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1. Introduction 

Organophosphorus compounds are a wide-spread group of agents which can be used 
among others as pesticides, especially insecticides, or chemical warfare agents. These 
extremely toxic compounds irreversibly inhibit the enzymes of hydrolases class, which have 
the catalytic capability of hydrolyzing their specific neurotransmitters in synaptic clefts of 
the nervous system. The organophosphorus pesticides and carbamates are agents used in 
agriculture very often, because of their relatively low stability. Many of them, however, 
have very high acute toxicity for warm-blooded animals. 
The group of organophosphorus compounds also includes nerve agents with their 
dominant position among chemical warfare agents. The discovery of their effects was made 
more or less accidentally in the 30-ies of the last century during the research of fluoroorganic 
compounds in IG Farben, a German company, by Dr. Gerhard Schrader. The first 
synthesized agent was ethyl-(dimethylamido)phosphorocyanidate, designated as trilon 83 
or tabun. However, it was not the first known agent with a cholinergic effect. Back in 1854 a 
French chemist, Phillip de Clermont, synthesized the first organophosphate – tetraethyl 
pyrophosphate (de Clermont, 1855, as cited in Holmstedt, 2000). Gradually more agents 
with N-P, P-CN or C-F bonds were synthesized in order to produce insecticides and later 
also nerve agents (Holmstedt, 2000). After verifying the effects of tabun for warm-blooded 
animals, a synthesis of other, even more toxic, agents followed (Pitschmann, 1999). In 1939 
isopropyl-methylphosphonofluoridate was discovered, also called trilon 46 or sarin, and in 
1944 (3,3-dimethylbutane-2-yl)-methylphosphonofluoridate, the so-called soman, followed. 
These agents belong to the so-called G-series of nerve agents. The origin of a new V-series 
dates back to the end of 50-ies. This group of agents has increased toxicity when penetrating 
the skin. The principal representative is S-[2-(diisopropylamino)ethyl]-O-ethyl- 
methylphosphonothioate, also known as VX, and S-[2-(diethylamino)ethyl]-O-isobutyl- 
methylphosphonothioate with the code designation R-33. In the 70-ies up to 90-ies another 
group of nerve agents was discovered in the former USSR within the so-called Foliant 
program. These are compounds based on phosphorylated and phosphonylated oximes and 
amidases. According to unauthorized sources they reach at least the toxicity of VX, some are 
even 5 to 8 times more toxic. In a case like this there could be a problem with their detection. 
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The limit of detection of the most of current technical means is, with the exception of means 
based on biochemical cholinesterase reaction, unsatisfactory. 
The inhibition of enzyme efficacy happens even at very low concentrations of nerve agents 
or pesticides. Even trace amounts of these agents can represent a considerable hazard to 
health for living organisms. Detection through the biochemical method is characterized by 
high sensitivity and enables setting of about 1.10-5 – 1.10-7 mg.ml-1 in the solution or 1 l of air 
depending on the type of inhibitor. This sensitivity is up to five times higher compared to 
methods based on chemical or physical principle (Halámek et al., 2009). For this reason a 
number of biosensors, which provide a suitable alternative to classical analytical methods, 
has been developed based on the biochemical reaction. It is an analytical device which 
consists of a biologically active material such as an enzyme, an antibody or a binding 
protein and a converter which converts the biochemical reaction to an output signal which 
can be quantified. These converters can be based on amperometric, potentiometric, 
chemiluminescent, piezoelectric or optical principles and on a semiconductor or an ion-
selective effect of transistor techniques. Their development has been important especially in 
the last two decades. They meet the demands for a quick and cheap analysis with high 
sensitivity (Kenar, 2010; Rekha et al., 2000). 
This chapter deals with a general overview and characteristics of methods for detection and 
identification of nerve agents and pesticides based on the cholinesterase reaction and its 
modifications. It shows some practical applications of biosensors and indicates some new 
trends in the field leading to increasing the selectivity for identification of individual nerve 
agents. 

2. Cholinesterases 

The hydrolases, which are used for the construction of biosensors, are basically two, 
acetylcholinesterase (AChE, EC 3.1.1.7), also called a genuine or specific cholinesterase, and 
butyrylcholinesterase (BuChE, EC 3.1.1.8), the so-called false or also nonspecific 
cholinesterase. The task of ACHE is the hydrolysis of a specific neurotransmitter 
acetylcholine (ACh) in a neurosynaptic cleft and thus the termination of irritating 
cholinergic receptors or a neuromuscular junction. The physiological importance of BuCHE 
in a body is not, compared to AChE, so essential. Its physiological function has not been 
exactly identified yet (Masson et al., 2009). However, it has been found out that it plays 
some role in metabolism of local anaesthetics, novocaine and cocaine (Carmona et al., 2000). 
Its specific substrate is butyrylcholine (BuCh). Besides natural substrates also a synthetic 
substrate, e.g. 4-aminophenyl acetate, can be used for both enzymes. Both enzymes basically 
have a similar three-dimensional structure but there is a difference in their substrate 
specificity and sensitivity to inhibitors (Hanin & Dudas, 2001). Hydrolytic reactions 
catalyzed by cholinesterases proceed in a narrow space of the active center where the so-
called esteratic and anionic site can be found. The esteratic site is made up of the so-called 
catalytic triad a part of which is the serine residuum which reacts with the substrate but also 
with organophosphates. The presence of substrate in the active center of AChE stabilizes the 
configuration of the catalytic triad. The size of the substrate molecule and its positive charge 
at the nitrogen atom influence the size of the bond to anionic site. It has been experimentally 
found out that this bond is reduced by relocating the positive charge (Kua et al., 2002). The 
decomposition of a neurotransmitter results in ACh bond to the active site of AChE enzyme 
which is placed in the hole of the active center, about 20 Ǻ deep (Sussman et al., 1991). The 
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tertiary nitrogen in ACh molecule is bonded to the anionic site represented by a glutamate 
ion. The oxygen from the acyl part of the substrate molecule is bonded in the oxy anion hole. 
Thereby the ACh molecule is anchored in the active center. The hydroxyl serine group, 
which binds the acetyl part of ACh, participates in splitting of ester. Then the substrate is 
split up into acetyl and choline. The effect of hydrolysis by means of a water molecule, 
present in the cleft of the active center, causes spontaneous reconstruction of enzyme 
activity. An acylating group, which can be active within another choline acetylation, splits 
off from the enzyme molecule (Somani et al., 1992). The mechanism of acetylcholine 
hydrolysis catalyzed by the acetylcholinesterase enzyme is shown in the reaction scheme 1. 

