miniaturized interdigitated 
electrodes that have been used to the elaboration of enzyme-based and cell-based biosensors 
for water monitoring (Hnaien et al., 2011; Jaffrezic-Renault & Dzyadevych, 2008). Enzymatic 
reactions between the pollutant and the bioreceptor induce a local change of conductivity 
due to the production of charged species. 

2.1.3 Impedimetric transduction 

Impedimetric transduction measures charge transfer processes occurring at 
electrode/electrolyte interfaces. Practically, measurement is performed using three 
electrodes, a working electrode modified by the bioreceptor, a reference electrode and an 
auxiliary electrode. A small amplitude sinusoidal voltage is imposed between reference and 
working electrodes and the resulting current generated between working and counter 
electrodes is measured. The applied voltage over measured current intensity ratio defines 
the impedance of the electrochemical system. Impedimetric data can be modelled by an 
equivalent electrical circuit from which electrical parameters that define charge transfer 
processes can be deduced (Katz & Willner, 2003). Impedimetric transduction is particularly 
well-suited to investigate reactions based on molecular affinity such as antigen-antibody or 
receptor-target interactions. Cell adhesion to the electrode surface is also expected to 
increase impedance value due to the insulative properties of the cell membrane. In the 
presence of cytotoxicants, morphological changes or functional alterations, and even death 
of the cells are also observed, inducing impedance variations. Therefore, these properties 
have been extensively exploited for water pollutants biosensing and toxicity assessment 
using electrodes modified with antibodies, receptors or cells. 

2.1.4 Optical transduction 

Optical transducers measure the effect of biological entities used as bioreceptors on light 
absorption, fluorescence, luminescence, refractive index or other optical parameters. In 
general, two different protocols can be implemented in optical biosensing. The first one 
requires a prelimary functionalisation of the bioreceptor or the target analyte with an 
optically active tag (labeling). Although this process produces highly sensitive biosensors, it 
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is time-consuming and may interfere with the function of a biomolecule. In contrast, in the 
second protocole, target molecules are not labeled or altered, and are detected in their 
natural forms. This type of detection is relatively easy and cheap to perform (Fan et al., 
2008). The most recent innovations in optical transduction applied to environmental 
biosensing are related to the development of new solid-state devices, microarrays and 
microfluidic systems for continouous monitoring (Ligler et al., 2009)  

2.1.4.1 Optical fibre sensors 

An optical fibre is a waveguide that classically consists of a silica core (optical index: n1) 
surrounded with a cladding of index n2, slightly lower than n1. The fiber is placed in a 
medium of index n0. The light-guiding conditions are defined by: 
 

 n02 sin2θ0 = n12 – n22 (3) 
 

where θ0 represents the numerical aperture of the fibre or the limit injection angle of the 
incident beam. 
Fibre optical biosensors are all of extrinsic type. In some of them, called punctual biosensors, 
the physical or chemical effect is measured at the tip of the fibre on which the bioreceptor is 
deposited. The biosensor operates in reflection mode. In the so-called continuous biosensors, 
measurements are performed on a well defined length of the fibre. Cladding is removed in 
this zone and the bioreceptor layer is directly deposited on the core. This system can operate 
in reflection or in transmission modes. Bioreceptors are generally immobilised by 
adsorption or covalent attachment to a membrane, or recovered by a semi-permeable 
membrane. The most conventional fibre biosensors are based on absorption, fluorescence or 
luminescence detection (Goure & Blum, 2009). Others exploit the physical properties of the 
evanescent wave corresponding to the light power lost at the core-cladding interface. These 
biosensors, for which a stripping of the fibre is required, are more fragile than the massive 
optical systems based on the same principles and described in the following sections. 

2.1.4.2 Mach-Zender interferometers 

This type of sensor relies on the perturbation of the light propagating in one arm of an 
optical waveguide. In a typical Mach-Zehnder interferometer configuration, the light guide 
is divided into two branches via a Y-junction. A branch, functionalised with the biosensing 
element, is used as the sensitive arm, while the other is the reference branch (Fig. 1). The two 
branches recombine at the output, resulting in interference, and a photodetector measures 
the intensity. A change in the refractive index at the surface of the functionalised arm results 
in an optical phase change and a subsequent variation in the light intensity measured at the 
photodetector. This latter is proportional to cos (Δn2koL), where Δn2 represents the refractive 
index change, ko the amplitude of the wave vector and L the length of the sensitive region. 
These structures are made in glass or silicon and may be easily integrated into lab on chip 
laboratories (Sepulveda et al., 2006). 

2.1.4.3 Surface plasmon resonance (SPR) sensors  

These sensors are based on the physical principle of surface plasmon resonance (Hoa et al., 
2007). The bioreceptor is deposited on a metal surface covering a glass support attached to 
the base of a prism (Kretschmann configuration). Interaction between the target and 
biorecognition molecules can be investigated in real time, with high precision and 
sensitivity, without specific labelling, through the measurement of the variations of  
 

www.intechopen.com



 
New Trends in Biosensors for Water Monitoring   

 

119 

Reference arm

Sensitive arm

Cladding layer 

bioreceptor

Detector 
Light source 

 

Fig. 1. Design of a Mach-Zehnder interferometer 

refractive index near the interface. These sensors have been extensively used for the study of 
affinity interactions (eg antigen-antibody). SPRi systems allowing real-time and simultaeous 
imaging of several spots functionalised with different affinity systems are currently in full 
expansion (Scarano et al., 2010). 

2.1.4.4 Optical waveguide light mode spectroscopy (OWLS) 

This is a new detection technique based on evanescent field for in situ and label free 
investigation of surface processes at molecular level. It is based on accurate measurement of 
the resonance angle of a linearly polarized laser light, diffracted by a grating and coupled in 
a thin layer of the waveguide. Resonance coupling occurs at a specific angle characteristic of 
the refractive index of the medium covering the waveguide surface. The light is guided by 
total internal reflection on the edges where the detection is performed via photodiodes. By 
varying the light incidence angle, a spectrum is obtained, which allows the calculation of 
effective indices for both the electric and magnetic fields (Luppa et al., 2001). 