AChE
3 2 2 3 3 2 3 2 2 3 3CH C(O)OCH CH N(CH )  + H O  CH COOH + HOCH CH N(CH )

+ +
⎯⎯⎯→  

Reaction scheme 1. Mechanism of acetylcholine hydrolysis catalyzed by the acetylcholinest-
erase enzyme. 

Nerve agents, even at very low concentrations, inhibit their hydrolytic capacity through a 
bond in this active center. The inhibition takes place in several steps, as shown in the 
reaction scheme 2. In the first one the inhibitor is bonded to a hydroxyl serine group in the 
esteratic center of AChE. Thus the reversible enzyme-inhibitor complex arises. Further serin 
is covalently phosphorylated. An electronegative leaving group is released from the 
molecule of organophosphorus toxic agent. This bond is still reversible. A competing 
process is the ageing of AChE, the phosphorylated AChE switches to its dealkylated form. It 
is a process where the alcohol is split off by means of water and the alkoxyl group bonded to 
phosphor is replaced by the hydroxyl group. This state is irreversible. The result of enzyme 
inactivation is accumulation of acetylcholine in the nerve ending and development of toxic 
exposures demonstrated in the form of nicotine, muscarinic and central effects (Watson et 
al., 2009). 
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Reaction scheme 2. Mechanism of inhibition of the acetylcholinesterase enzyme. 

The enzyme inhibition will prove itself in reducing its activity depending on the degree of 
inactivation. This reduction can be measured objectively and it is a significant factor for the 
construction of biosensors. The basis for measuring the enzyme activity is the reaction with 
a suitable substrate. AChE catalyzes the hydrolysis of acetylcholine substrate, or its sulfur 
isoester – acetylthiocholine; BuChE hydrolyzes then the catalysis of butyrylcholine or 
butyrylthiocholine. Subsequently you can observe the decrease in substrate, the increase in 
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products or an unreacted substrate. Quite usual is the observation of concentration of 
hydrolysis products, i.e. an appropriate acid or choline. We shall not forget pH-metric 
methods based on the measurement of concentration of an arising acid in combination with 
acid-base indicators and buffers or finished with alkalimetric titration or also with 
determination of CO2 (Tomeček & Matoušek, 1961). The methods of manometric, 
fluorometric, colorimetric and spectrophotometric evaluation or electrochemical methods 
such as potentiometry, amperometry, coulometry or voltammetric indication are also worth 
mentioning. Some benefits can be seen in using the so-called chromogenous substrates 
which brought modification and expansion of possibilities of the cholinesterase method. 
Those are used for example with photometric methods; we observe changes in coloring 
caused by the reaction of hydrolysis products with chromogenous reagents. 
The advantage of enzymatic methods for identification of organophosphorus compounds is 
their high sensitivity and specificity. The demands on making an analysis are, compared to 
common analytical methods, lower as well as their cost. For these reasons they are applied 
more and more often, e.g. when checking the environment contamination. 
The detection of nerve agents and pesticides based on organophosphates can be done not 
only on the basis of choline esterases but there is also a new trend, a non-inhibitory method 
based on organophosphate hydrolase (OPH, EC 3.1.8.1) or organophosphorus acid 
anhydrolase (OPAA, EC 3.1.8.2). OPH hydrolyses compounds with P-O, P-F, P-S and P-CN 
bonds. There were tests of some pesticides, such as paraoxon and parathion, and nerve 
agents, e.g. sarin or VX (Donarski et al., 1989; as cited in Wang et al., 1999; Joshi et al., 2006). 
So the organophosphorus compounds act for OPH as a substrate. These types of biosensors 
offer, same as the cholinesterase ones, using optical, fluorescent, potentiometric or 
amperometric converters (Karnati et al., 2007; Mulchandani, et al. 1999a, 1999b; Rogers et al., 
1999; Wang et al., 2003). Also a field version for in-situ monitoring has been developed 
(Wang et al., 1999; Mulchandani et al., 2001). The OPAA enzyme selectively hydrolyses 
organophosphorus compounds containing the P-F bond; for compounds with other 
common bonds occurring in nerve agents and pesticides the substrate activity is low. A 
biosensor with this enzyme was successfully tested for example for diisopropyl-
fluorophosphate. Besides measuring of pH changes using a glass electrode, pH-sensitive 
field effect transistor (pH-FET), also an ion-selective electrode for fluoride ions can be used 
(Simonian et al., 2001). 