2.1.4.5 Total internal reflection fluorescence (TIRF) 

This technique has been used with planar waveguides and optical fibres as optical 
transducers in many biosensors. The light propagates along the waveguide, generating an 
evanescent wave on the surface of the optically denser part of the waveguide (quartz) as 
well as in the adjacent less dense medium (aqueous medium). The evanescent wave 
amplitude decreases exponentially with distance in the lower refractive index medium. The 
fluorescence of a fluorophore excited by the evanescent field can then be detected. Only 
fluorophores bound to the surface are excited. Real time kinetics of interaction of 
bioanalytes with molecules immobilised on the surface of the waveguide can be measured 
using TIRF. This is a rapid, nondestructive and sensitive technique used for the 
development of automated detection systems for environment monitoring (Tschemelak et 
al., 2005). 

2.1.5 Mechanical transduction 

Various mechanical methods have been used as detection in biosensors. These transducers 
have become increasingly popular over the years. 
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2.1.5.1 Transducers based on piezoelectric effect 

A quartz crystal, to which a sinusoidal electric field is imposed, undergoes mechanical 
deformation due to the electrical potential appearing at its surface (piezoelectric effect). The 
crystal oscillates at its resonance frequency that depends on its structure (orientation, 
thickness…). Any change in mass (Δm) occuring at the crystal surface causes a proportional 
decrease in its resonance frequency (ΔF). This linear relationship is expressed quantitatively 
by the Sauerbrey equation: 
 

 
2

02
.

.Q Q

F m
F

Aμ ρ
Δ

Δ = −  (4) 

 

where Fo is fundamental frequency; A the geometric surface; μQ the shearing mode; ρQ the 
density of piezoelectric crystal 
The Sauerbrey equation applies only for thin and rigid layers, excluding viscoelastic films, 
e.g. polymer or polyelectrolyte films. The most common transducer based on piezoelectric 
effect is the quartz crystal microbalance (QCM).  

2.1.5.2 BioMEMS 

BioMEMS (Bio-Micro-Electro-Mechanical-Systems) are mechanical systems of nanometer 
size that allow the translation of biomolecular interactions into mechanical data originating 
from the deflection of a cantilever. A biomembrane, attached to a silicon platform, 
constitutes the sensitive part of the device. This membrane, functionalised with specific 
molecules of interest (probes), vibrates in its fundamental mode by means of a piezoelectric 
patch. When the biomembrane is in contact with an aqueous solution containing species to 
be detected (target), the molecules are captured by the probe and membrane mass increases. 
By detecting the vibrations of this biomembrane, it is possible to measure the resonance 
frequency variations and thus estimate the quantity of biomolecules present in the solution. 
BioMEMS offer many advantages including rapidity, high sensitivity, low signal-to-noise 
ratio, ability for real time monitoring and possible integration of a large number of sensors 
on a small area (Hassen & Thundat, 2005). 

2.1.6 Bioreceptor immobilisation  

Immobilisation of the active biosensing element (enzymes, antibodies, cells ...) onto the 
transducer surface is a key point in the development of a biosensor. Apart from preserving 
the functionality of the biomaterial, the immobilisation method must ensure the accessibility 
of the cells towards target analytes as well as a close proximity between the bioreceptor and 
the transducer. The selection of an appropriate immobilisation method depends on the 
nature of the biological element and of the transducer, the physico-chemical properties of 
the analyte and the operating conditions of the biosensor. Several methods have been 
proposed in the literature, including chemical and physical methods (Fig. 2) (D’Souza, 2001). 
Physical methods include adsorption, retention into a membrane or entrapment within a 
polymeric network. Adsorption is based on the establishment of low energy interactions 
between the functional groups of the bioreceptor and of the substrate surface. This type of 
immobilisation offers the advantage of preserving bioreceptor properties but results in the 
formation of weak bondings that favours its desorption. To avoid leakage processes, 
biological elements can be covered by a thin polymer membrane that allows diffusion of the 
target molecule or entraped in a chemical or biological polymeric matrix. Sol-gel silica or 
 

www.intechopen.com



 
New Trends in Biosensors for Water Monitoring   

 

121 

 

 

Physical methods

Retention in a 
membrane 

Entrapment Adsorption 

- - - -+ + + +

Chemical methods 

Cross-linking Covalent 
binding 

 

Fig. 2. The different methods for bioreceptor immobilisation 

hydrogels are typically used for that purpose. These polymers can efficiently protect the 
bioreceptor from external aggressions but may form a diffusion barrier that restricts the 
accessibility to the substrate and/or decrease light and electronic transfers to the transducer. 
The swelling properties of hydrogels may also limit their practical application in some cases.  
In chemical methods, biosensing elements may be attached directly to the transducer 
through covalent bindings or to an inert and biocompatible matrix through cross-linking 
using a bi-functional reagent. Proteinic supports, e.g. bovine serum albumin or gelatine are 
typically used to constitute the network with glutaraldehyde (GA) as cross-linking agent. 
This second technique is primarily used to attach enzymes or antibodies to the transducer, 
less often to immobilize microorganisms. Indeed, cross-linking involves the formation of 
covalent bindings between the functional groups located on the outer membrane of cells and 
GA. This mode of immobilisation is consequently not suited when cell viability is absolutely 
required or enzymes involved in the detection are expressed at the cell surface. Finally, 
covalent grafting is based on the reaction between functional groups of the biological 
element and previously activated groups of the transducer. Functional groups of the 
bioreceptor are typically ε-amines of lysine, carboxyl groups of aspartate or glutamate, 
sulfhydryl groups of cysteine and hydroxyphenolic groups of tyrosine, which belong to the 
side chains of aminoacids in proteins (enzymes, antibodies or external cellular proteins). To 
ensure the formation of covalent bondings with the transducer, this latter has to be 
functionalised first. Metal surfaces such as gold and silver can be functionalised with amine, 
hydroxyl or carboxyl groups through reaction with aminoalkanethiols, hydroxyalcanethiols 
and carboxyalcanethiols, respectively. Oxide surfaces are functionalised with organosilanes. 
More recently, metal electrodes on which films of functionalised conducting polymer 
(polypyrrole, polythiophene, polyaniline) are deposited electrochemically, have been used 
to immobilise active biomolecules through covalent bonding formation (Teles & Fouseca, 
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2008). In recent years, particular attention has been also paid to the use of nanomaterials, 
typically gold nanoparticles, magnetic beads, carbon nanotubes (CNTs) or quantum dots 
(QDs) for the elaboration of biosensors (Xu et al., 2006; X. Zhang et al., 2009). Their 
particular chemical and physical properties make them very attractive to improve 
bioreceptor stability as well as biosensor sensitivity. 