3. Cholinesterase biosensors 

The inhibitory reactions can proceed in the solution; a disadvantage, however, is the limited 
use of enzyme and thus also the increase of cost or enzyme immobilization onto a suitable 
material and connection with an appropriate converter. The first biosensor based on the 
cholinesterase inhibition through organophosphorus compounds was constructed by G. 
Guibault back in 1962 (Guibault et al., 1962; as cited in Arduini et al., 2010). Since that time 
many biosensors have been developed for identification of nerve agents and pesticides. 
Cholinesterase biosensors may be classified according to a converter they use. Most often 
electrochemical converters are used, further piezoelectric and optical converters and surface 
plasmon resonance (SPR) (Arduini et al., 2010; Lin et al., 2006). This chapter deals 
particularly with electrochemical and optical methods. 
A common disadvantage of cholinesterase biosensors is the irreversible character of 
inhibition in the course of analysis. In many cases it is impossible to recover a biosensor like 
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that and to use it once again. This limits the life of biosensor to 10 – 15 identifications. It is 
necessary to recover the enzyme continuously, which can cause considerable difficulties, 
especially in field conditions. Some procedures have been developed, for example using 
nucleophilic reagents, the so-called cholinesterases reactivators (Dăneţ et al., 2003; Gulla et 
al., 2002; Gyurcsányi, et al., 1999; Tušarová et al., 1999) or surface regeneration using self-
assemble layers with a piezoelectric biosensor (Makower et al., 2003). 

3.1 Electrochemical biosensors 

Electrochemical methods are based on a potentiometric, amperometric or conductometric 
method of measurement. Most often amperometric and potentiometric devices are used. 
Electrochemical biosensors make use of mono- and multienzymatic systems. The 
monoenzymatic systems use the above-mentioned AChE or BuChE hydrolases, the 
bienzymatic ones use then the cholinesterase-choline oxidase (ChE-ChO) system (Rekha et 
al., 2000), the trienzymatic ones use cholinesterase, cholinoxidase and peroxidase (POD) 
(Ghindilis et al., 1996). 

3.1.1 Amperometric biosensors 

Amperometric biosensors are the most widely used type of electrochemical sensors and a 
good substitution for the potentiometric ones. They provide a linear output signal 
depending on the concentration of analyte. There are several ways how to evaluate the 
enzyme activity by means of amperometric methods. The first one includes the bienzymatic 
cholinesterase-cholinoxidase (ChE-ChO) system with an oxygen or peroxide amperometric 
converter (Campanella, 2007). The choline from the hydrolytic enzyme catalysis is not 
electrochemically active; that is why cholinoxidase is used by means of which the choline 
oxidizes to betaine while developing the hydrogen peroxide, as shown in the reaction 
scheme 3. This results in detection of the occurrence of hydrogen peroxide or oxygen 
consumption. 

ChO
3 3 2 2 2 2 3 3 2 2 2 2(CH ) NCH CH OH + O + H O  (CH ) NCH CH COOH + 2H O

+ +
⎯⎯⎯→  

Reaction scheme 3. Reaction mechanism of the bienzymatic amperometric ChE-ChO system. 

The second way includes the modification using ACh sulfur isoester, acetylthiocholine, 
which is electrochemically active (Pohanka, 2009). With applied voltage in the reaction 
mixture the resulting thiocholine undergoes an oxidation-reduction reaction according to 
the reaction mechanism in scheme 4. These systems were tested not only for pesticides and 
nerve agents but also for toxins with a cholinergic effect (Kandimalla & Ju, 2006; Pohanka et. 
al., 2008). Also a bienzymatic amperometric biosensor based on BuChE and sulfhydryl 
oxidase (SOX) has been developed even if it has not been tested for organophosphorus 
esterases inhibitors so far. Butyrylthiocholine catalytically hydrolyzes while developing the 
thiocholine which acts as a SOX substrate in the subsequent oxidation (see the reaction 
scheme 5). The measurement was made through the subsequent detection of oxygen 
consumption which is proportional to BuTCh concentration. SOX catalyzes the formation of 
disulfide bridges between sulfhydryl groups (Teksoy, 2007). 

AChE
3 2 2 3 3 2 3 2 2 3 3CH C(O)SCH CH N(CH )  + H O CH COOH + HSCH CH NH(CH )

+ +
⎯⎯⎯→  
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+410mV +
2 2 3 3 3 3 2 3 2 2 3 32HSCH CH N(CH ) (CH ) NCH CH S S CH CH N(CH )  + 2H  + 2e

+ + +
−⎯⎯⎯⎯→  

Reaction scheme 4. Reaction mechanism of the enzyme acetylthiocholine hydrolysis and 
subsequent oxidation through applied voltage. 

BuChE
3 2 2 2 2 3 3 2 3 2 2 2 2 3 3SOX

CH (CH ) C(O)SCH CH N(CH ) + H O  CH (CH ) COOH + HSCH CH N(CH )
+ +

⎯⎯⎯⎯→  

3 3 2 2 2 3 3 2 3 2 2 3 3 2 22(CH ) NCH CH SH + O   (CH ) NCH CH S S CH CH N(CH )  + H O
+ + +

⎯⎯→  

Reaction scheme 5. Reaction mechanism of the bienzymatic ChE-SOX system. 

Besides natural substrates it is possible to use also the synthetic 4-aminophenyl acetate. The 
enzyme-catalyzed hydrolysis gives rise to an electroactive 4-aminophenol which is oxidized 
on the electrode surface (see the reaction scheme 6) (La Rosa et al., 1994). The advantage lies 
in simplicity of using the system with this substrate and a low applied potential. 

H2N O C CH3

O

H2O
AChE

CH3COOHH2N OH

 

Reaction scheme 6. Reaction mechanism of the enzyme 4-aminophenyl acetate hydrolysis. 

As for cholinesterases in amperometric measurements the above-mentioned AChE or 
BuChE are used; they hydrolyze the substrate to an appropriate choline (acetyl or 
butyrylcholine), in case of 4-aminophenyl acetate it is 4-aminophenol and an acid (acetic or 
butyric). These reactions, however, are complicated by occurrence of byproducts deposited 
on the electrode or by a spontaneous substrate hydrolysis itself. Limiting is also the 
necessity of using high working voltage which limits the use of biosensors for samples with 
electroactive molecules. In case of cholinesterase biosensors it is possible to lower the 
voltage and interferences of electroactive sample components by means of redox 
transmitters such as ferophtalocyanine, cobalt phtalocyanine, Prussian blue 
(ferrihexacyanofferate), 7,7,8,8-tetracyanoquinodimethane (TCNQ) in combination with 
carbon electrodes, screen electrodes or using the carbon nanotube (CNT) (Arduini et al., 
2007; Ciucu et. al., 2003; Hart et al., 1997; Hernandez et al., 2000; Lin et al., 2004; Ricci et al., 
2003; Ivanov et al., 2003a; Nunes et al., 2004; Shulga & Kirchhoff, 2007; Skládal, 1992; Skládal 
& Mascini, 1992; Sun & Wang, 2010; Suprun et al., 2005; Wring et al., 1989) or 
electrochemical decomposition of the arising peroxide using a gold or platinum 
amperometric electrode (Yao, 1983). 
CNTs are commonly used for electrochemical biosensors. They occur in two forms – single-
walled (SWCNT) and multi-walled (MWCNT). They are characterized by excellent chemical 
stability, good structural and mechanical properties and electrical conductivity. And these 
are exactly the qualities which make them an ideal means for construction of biosensors. 
They provide an improved electrochemical detection of enzymatic-developed thiocholine 
not only thanks to the reduction of over-voltage but also thanks to higher sensitivity and 
stability (Liu & Lin, 2006; Zhang & Gorski, 2005; as cited in Du et al., 2007). However, they 
are insoluble in most of the organic solvents and water solutions. Nevertheless, CNT 
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biosensors for detection of pesticides with an immobilized enzyme have been developed, 
e.g. MWCNT with chitosan matrix (Du et al, 2007) or a glass carbon electrode (GCE) 
modified by MWCNT with chitosan matrix with immobilized AChE (Sun et al., 2010) or a 
glass electrode modified by CNT for detection of pesticides and nerve agents (Liu et al., 
2005). 
The principle of thiocholine substrate splitting is used for example by a biosensor with 
platinum electrode with immobilized AChE and Ag/AgCl reference electrode in the midst 
of which a potential of +410 mV is applied (Martorell et al., 1994), at Pt anode with a 
potential of +410 mV vs. Ag/AgCl (Marty et al., 1993) or Ti-Au-Pt electrode with +700 mV 
versus a saturated calomel electrode, etc. Thiocholine is oxidized at the anode. The platinum 
electrode is not suitable for detection of sulfhydryl compounds because of the necessity of 
using too high over-voltage. For this reason the aforementioned carbon electrodes are used, 
chemically modified by cobalt phtalocyanine or other modifiers, which leads to reduction of 
the applied potential and lowering of interferences caused by electrochemical impurities 
(Halbert & Baldwin, 1985; Ciucu & Baldwin, 1992; as all cited in Ciucu et al., 2003; Skládal, 
1992). An ideal tool for monoenzymatic systems based on the acetylthiocholine hydrolysis is 
also the detection using screen electrodes, for example in connection with cobalt 
phtalocyanine which transmits the oxidation of thiocholine (Bucur et al., 2005). 
Another application makes use of a working electrode with graphite compound and 
Ag/AgCl reference electrode and applied voltage of +700 mV (Turdean, 2002). The 
amperometric biosensor for detection of methyl paraoxon, carbofuran and phoxim has been 
developed based on the modified platinum electrode with immobilized AChE at gold 
nanoparticles and a silk fibroin. 
The hydrogen peroxide can be detected via amperometry at +650 mV versus the reference 
Ag/AgCl electrode (Andreescu & Marty, 2006). An approach of a ceramic microelectrode 
with cholinoxidase for measurement of changes to the extracellular choline with a detection 
limit of 300 nM and an ability to measure sudden ACh changes in brain and its hydrolysis to 
choline has been developed (Burmeister et al., 2003; Parikh et al., 2004; Parik et al., 2006; as 
all cited in Philips, 2005). For detection of organophosphorus pesticides a biosensor has been 
constructed, containing BuChE and CHO layered onto a nylon membrane of a hydrogen 
peroxide electrode (Campanella et al., 1992). Another system is based on detection of 
oxygen consumption in this reaction using Clark’s electrode (Mizutani & Tsuda, 1982). After 
enzyme inhibition there is reduction in the production of hydrolytic products and thus also 
cutting of oxygen consumption which is proportional to the enzyme activity. The 
disadvantage of this system is the required incubation period and enzyme consumption for 
every other identification. 
An amperometric biosensor, which uses the AChE enzyme and 4-aminophenyl acetate as a 
substrate, has been described. AChE is immobilized onto a glass carbon electrode (La Rosa 
et al., 1994; Pariente et al., 1993) or a screen electrode (Andreescu et al., 2002a). The 
enzymatic-hydrolyzed 4-aminophenol can be detected also via voltametry. The 
disadvantage of screen electrodes is their low stability in organic solvents because of partial 
solubility of the printed layer. 
In the paper (Mitchell, 2004) a multienzyme biosensor for amperometric detection of ACh 
and choline (Ch) in vivo is described. This biosensor makes use of AChE, ChO and ascorbic 
acid oxidase (AAO) immobilized onto a platinum-iridium wire with an electropolymer layer 
Poly(m-(1,3)-phenylenediamine). 
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For detection of organophosphorus pesticides and carbamates in water and food a portable 
amperometric biosensor has been assembled, consisting of a screen electrode with 10 mU of 
immobilized AChE connected with potentiostat and a portable computer. It enables 
detection even in a pepper extract (Hildebrandt et al., 2008). Pesticides present in water 
samples were successfully detected for example by ChE-ChO biosensor through a peroxide 
electrode (Bernabei et al., 1993) or in real samples in some organic solvents which can 
influence the enzyme activity (Palchetti et al., 1997). The sensor for detection of 
organophosphorus pesticides in river, sea and waste water, based on immobilized ChO and 
esterase in the solution, uses the Pt anode vs. Ag/AgCl cathode with +650 mV (Palleschi et 
al., 1992). 
The development of a new technology for immobilization based on a silicate sol-gel matrix 
enabled creation of very stable AChE biosensors with nanoparticles. For example an AChE 
amperometric biosensor with gold nanoparticles (AuNP) in sol-gel matrix with a three-
electrode detection system has been developed, including the Pt wire as an auxiliary 
electrode, a saturated calomel reference electrode and a modified glass carbon working 
electrode with AChE, an ATCh substrate. The flow of arising products after the catalytic 
hydrolysis and substrate oxidation is detected (Du et al., 2008). Further use of the sol-gel 
technology based on an alternative non-silica material is offered by the AChE biosensor 
with ZnO matrix and SPE electrodes (Sinha et al., 2010). 
Most of the amperometric biosensors are tested for detection of pesticides, less of them for 
nerve agents. For detection of nerve agents for example a portable biosensor, which is a part 
of soldier’s individual equipment, has been developed (Arduini et al., 2007). 
Generally it can be said that the improvement of amperometric biosensors is based on two 
approaches, i.e. enhancement of the catalytic capacity and transfer of electrons through 
various modifications of working electrodes and at a lower potential. There is also a 
description of multisensors for current detection and identification of mixtures of 
cholinesterase insecticides based on various options of one enzyme (Bachmann & Schmidt, 
1999; Bachmann et al., 2000), various enzymes (Danzer & Schwedt, 1996; Istamboulie et al., 
2009; Kok & Hasirci, 2004) using Artificial Neural Networks (ANN). 