2.2 Application to the determination of specific (groups of) pollutants 
2.2.1 Enzyme-based biosensors 

A large number of enzymes has been used in the construction of water pollution biosensors. 
They may be classified into different families corresponding to the type of reaction they 
catalyze, typically oxidation, reduction and hydrolysis. The enzyme is immobilised on a 
transducer that detects the consumption of a co-factor, e.g. oxygen in the case of oxidase 
enzymes, or the appearance of a product following enzymatic reaction. Hydrolase enzymes 
are generally associated with optical fibres, potentiometric or conductometric transducers to 
detect local changes in pH or in conductivity. For their part, reductase or oxidase enzymes 
are generally immobilised on an amperometric or conductometric transducer to record 
electronic transfers towards the electrode. These electronic transfers may be promoted by 
the use of redox mediators that allow the application of lower potentials and limit 
interferences from other electroactive species.  
Tyrosinase is a copper monooxygenase that catalyzes the hydroxylation of monophenols 
and the oxidation of diphenols into reactive quinones. This reaction has been extensively 
exploited for the determination of phenolic compounds using tyrosinase-based 
amperometric and optical biosensors. In electrochemical systems, substances produced by 
the reduction of quinones at the electrode can be detected at a low potential value, in the 
absence of mediator. Various electrode materials, such as gold (S. Wang et al; 2010), 
platinum (Yildiz et al., 2007), carbon paste (De Albuquerque et Ferreira, 2007; Mita et al., 
2007), glassy carbon (Carralero et al., 2006; J. Chen & Jin, 2010; Hervas Perez et al., 2006; 
Kochana et al., 2008; Kong et al., 2009; Y.-J. Lee et al., 2007; S. Wang et al., 2008; L. Wang et 
al., 2010) or BDD (Notsu et al., 2002; Zhao et al., 2009, Zhou & Zhi, 2006) have been used for 
that purpose. Very recently, Yuan et al. (Yuan et al., 2011) developed an amperometric 
biosensor using a carbon fiber paper (CFP) electrode. This biosensor exhibited short 
response times (10-20s) and very high sensitivities to phenolic compounds such as catechol, 
phenol, bisphenolA and 3-aminophenol, corresponding detection limits being 2, 5, 5 and 12 
nM, respectively. A seen in Table 1, these values are much better than other figures reported 
in the literature and are 4 to 10 times lower than the values obtained in the same 
experimental conditions, by the same authors, using a commercial screen-printed carbon 
electrode (SCPE). In this work, tyrosinase was immobilised in photoreticulated 
polyvinylalcohool (PVA-SbQ) matrix. Many other modes of immobilisation have been 
proposed to stabilize tyrosinase on the transducer including, among others, entrapment into 
titania sol-gel (Kochana et al, 2008), polyacrylamide microgel (Hervas Perez et al., 2006), 
Fe3O4- or multi-walled carbon nanotubes (MWNT)-chitosane composites (Kong et al., 2009; 
Wang et al., 2008), MWNT-epoxy resin (Perez-Lopez et al., 2007), physical adsorption on 
ZnO nanorods (Zhao et al., 2009), or covalent binding (Zhou et al., 2006; Wang et al., 2010). 
Optical tyrosinase-based biosensors have been also reported (Abdullah et al., 2006; Jang et 
al., 2010). Table 1 presents some recent biosensors based on tyrosinase enzyme, with the 
type of transducer and immobilisation used, as well as the detection limits obtained for 
typical phenolic contaminants.  
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Pollutant Enzyme Transduction 
Detection

limit 
(µM) 

Reference 

Phenolic compounds  
 

 

Amperometry  17ǃ-estradiol tyrosinase 
BDD electrode 10 Notsu et al., 2002

Amperometry  
BDD electrode 1 Notsu et al.
CP electrode/SWCNT 0.02 Mita et al.

Bisphenol A tyrosinase 

Carbon fiber paper/PVA 0.005 Yuan et al.

Amperometry  2,4-dichloro-
phenol 

tyrosinase 
GC electrode/MWNT+chitosane 0.06 Kong et al., 2011

Amperometry  
GC electrode/MWNT/TiO2/Nafion 0.087 Y.-J. Lee et al., 2007
MWNT/epoxy resin 10 Perez-Lopez et al., 2007
GC electrode/MWNT/TiO2/Nafion 0.09 Kochana et al., 2008
GC electrode/Fe3O4/chitosane 0.025 Sang et al., 2008
GC/Teflon/Au nanoparticles 0.003 Carralero et al., 2006
GC/polyacrylamide microgel 0.3 Hervas Perez et al., 2006
Pt electrode/EDP 0.01 Yildiz et al., 2007
GC electrode/ TiO2 0.09 Kochana et al., 2008

CP electrode/ CoPc 0.25 
De Albuquerque 

et al., 2007

GrC-acethylcellulose/ CoPc 0.45 
De Albuquerque 

et al., 2007
Carbon fiber paper/PVA 0.002 Yuan et al., 2011
SPCE/PVA 20 Yuan et al., 2011