3.1.2 Potentiometric biosensors 

As it has been already mentioned, an appropriate organic acid arises in the course of 
hydrolysis, which is the basis for potentiometric measurements. The simplest one is based 
on detecting the acid increment by means of a pH-metric device with continuous recording. 
This configuration, however, is not that suitable for the use in field conditions (Miao et al., 
2010). 
Potentiometric detectors were also constructed for both hydrolases substrates, Ach and 
BuCh. For this reason they require different substrate sensors – acetylcholine or 
butyrylcholine selective electrodes which are based on measurement of the redox potential, 
either with transmitters or without them. Most often, however, we use pH sensors based on 
detection of pH changes, caused by system acidification after hydrolysis (Zhang et al., 2009).  
Glass pH electrodes are the basis for potentiometric measurements but they are expensive, 
fragile and unfit for miniaturization and require conditiation before using. A substitution 
may be electrodes based on metal, metal/metal oxide or metal oxide – Au, Pd/PdO, Ir/IrO2, 
RuO2 (Gyurcsányi, et al., 1999; Koncki & Mascini, 1997; Reybier et al., 2002; Tran-Minh et al., 
1990). Furthermore, we use pH ISFET electrodes (Ion-sensitive field effect transistors) which 
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represent a sensitive, cheap, available and simple monitoring device suitable for 
miniaturization (Dzyadevych et al., 2004; Dzyadevych et al., 2006), a light addressable 
potentiometric sensor (LAPS) and electrodes modified by polymers (Snejdarkova et al. 2004; 
Ivanov et al., 2003b). 
Most biosensors based on the pH detection are handicapped thanks to an extended signal 
response and lower substrate sensitivity. The response extension is given by the necessity of 
perfusing the reaction layer or by membrane strength and permeability. The basic limit of 
sensitivity of potentiometric electrodes is given by sensitivity of the pH converter. This jump 
in potential versus pH does not mostly exceed 59 mV per pH unit. The ISFET sensitivity is 
44-54 mV/pH (Cara et al., 1985; as cited in Karyakin et al., 1996). The disadvantages can be 
partially eliminated by various modifications of electrodes. For this purpose for example a 
potentiometric acetylcholinesterase biosensor with an antimony pH electrode has been 
assembled, having – contrary to the glass ones – an easily recoverable surface for 
immobilization, low electrical stability and variability of shapes and sizes. For the electrode 
an immobilization technique of covalent cross-linking with glutaraldehyde vapors in the 
vacuum was used (Gyurcsányi, et al., 1999). 
Potentiometric measurements make use of the above-mentioned ion-selective electrodes 
(ISE) which serve as a polymer matrix for transmission of reagent substances but also as a 
converter for this type of electrochemical biosensors. In the paper (Ding & Qin, 2009) there is 
a presentation of a detection system where the butyrylcholine substrate is released through 
ISE membrane and thus the activity of BuChE enzyme or its application for detection of the 
presence of organophosphorus pesticides in the sample is detected. Constantly releasing the 
substrate under the zero-current conditions from an external solution to a sample solution 
provides a measurable signal in situ. Detecting the enzyme activity is then a consequence of 
disturbing the ion flux induced by membrane potential after the enzyme catalysis. 
As far as potentiometric substrate sensors for detection of pesticides are concerned, for 
example a butyrylcholine sensor, placed on a plasticized polyvinyl chloride membrane by a 
cationic ion exchanger tetrakis (3,5-bis[2-methoxy-hexafluoro-methyl]phenyl) borate, has 
been described. The advantage is high hydrophobicity of the ion exchanger used. Compared 
to other biosensors there has been an improvement of potential stability, life cycle and 
detection limit (Imato & Ishibashi, 1995). A biosensor of flow injection type for identification 
of pesticides is described in the paper (Lee et al., 2002). It consists of AChE immobilized 
onto controlled porous glass and of a detector with tubular H+ of a selective membrane 
electrode. The organophosphate is oxidized, which leads to increasing the sensitivity of 
cholinesterase biosensors. Oxidized forms show a higher inhibitory activity. 
The potentiometric system without transmitters uses the peroxidase enzyme. The 
peroxidase (POD) catalyzes the reaction of the arising peroxide through electro-reduction by 
a mechanism of direct electron transfer from an electrode to a substrate molecule through 
the active enzyme site (Ghindilis et al., 1996; Ghindilis et al., 1997). This principle was used 
to test the screen enzyme electrode for detection of organophosphorus pesticides. ChE along 
with CHO and POD are co-immobilized on the electrode surface. The enzyme activity is 
specified based on individual enzymatic reactions, i.e. butyrylcholine hydrolysis to choline, 
choline oxidation and peroxide formation, and peroxide electro-reduction by means of POD 
according to the reaction scheme 7 (Espinosa et al., 1999). 
Even the potentiometric biosensors can be used to monitor waste substances in the living 
environment, for example in waste waters (Espinosa et al., 1999; Evtugyn et al., 1997). 
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ChO
2 2 2choline + O   betaine + H O⎯⎯⎯→  