Optical  

Catechol tyrosinase 

Glass/SiO2/Nafion 2.1 Abdullah et al., 2006

Phenol tyrosinase Amperometry   
  GC electrode/MWNT/TiO2/Nafion 0.095 Y.-J. Lee et al., 2007 
  Functionalised Au electrode  0.1 L. Wang et al., 2010 
  GC electrode/palygorskite 0.05 J. Chen & Jin, 2010 
  Functionnalised BDD electrode 0.2 Zhou et al., 2006 
  GC/polyacrylamide microgel 1.4 Hervas Perez et al., 2006 
  Pt/EDP 0.1 Yildiz et al., 2007 
  GC electrode/ TiO2 0.13 Kochana et al., 2008 
  BDD electrode/ZnO nanorods 0.5 Zhao et al., 2009 
  Carbon fiber paper/PVA 0.005 Yuan et al., 2011 
  SPCE/PVA 20 Yuan et al., 2011 
  Optical   
  Glass microarray/PEG-DA/QD 1 Jang et al., 2010 
  Glass/SiO2/Nafion 1.9 Abdullah et al., 2006 

4-chlorophenol tyrosinase Amperometric   
  GC electrode/MWNT/TiO2/Nafion 0.11 Y.-J. Lee et al., 2007 
  GCelectrode+Teflon+Au nanoparticles 0.02 Carralero et al., 2006 
  Functionnalized BDD electrode 0.1 Zhou et al., 2006 
  GC/polyacrylamide microgel 0.03 Hervas Perez et al., 2006 
  GC electrode/ TiO2 0.17 Kochana et al., 2008 
  BDD electrode/ZnO nanorods 0.4 J. Zhao et al., 2009 
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Pollutant Enzyme Transduction 
Detection
limit (µM)

Reference 

Trophic pollutants    

Nitrates Amperometry   
 

Nitrate  
reductase Pt electrode/Ppy 10 Sohail et al., 2009 

  Conductometry   
  Au electrode /GA /Nafion 5 Xuejiang et al., 2006 

Nitrites Amperometry   
 

Nitrite  
reductase GC electrode/[ZrCr-AQS]-

LDH/GA 
0.004 

H. Chen et al., 2007 

  GC electrode/modified MV 0.06 Quan et al., 2010 
  Conductometric   
  Au electrode /Nafion 0.05 Z. Zhang et al., 2009 

Conductometric   Phosphates Maltose 
phosphorylase Au electrode /GA 1 Z. Zhang et al., 2008 

Amperometry   
Pt electrode/Nafion/PCS hydrogel 3.6 Gilbert et al., 2010 

 Pyruvate  
oxidase 
 SPC electrode/acetate cellulose <300 Khadro et al., 2009 

Organic  
Matter 
(proteic fraction) 

Protéinase K +
pronase 

Conductometric 0.583 
µg/L 

for TOC 

 

Organophosphorous pesticides      

Amperometric   
GC electrode/NQ/Nafion 0.17 
GC electrode/NQ/o-PPD 0.19 

Dichlorvos tyrosinase 
(inhibition) 

GC electrode/Nafion 0.07 
Vidal et al., 2008 

Amperometric   
GC electrode/ MWCNT/Au/QD 0.004 Du et al., 2010 

methyl 
parathion 

OPH 

GC electrode/ MWCNT 0.8 Deo et al., 2005 

Amperometric   demeton-S OPH 
CSP electrode/MWCNT 1 Joshi et al., 2006 

Amperometric   
GC electrode/ MWCNT 0.15 Deo et al., 2005 
GC electrode/mesoporous C/C 
black 

0.12 
J.H. Lee et al., 2010 

Piezzoelectric   
Microcantilever/LbL 0.1 Karnati et al., 2007 

SPR   
Au/SiO2 20 Luckarift et al., 2007 

OWLS   

Glass/TiO2 array 2.5 
Ramanathan 

et al., 2007 

paraoxon OPH 

PMMA/sol gel 0.004 Zourob et al., 2007 

AQS: anthraquinone sulfonate, BDD: boron doped diamond,  CoPc: cobalt phtalocyanine, CP: carbon 
paste, CSP: carbon screen-printed, EDP: electrodeposition polymer, GA: glutaraldehyde, GC: glassy 
carbon, GrC: graphite carbon, Ppy: polypyrolle, LbL: layer by layer, LDH: Layered double hydroxide , 
MV: methylviologen, MWCNT: multi-walled carbon nanotubes,NQ: naphthoquinone, PCS: 
poly(carbamoyl) sulfonate , PVA: polyvinylalcohol,  QD: quantum dot, SPC: screen-printed carbon, 
SWCNT: single-walled carbon nanotubes. 

Table 1. Examples of enzymatic biosensors for the detection of chimical pollutants. 
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Another enzyme, organophosphate hydrolase (OPH), has been also commonly used for the 
development of electrochemical, optical and mechanical biosensors for organophosphorous 
pesticides detection, while nitrate reductase, nitrite reductase, maltose phosphorylase, 
pyruvate oxidase have been employed for the determination of trophic pollutants such as 
nitrates, nitrites or phosphates (Table 1). 

2.2.2 Immunosensors 

Immunosensors are based on highly selective antibody (Ab) - antigen (Ag) reactions. The 
immobilized sensing element can be either an Ab or an Ag which can be chemically modified 
(hapten). In the first case, analyte binding is measured directly. In the second case, the method 
is based on the competition between immobilized Ag, the analyte (Ag) and a fixed amount of 
Ab. All types of immunosensors can either be run as nonlabeled or labeled immunosensors. 
Label free immunosensors rely on the direct detection of antigen-antibody complex formation 
by measuring variations in electrical properties using electrochemical impedance spectroscopy 
(EIS), or changes in optical properties using SPR. The second type of immunosensors use 
signal-generating labels which allow more sensitive and versatile detection modes. Peroxidase, 
glucose oxidase, alkaline phosphatase, catalase enzymes and electroactive compounds such as 
ferrocene are the most common labels used for electrochemical detection, while fluorescent 
labels (rhodamine, fluorescein, Cy5, etc…) are employed for optical detection. Some recent 
examples are presented in Table 2. Over the two past decades, a large number of 
immunosensors targeting individual pollutants or groups of pollutants and based on these 
different configurations have been reported. Recent developments have been focused on label 
free immunosensors using EIS and SPR detection (Mitchell, 2010; Prodromidis, 2010) as well as 
on improvements in antibody design (Conry et al., 2009).  

2.2.3 Cell-based biosensors 

Many works have been focused on the development of cell-based biosensors. Bacteria, algae 
and yeasts are the main organisms used for that purpose. Various types of strains have been 
exploited, from commercial and well-characterized cells harbouring a broad range of 
substrates to genetically-engineered organisms specially constructed to detect specific 
molecules or groups of molecules, passing through environmental cells isolated from 
polluted sites offering higher robustness and more specific enzymatic properties. Cell 
membranes can be permeabilized in order to improve accessibility to internal enzymes. 
Compared to their individual components (enzymes, antibodies or DNA), cells are easier to 
produce in large quantities and are more tolerant to pH, ionic strength and temperature 
variations. Owing to the large number of enzymes and cofactors that the cells contain, a 
large variety of biosensors has been proposed for the detection of specific (groups of) 
analytes or for aquatic toxicity assessment, this latter application being addressed in section 
2.3. Several reviews have been published on the topics (Lei et al., 2006), some of them being 
more specifically dedicated to yeast-based sensors (Baronian et al., 2004), genetically-
modified bacteria sensors (Daunert et al., 2000; Girotti et al., 2008; Hansen & Sorensen, 2001; 
Van der Meer & Belkin, 2010; Woutersen et al., 2010), or electrochemical cell biosensors 
(Lagarde & Jaffrezic-Renault, 2011).  

2.2.3.1 Electrochemical biosensors 

Amperometry is the most common electrochemical transduction mode used in whole cell 
biosensors. It allows detecting oxygen consumption or production during respiration/ 
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photosynthesis processes, consumption or production of specific compounds in course of 
analyte metabolisation, or induction of a specific enzyme activity by genetically modified 
microorganisms (Lagarde & Jaffrezic-Renault, 2011). Different microbial strains exhibiting a 
wide range of substrates have been used for the determination of biological demand of 
oxygen (BOD), an index of the amount of degradable organic compounds present in the 
sample (Nakamura, 2010; Ponomareva et al., 2011). Oxygen consumption during biological 
respiration is generally detected by means of conventional Clark type electrodes, but 
miniaturized systems based on small-size carbon screen-printed electrodes (SPEs) have been 
also proposed in recent years. In the same way, biosensors able to detect surfactants, 
phenolic derivatives, alcohols or organophosphorous pesticides have been constructed by 
immobilizing bacteria degrading specifically these groups of pollutants on classical oxygen,   

 

Pollutant Detection mode Transduction
Detection 

limit (ng L-1)
Reference 

Pesticides     

Isoproturon Competitive/ Cy5.5 
fluorescence labelling 

TIRF 20 Tschmelak et al.,2005 

Chlorpyrifos Competitive/no labelling SPR 55 Mauriz et al., 2006 

DDT and derivated 
products 

Competitive/no labelling SPR 15 Mauriz et al., 2007 

Atrazine Direct EIS 10 Hleli et al., 2006 

 Competitive/ Cy5.5 
fluorescence labelling 

TIRF 10 Tschmelak et al. 2005 

 Competitive SPR 500 Farre et al., 2007 

Picloram Competitive HRP labelling Amperometric < 1 L. Chen et al., 2010 

EDCs     

Testosterone Competitive/labelling TIRF 1.7 Tschmelak et al. 2006 

 Competitive/no labelling Amperometric 170 Eguilaz et al., 2010 

Estradiol Competitive SPR 300 Ou et al., 2009 

Bisphenol A Direct EIS 400 Rahman et al., 2007 

 Competitive/labelling TIRF 8 Marchesini et al., 2005: 
Tschmelak et al., 2005 

Nonylphenols Direct/HRP labelling Amperometric 10000 Evtugyn et al., 2006 

2,4-dichloro-
phenoxyacetic acid 

Competitive/Cy5.5 
fluorescence labelling 

TIRF 90 Long et al., 2008 

 Competitive/no labelling SPR 100 Kim et al., 2007 

 Competitive  
(signal amplification) 

SPR 8 Kim et al., 2007 

Toxins     

Microcystin-LR Competitive/Cy5.5 
fluorescence labelling 

TIRF 30 Long et al., 2008 

Table 2. Examples of immunologic biosensors for the detection of chemical pollutants.  
EDC: endocrine disrupting compound 
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graphite carbon or carbon paste electrodes, more recently on SPEs (Lagarde & Jaffrezic-

Renault, 2011). Table 3 presents the most recent examples of electrochemical biosensors 

developed for BOD measurement and for the determination of specific (groups of) analytes. 

To modify cell resistance and sensitivity towards toxic compounds, microorganisms may be 

genetically modified. Buonasera et al. recently combined on a single biosensing platform 

amperometric and optical modes of transduction as well as several genetically modified 

algal strains harbouring various degrees of sensitivity and resistance towards pesticides. 

The system allowed detecting different subclasses of pesticides in the 0.1 to 10 nM range 

(Buonasera et al., 2010). To enhance selectivity, genetical modification of the cells is also 

possible by fusing a natural regulatory circuit existing in the microorganism with a 

promotorless gene encoding for an easily measurable protein expressed only when the 

analyte(s) is present. The most common gene used for electrochemical detection is lacZ 

encoding ǃ-galactosidase Activation of ǃ-galactosidase is generally followed through the 

increase of its enzymatic activity using p-aminophenyl ǃ-D-galactopyranoside (PAPG) as 

substrate. PAPG is transformed into p-aminophenol oxidized at the amperometric electrode. 