POD- +
2 2 2H O  + 2e  + 2H   + 2H O⎯⎯⎯→  

Reaction scheme 7. Reaction mechanism of the POD detector. 

Over fifty years there has been a research conducted in the field of reactivation of inhibited 
cholinesterases in vitro and in vivo. For this purpose the so-called reactivators are 
practically used – strong nucleophilic reagents which recover the function of an inhibited 
enzyme. The compounds based on mono- and bispyridinium aldoximes or ketoximes 
proved to be efficient. Based on this also the potentiometric sensor was built up. It works on 
a principle of the reaction of ketoxime and organophosphorus chemical warfare agent under 
the development of phosphorylated ketoxime and separation of the leaving group (here CN-

). The cyanide ion is detected by a silver electrode (Moll et al., 1976; as cited in Oh & Masel, 
2007). Later on this system was reevaluated and optimized not only for organophosphates 
containing a cyanide group in their structure but also for their simulators using the cyanide 
ion-selective electrode (Oh & Masel, 2007). 
When comparing amperometric and potentiometric sensors, the amperometric ones are 
rated as quicker and more sensitive. The potentiometric ones, however, are simpler and 
more suitable for a field analysis. 

3.1.3 Conductometric biosensors 

The conductometric measurement is based on measuring the conductivity changes which 
are directly proportional to the occurrence of ions in the measured solution (Dzyadevych et 
al., 2005). The conductometric biosensors have a big advantage because they do not require 
the reference electrode and the converter provides the possibility of miniaturization (Miao et 
al., 2010). 
It is impossible to analyze various mixtures of analytes in real samples using just one 
biosensor type. This problem led to construction of the so-called multibiosensor. For this 
purpose two converters were linked – the potentiometric one with a pH-sensitive transistor 
and the conductometric one with thin-films interdigitated electrodes, and three enzymes – 
urease, AChE and BuChE. This group enables simultaneous identification of some heavy 
metals and pesticides. Working parameters and experimental conditions are similar as in the 
case of individual sensors. The result of hydrolytic reactions is the urease consumption or 
proton production (with AChE and BuChE), which causes the increase in pH and changes to 
conductivity at membranes with a subsequent possibility of potentiometric or 
conductometric way of detection. This system represents a simple way of measurement and 
it is applicable for the control of drinking water (Arkhypova et al., 2001). 