Tag et al. (Tag et al., 2007) proposed another method of detection using lactose as deputy 

substrate.  

Potentiometric and conductometric biosensors have been also developed for the 

determination of specific pollutants. For example, a biosensor based on P. aeruginosa JI104 

immobilized on a chloride ions-selective solid-state electrode has been reported for 

trichloroethylene detection in waters. More recently, Hnaien et al. (Hnaien et al., 2011) 

proposed a fast, sensitive and miniaturized whole cell conductometric biosensor for the 

determination of the same pollutant. The biosensor assembly was prepared by immobilizing 

P. putida F1 bacteria at the surface of gold microelectrodes through a three dimensional 

alkanethiol self-assembly monolayer/arbon nanotubes architecture functionalised with 

Pseudomonas antibodies. pH electrodes have also been widely used to detect H+ ions 

produced through enzymatic reactions (Kumar et al., 2008). 

2.2.3.2 Optical biosensors 

Optical biosensors rely on the modulation of cell optical properties (UV-Visible absorption 

and biochemiluminescence, reflectance, fluorescence) following interaction with compounds 

present in the sample. Most of the optical biosensors proposed are based on 

bioluminescence or fluorescence detection. The so-called “light-off” systems measure a 

decrease in the celullar light emission following exposure to the pollutant(s). They are 

mainly used for water toxicity assessment (§2.3.5). The detection of specific analytes or 

groups of analytes is rather performed using “light-on” type biosensors, where the 

interaction causes an increase of light signal proportional to the analyte concentration. 

“Light-on” microorganisms are produced naturally or via genetic engineering. The most 

frequently used genes are lux gene encoding for luminescent luciferase and gfp gene 

encoding for fluorescent GFP (green fluorescent protein). A variety of well-characterized 

promoters is available for genetic manipulations and has been used to construct new 

organisms able to sense specifically different classes of pollutants, including metals (copper, 

mercury, lead, cadmium, arsenic ...), hydrocarbons and organic solvants or pesticides. Many 

examples have been reported in the literature (Daunert et al., 2000; Lei et al., 2006). 

Naturally emitting bacteria have been also used for BOD determination (Lin et al., 2006; 

Sakaguchi et al., 2007). 
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Target Microorganism Transduction 
Detection 

limit 
Reference 

BOD     

 Saccharomyces cerevisiae Amperometry 6.6 mg L-1 Nakamura et al., 2010 

 Microbial consortium 
(BODSEED) 

Amperometry < 5 mg L-1 L. Liu et al., 2010 

 Escherichia coli DH5ǂ Potentiometry 1mg L-1 Chiappini et al., 2010 

 Photobacterium phosphoreum
IFO 13896 

Luminescence 1mg L-1 Sakaguchi et al., 2007 

 B. licheniformis, D. maris,  
M. marinus 

Optical fibre 0.2 mg L-1 Lin et al., 2006 

Phenolic compounds     

Phenol Pseudomonas putida  
DSM 50026 

Amperometry 500 µM Timur et al. 

p-nitrophenol Pseudomonas sp. Amperometry < 10 µM Timur et al. 

Organophosphorous pesticides     

Paraoxon, parathion Modified P. putida JS444 Amperometry 0.001 µM Lei et al., 2005 

Fenithron, EPN   0.005 µM Lei et al., 2007 

Heavy metals     

Cu  S. cerevisiae  
19.3C/ CUP1::lacZ 

Amperometry 0.1 µM Tag et al., 2007 

 S. cerevisiae SEY6210/ 
CUP1::lacZ 

 33 µM  

Endocrine disrupting compounds    

 S. cerevisiae  
Y190 medER ::lacZ 

Amperometry - Ino et al., 2009 

Antibiotics     

Cephalosporins P. aeruginosa MTCC 647 Potentiometry 100 µM Kumar et al., 2008 

Organic solvants     

Benzene P.putida L2 Amperometry 10 µM Lanyon et al., 2006 

Trichlorethylene P. aeruginosa JI104 Potentiometry 0.22 µM Han et al., 2002 

 P. putida F1 Conductometry 0.07 µM Hnaien et al., 2011 

Table 3. Some recent examples of cell based biosensors for the detection of specific (groups of) 
pollutants 

2.3 Application of biosensors to the assessment of aquatic toxicity 

Most of biosensors developed for toxicity assessment exploit toxic effects of the pollutants, 
including enzyme inhibition, such as AchE inhibition by neurotoxic compounds, interaction 
with a specific receptor (androgenicity, estrogenicity), interaction with and damage of DNA 
or RNA (genotoxicity). The detection of some biomarkers of toxicity may be also used. 

2.3.1 Enzyme biosensors 

A major contribution of enzyme biosensors to ecotoxicological studies concerns aquatic 
neurotoxicity assessment. This latter may be due to organophosphate and carbamate 
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pesticides, heavy metals or detergents that inhibit esterase enzymes. Neurotoxicity 

biosensors proposed in the literature are mostly based on two enzymes belonging to this 

family, acethylcholinesterase (AchE) and butylcholinesterase. Many works and two reviews 

have been published on this type of biosensor (Jaffrezic-Renault, 2001; S. Liu et al., 2008). 

Current developments aim to improve enzymatic activity, either by genetic modification 

(Bucur et al., 2006) or by a better immobilisation on the transducer. The use of new materials 

based on gold, silver or iron nanoparticles (Du et al. 2008; Gan et al., 2010; Gong et al. 2009; 

Shulga et al., 2007; W. Zhao et al., 2009) or on carbon nanotubes (Viswanathan et al., 2009) 

also allows significant increase of the sensitivity of electrochemical and optical biosensors. A 

portable system using a potentiometric transduction and AchE as bioreceptor has been 

recently validated on different samples of water (Hildebrandt et al., 2008). Cortina et al. 

(Cortina et al., 2008) proposed an enzyme-based array that used three AchE enzymes: the 

wild type and two different genetically modified enzymes. Multianalyte devices combining 

informations from several different types of enzymes have been also proposed. For example, 

Soldatkin et al. recently developped an amperometric multibiosensor using the inhibition of 

acetylcholinesterase, butyryl- cholinesterase, urease, glucose oxidase, and three-enzyme 

system (invertase, mutarotase, glucose oxidase) for water toxicity assessment (Soldatkin et 

al., 2009). 

2.3.2 Estrogen receptor-based biosensors  

Endocrine disruptors (EDCs) are chemical substances that cause hormonal imbalances and 

impair endocrine or nervous systems. Some of these compounds affect the synthesis of 

endogenous hormones or that of their receptors. Others are structurally similar to estrogens 

and bind to their receptors, leading to their inactivation or to abnormal behaviours. Many 

molecules, such as synthetic hormones or chemical substances such as phthalates, 

surfactants, PCBs, alkylphenols, parabens, PAHs, dioxins and some pesticides, are EDCs. To 

date, 320 priority substances suspected to disrupt endocrine system have been identified by 

the European Community. Some of them (nonylphenol, di-2-ethylhexylphthalate and 

polybrominated diphenyl ethers) have been included in the list of priority substances of the 

Water Framework Directive. A review has addressed the use of biosensors for 

environmental EDCs monitoring (Rodriguez-Mozaz et al. 2004).  

Toxicity biosensors rely on EDCs binding on estrogen receptors immobilised on the surface 

of a transducer. The estrogen receptor of human origin (ER-α) is the most often used. 

Different transduction modes such as fluorescence, cyclic voltammetry, SPR, electrophoretic 

mobility, have been proposed. Portable systems, mainly based on SPR detection have also 

been developed (Habauzit et al., 2007). Recently, a biosensor containing carbon nanotubes 

functionalised with the ǂ-type human estrogen receptor and using a FET as transducer has 

been reported. The response time was extremely rapid (2 min) (Sanchez-Acevedo et al., 

2009). Another biosensor, using impedance as transduction mode, was fabricated by 

immobilizing ER-α in a supported bilayer lipid membrane modified with Au nanoparticles. 

(Xia et al., 2010) The results indicated that the biosensor was able to detect the natural 

estrogen 17ǃ-estradiol with an acceptable linear correlation ranging from 5 to 150 ng/L and 

a detection limit of 1 ng/L. The biosensor could also detect bisphenol A and 4-nonylphenol. 

Im et al. (Im et al., 2010) propose to bind ER-α receptor covalently on a gold electrode for 

impedimetric detection of 17ǃ-estradiol. The detection limit was 1 µM. 
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Toxicity 
mechanism 

Pollutants Microorganisms Transduction Reference 

Inhibition of 
AChE activity 

Cd, Zn C. vulgaris Conductometry Chouteau 
et al., 2005 

OPs C. vulgaris Conductometry Chouteau 
et al., 2005 

Cd C. vulgaris Conductometry Guedri 
et al., 2008 

Inhibition of 
AP activity 

Cd, Zn C. vulgaris Amperometry Chong 
et al., 2008 

Antibiotics E.coli JM 105 Amperometry Mann & 
Mikkelsen, 

2008 

Hg, Cu, Zn, Ni, 
phenolic compounds

E.coli Amperometry H. Wang 
et al., 2008 

Inhibition of 
respiratory 
activity 

KCN, As2O3, Hg2+ E.coli DHα Amperometry C. Liu 
et al., 2009 

C. vulgaris Amperometry Shitanda 
et al., 2009 

Inhibition of 
photosynthetic 
activity 

Atrazine, DCMU 
Formaldehyde 

C. vulgaris 
/ P. subcapitata/ C.reinhardtii 

Amperometry Tatsuma 
et al., 2009 

Inhibition of 
luminol 
peroxidase 
activity 

Pb2+, Hg2+, Cu2+ Vibrio fischeri Luminescence Komaitis 
et al., 2010 

Nalidixic acid, 
mitomycin C, H2O2 

E.coli RFM443 nrdA :: 
luxCDABE 

Luminescence 
(induction) 

Hwang 
et al., 2008 

Mitomycin C, 
nalidixic acid , 

MNNG, 4-NQQ 

E. coli RFM443 with recA, 
NrdA, dinI, sbmC, recN, sulA or 
alkA promoters and luxCDABE

reporter 

Luminescence 
(induction) 

Ahn 
et al., 2009 

Nalidixic acid  
 

IQ 

E. coli 
RFM443 sulA ::phoA 

S. typhimurium 
TA1535 umuC::lacZ 

Amperometry 
(induction of AP) 

Ben Yoav 
et al., 2009 

Mitomycin C, 
ethidium 

bromide,H2O2, 
toluene, pyrene, 

benzo[a]pyrene, MMS

Acinetobacter baylyi ADP1 
recA::luxCDABE 

Luminescence 
(induction) 

Song 
et al., 2009 

Mitomycin, H2O2 E. coli 
RFM443 grpE::luxCDABE 

and recA::luxCDABE 

Luminescence 
(induction) 

Eltzov 
et al., 2009 

Genotoxicity 

Mitomicyn C, 
pentachlorophenol, 

H2O2 

E. coli K12 
recA ::luxCDABE and 

ColD::luxCDABE 

Luminescence 
(induction) 

Kotova 
et al., 2010 
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Toxicity 
mechanism 

Pollutants Microorganisms Transduction Reference 

Protein damage Phenol E. coli DnakA::lacZ 
E. coli grpE::lacZ 

Amperometry 

(induction of ǃ–
galactosidase) 

Popovtzer 

et al., 2006 

Membrane 
damage 

Phenol E. coli fabA::lacZ Amperometry 
(induction of ǃ–

galactosidase) 