3.2 Optical biosensors 
3.2.1 Colorimetric and spectrophotometric biosensors 

Probably the first colorimetric method is Hestrin’s quantitative method for identification of 
an unreacted ACh and esters similar to it. The identification is based on reaction of ACh 
with hydroxylamine in the alkaline environment in the presence of ferric chloride when the 
hydroxylamine reacts with ACh while producing the acetylhydroxamic acid and developing 
the brown-purple complex of ACh-acetylhydroxamic product which can be identified via 
spectrophotometry at 540 mµ (Hestrin, 1949). 
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One of the oldest procedures for detection of the presence of nerve agents is measuring the 
degree of inhibition of cholinesterases using a chromogenous substrate via the so-called 
Ellman’s method designed for identification of thiols (Ellman, 1959; Ellman et al., 1961). It is 
the most often used method in clinical biochemistry to include its employment in field 
individual equipment kits (Wilson, et al., 1997; Capacio et al., 2008). Its principle is splitting 
of hydrolysis-thiocholine (acetyl- or butyrylthiocholine) while releasing the appropriate acid 
and thiocholine according to the reaction scheme 8. The thiocholine molecule contains the -
SH group which can be detected by means of the so-called Ellman’s reagent, 5,5´-dithiobis(2-
nitrobenzoic) acid (DTNB). Splitting up the substrate into thiocholine is indicated by yellow 
coloring which is caused by development of a reduced form of the Ellman’s reagent. This 
enables spectrophotometric detection at 412 nm. 
Various modifications of Ellman’s reaction are used in a number of detection means such  
as detection tubes or a detection biosensor, Detehit (Tušarová & Halámek, 2001). This  
means is utilized by the Armed Forces of the Czech Republic not only as an individual 
equipment item but also as a means of chemical survey and monitoring. It is a strip 
consisting of a zone with a cotton cloth with immobilized and stabilized acetylcholinesterase 
and a detection paper with acetylthiocholine iodide and 5,5´-dithiobis(2-nitrobenzoic) acid. 
The acetylcholinesterase is immobilized in the form of a stable enzyme chimera with 
polysaccharide cellulose. The enzyme remains the solid phase and its use is polyvalent. An 
advantage is the possibility of removing the surplus of organophosphate and reactivator by 
simply flushing the cloth with water. 
This simple colorimetric biosensor can be used, after exposition through nucleophilic 
reagents, for selective inhibitor identification (Halámek et al., 2009; Hoskovcová et al., 2009). 
The nucleophilic reagents restore the function of the enzyme by unbinding the inhibitor 
from its active center under the formation of the so-called phosphorylated oxime. This 
exposition, however, must happen even before the development of the so-called non-
reactivable form of the phosphorylated enzyme. In clinical practice compounds based on 
pyridinium aldoximes are used (Milatović & Jokanović, 2009). Their efficacy varies and 
depends on many factors such as structure, number and placement of functional groups and 
cationic points, number of pyridinium nuclei etc., but also the type of the inhibitor. Thanks 
to those influences there is no broad-spectrum reactivator which would be able to react 
effectively with an enzyme inhibited by any nerve agent. Exactly the different efficacy of 
these oxime compounds compared to characteristic enzyme-inhibitor complexes results in 
the already mentioned change to the intensity of color of the biosensor. From the original 
white back to yellow owing to arising products of the substrate hydrolysis. The 
measurement of coloring intensity is done by detecting the reflectance of the color surface of 
an impregnated cloth (Tušarová et al., 1999; Hoskovcová et al., 2009). 
For observing the activity of enzymes also other chromogens have been studied, e.g. indole-
phenylacetate, 2,6-dichlorindolephenyl acetate or ǐ-naphthyl acetate, which are 
characteristic through blue coloring (Kramer & Gamson, 1958; No et al., 2007), also  
2-azobenzene-1-naphthylacetate with developing a red product (Epstein et al., 1957) or 
reaction with bromothymol blue which, due to pH changes in hydrolysis, switches from the 
originally blue-green color to the yellow one (Limperos & Ranta, 1953). There has been also 
a description of substitution of the Ellman’s reagent by a more stable compound  
5-(2-aminoethyl)dithio-2-nitrobenzoate (Zhu et al., 2004). 
Using the redox indicator of Guinea green B enables the indication of presence of the 
esterases inhibitor in automatic detectors. The basic principle is the ability of nerve agents to 
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slow down or stop the biochemical reaction (see the reaction scheme 9). This reaction 
applies BuTCh and Guinea green B whereas the normal course of the enzyme-catalyzed 
hydrolysis will result in discoloring of indicator. In the presence of nerve agents there is no 
change to coloring (Český obranný standard, 2007). 
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Reaction scheme 8. Ellman’s method for identification of acetylthiocholine hydrolysis 
products. 

For colorimetric evaluation a pH indicator strip has been developed, working in the range of 
pH 6.0 up to 7.7. The acetic acid originated from hydrolysis will be marked dark red in the 
detector. The method is comparable to the Ellman’s method but in contrast to it there is an 
advantage of characteristic coloring which is visible even under the artificial light (Pohanka, 
et al. 2010a). Same as the previous means it can function without any other instrumentation 
and it offers a simple and rapid semiquantitative evaluation of contamination by 
cholinesterases inhibitors. 
Another modification of the Ellman’s method is a spectrophotometric FIA system developed 
for detection of pesticides in water. Here the acetylcholinesterase is immobilized on 
amidated glass pearls. The advantage of the system is the reactivation of an inhibited 
enzyme through 2-PAM reactivator (Dăneţ, 2003). There has been also a procedure 
described where DTNB is substituted by a chemiluminescent substance – 1,2-dioxethane. 
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The test is based on a chemically induced electron luminescent exchange (Sabelle et al., 
2002). 
The simple spectrophotometric identification has been described using a different 
chromogenous substrate, indophenyl acetate, which is hydrolyzed to a color product by 
enzymatic catalysis at pH 8. The production rate of this product depends on the enzyme 
activity (Kramer & Gamson, 1958). There has been also a description of the method of 
spectrophotometric identification of pesticides in the analyte through measuring of color 
products of Ǐ-naphthol acetate. The substrate is catalytically hydrolyzed by AChE to Ǐ- 
naphthol which reacts with p-nitrobenzendiazonium fluoroborate while developing color 
products (Leon-Gonzales & Townshend, 1990). 
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Reaction scheme 9. Reaction mechanism of biochemical reaction modified by Guinea green B 