Popovtzer 
et al., 2006 

Heat shock Mitomicyn C, 
pentachlorophenol, 

H2O2 

E. coli grpE: :luxCDABE 
E. coli pIbpA::luxCDABE 

Luminescence 
(induction) 

Kotova 
et al., 2010 

Cd2+, Cu2+, Pb2+, Zn2+ 

H2O2, menadione, 
selenite, arsenite, 

triphenyltin 
naphthalene 

E. coli DH5α 
pRSET::roGFP2 

Fluorescence 
(induction) 

Arias-
Barreiro 

et al., 2010 

Mitomicyn C, 
pentachlorophenol, 

H2O2 

E.coli K12 katG ::luxCDABE 
and SoxS::luxCDABE 

Luminescence 
(induction) 

Kotova 
et al., 2010 

Oxidative stress 

Paraquats and 
derivatives , H2O2 

Various strains and promoters 

with luxCDABE reporter 

Luminescence 
(induction) 

J.Y. Lee 
et al., 2007 

AchE: acetylcholinesterase, AP: alkaline phosphatase; DCMU: 3-(3,4-dichlorophenyl)-1,1-diethylurea, 
IQ : 2-amino-3-methylimidazo[4,5-f]quinoline, MNNG: 1-methyl-1-nitroso-N-methylguanidine, MMS: 
Methyl methanesulfonate , 4-NQQ: 4-nitroquinoline N-oxide 

Table 4. Some recent examples of toxicity cell-based biosensors. 

2.3.3 Immunosensors 

As seen in section 2.2.2, a large number of applications of immunosensors relate to the 
determination of pollutants or groups of target pollutants. It is also possible to exploit them 
for the detection of substances, called biomarkers, that are produced by an organism 
following exposure to specific pollutants. Vitellogenin, for example, is a phospholipo-serum 
glycoprotein secreted in large quantities by fish exposed to endocrine disruptors. Its 
presence is suitable for identifying oestrogenotoxic effects of natural or anthropogenic 
substances. Vitellogenin may be detected using electrochemical, optical or piezoelectric 
biosensors based on carp anti-vitellogenin antibody (Bulukin et al., 2007). 

2.3.4 DNA biosensors 

DNA structure is extremely sensitive to the influence of environmental pollutants such as 
heavy metals, polycyclic aromatic compounds and PCBs. These substances possess high 
affinity for DNA, at the origin of mutagenic and carcinogenic effects. Biosensors, measuring 
the interactions between these substances and single or double strand DNA molecules 
immobilised on a transducer, have been developed and used for water genotoxicity 
assessment. Electrochemical transduction is the most commonly used (Nowicka et al., 2010). 
The compounds bound to DNA are detected, either directly when electroactive species are 
involved, or through the modification of DNA electrochemical signal. Toxicity biosensors 
based on the detection of DNA bases oxidation (mainly guanine, but also guanosine and 
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adenosine) or on the degradation of the strands using an electrochemical probe, have been 
developed and applied to the analysis of water samples containing different types of 
genotoxic aquatic contaminants (metals, pesticides, PCBs, aromatic amines ...). Some of these 
biosensors were favorably compared to commercial genotoxic assays.  
Other types biosensors using either optical (SPR, fluorescence) or mechanical transduction 

have been also proposed (Palchetti & Mascini, 2008). 

2.3.5 Biosensors based on whole cells 

Bacteria, yeasts, algae and fish cells have been also used for the development of toxicity 

biosensors (Baronian, 2004; Daunert et al., 2000; Hansen & Sorensen, 2001; Lagarde & 

Jaffrezic-Renault, 2011; Lei et al., 2006; Girotti et al., 2008; Van der Meer et al., 2010; 

Woutersen et al., 2010). The biosensor response may be due to a change in cell metabolism 

(inhibition of enzyme activity, respiration or photosynthesis), cell alteration, death, or 

change in the expression of certain genes (modified organisms). 

Many examples of electrochemical and optical biosensors proposed for toxicity assessment 

may be found in the different reviews cited above. The most recent ones are given in  

Table 4. Optical biosensors are mainly based on luminescent modified bacteria, using 

typically the recA, uvrA, NrdA promoters for DNA damage detection, the grpE and dnaKp 

promoters for protein damage detection, and the fab A promoter for cell membrane damage 

(Woutersen et al., 2010). 

3. Conclusion 

Despite the large number of works carried out on the field of biosensors for water 

analysis, and although they have many benefits, very few systems have so far been 

marketed, unlike bioassays. Most commercial biosensors are versatile and suitable for 

applications in various fields such as environment, biological analysis or medical 

(Rodriguez-Mozaz et al., 2005). 

Significant efforts still have to be done to obtain selective, robust, rapid and sensitive tools 

usable in the field. The main limitation of the proposed systems come from the biological 

elements. Current developments include enhancement of their sensitivity, selectivity and 

their stability by genetic engineering (Girotti et al., 2008; Campas et al., 2009; Conroy et al., 

2009). Recent progress in this area as well as in data numerisation, transmission and 

processing allows now the construction of arrays of microorganisms or of enzymes arranged 

on a single detection platform for the determination of several parameters at the same time. 

In parallel, the development of new biomimetic receptors such as that molecularly imprinted 

polymers (MIP) or aptamers (synthetic oligonucleotides) is expanding to overcome the 

fragility of natural bioreceptors (Wang et al., 2007; Guan et al., 2008). Methods allowing a 

more efficient immobilisation of the bioreceptor will also have to be developed to improve 

the robustness and sensitivity of biosensors. The exploration of new materials, including 

gold nanoparticles, carbon nanotubes or quantum dots is an extremely promising route to 

achieve this goal. 

Essential progress has also been made in recent years in the miniaturization of transducers 

(nanoelectrodes, nanowaveguides, BioMEMS) and will contribute to reduce significantly the 

amount of biological entity required, but also to improve integration of the systems in labs 

on chips (Ligler, 2009; Wei et al., 2009). 
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