Without the presence of chromogen the biosensors work based on non-linear optics. 
Conformation changes of the applied enzyme are measured, for example at adsorption of 
the produced thiocholine (Lin et al. 2006). 
Also the system of spectrophotometric identification of cholinesterase inhibitors by means of 
an integrated acetyl-butyrylcholinesterase surface has been described. The interaction of 
these esterases with a reversible inhibitor, tetraphenyl porphyrin, leads to production of 
characteristic maxima at 446 and 421 nm in the absorption spectrum. The exposition through 
competitive inhibitors to a porphyrin-enzyme complex leads to reduction in values of 
absorbance intensity for both characteristic porphyrin-enzyme peaks, which is, however, not 
the case of noncompetitive inhibitors. The reduction of absorbance is caused by dissociation 
of porphyrin from active enzyme sites (Brandy et al., 2003). 
It seems to be interesting to use the so-called chromo-fluorogenous reagents with gold 
nanoparticles. This nanotechnology was successfully tested for example for detection of 
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paraoxon. The system consists of AChE, HAuCl4, gold nanoparticles and acetylthiocholine 
iodide. The plasmon absorbance band of nanoparticles has higher intensity (blue) after 
increasing the concentration of aceylthiocholine. The gold nanoparticles enlarge with 
increasing the substrate concentration, which can be caused by increased production of 
thiocholine that acts as a reduction substance for AuCl4, while producing the metal gold 
which is deposited onto gold nanoparticles. These gold nanoparticles increase their size 
proportionally to the concentration of thiocholine whereby changes to plasmon absorbance 
are made. The gold nanoparticles are deposited onto a glass surface. In reaction of enzyme 
with substrate the blue coloring will be shown (λ = 570 nm), after adding an inhibitor the 
plasmon band will be reduced and the glass plate will turn pink (Pavlov et al., 2005). 

3.2.2 Fluorescent biosensors 

This type of optical biosensors has been described especially in recent years. It is based on 
the principle of detecting fluorescent changes caused by the shift of pH in the course of 
substrate hydrolysis (Díaz & Peinado, 1997). 
Various papers describe a greater number of fluorescent substances which are suitable for 
detection of nerve agents as well as organophosphorus pesticides and their simulators (Dale 
& Rebek, 2006; Bencic-Nagale et al., 2006) but many of them do not correspond to 
modification of the cholinesterase method; that is why they will not be included in this 
chapter. Probably the first fiber optic cholinesterase biosensor with a fluorescent substance 
was constructed with immobilized AChE with fluorescein isothiocyanate (FITC) on quartz 
fibers (FITC-AChE) (Rogers et al., 1991). In the course of ACh hydrolysis, depending on the 
pH change, a fluorescent signal under the influence of FITC-AChE is produced in the 
system. It is present in the evanescent zone of the fiber surface and is quenched by produced 
protons, which enables detecting the enzyme activity. Totally different is the fiber optic 
biosensor based on covalently bonded AChE on isothiocyanate glass mixed with thymol 
blue (immobilized on aminopropylic glass) and subsequently measuring the reflectance of 
color changes of a pH-sensitive indicator in the course of enzyme-catalyzed hydrolysis at 
600 nm (Andres & Narayanaswamy, 1997).  
Fiber-optic biosensors provide a lot of benefits such as the possibility of miniaturization, the 
possibility of remote sensing, in situ monitoring without the necessity of direct electric 
supply, and except for that they minimize undesirable interactions between the fluorescent 
detector and the sample. 
The sol-gel technology meant a significant advancement for the construction of optical 
biosensors. Very often it is used just for the optical fluorescent biosensors. These biosensors 
contain a pH-sensitive fluorescent indicator encapsulated along with the enzyme in the sol-
gel network. Biorecognition elements are protected by polymeric material which enables the 
substrate to diffuse easily to the enzyme and to be bonded subsequently. For detection of 
organophosphorus pesticides we have used for example the ChE immobilized in the sol-gel 
silicone matrix along with indoxyl-acetate substrate which is not a fluorescent substance but 
its hydrolysis gives rise to a highly fluorescent indoxyl. In the presence of the AChE 
inhibitor this fluorescence is reduced (Díaz & Peinado, 1997). In the paper (Tsai & Doong, 
2000) altogether nine fluorescent substances were used for optimization of the fiber-optic 
biosensor on the sol-gel principle for detection of organophosphorus pesticides whereas the 
best results were achieved with FITC-dextran. 
The Ellman’s reagent was substituted by fluorescent substances such as fluorescein-5-
maleimide or methylcoumarin maleimide analoga (Parvari et al., as cited in Capacio et al., 
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2008). Same as DTNB they react with thiocholine substrates. Coumarinylphenylmaleimide 
(CPM) forms with thiocholine a CPM-thiocholine product which is continually monitored 
by laser-induced fluorescence. After inhibitor exposition the fluorescent signal is reduced 
due to decreased concentration of thiocholine originated from the hydrolytic reaction 
catalyzed by AChE, and it results in negative peak depending on the type of inhibition 
(Hadd et al., 1999). 
Another fluorescent biosensor for detection of pesticides applies AChE and a pH-sensitive 
fluorescent indicator – pyranine, immobilized onto nanoliposoms. Reducing the fluorescent 
signal of the pH indicator is proportional to the concentration of pesticides tested. This 
biosensor was tested for detection of the total toxicity in samples of drinking water 
(Vamvakaki & Chaniotakis, 2007; as cited in Miao et al., 2010). 
Using the fluorescent substances for detection of cholinesterases inhibitors has found its 
way also to analytical kits. Such an analysis is quick and reliable and it enables the 
acquisition of results even in the field conditions (Technical Bulletin 296, 1996; Product 
information K 015-F1, 2004; Product information A 12217, 2009). 

3.3 Piezoelectric biosensors 

Besides the already mentioned methods we also use biosensors with piezoelectric converters 
for detection of organophosphates and carbamates. This type of converters can be used for 
biosensors with AChE immobilized onto the crystal face which serves as a frequency control 
element for the connection of oscillator. This device works based on the principle of changes 
to resonance frequency of the crystal. The frequency rises as a result of changes to 
oscillation, thickness or elasticity of the film applied on the crystal (O´Sullivan & Guilbault, 
1999), i.e. in case of piezoelectric biosensors the change of resonance frequency depends 
directly on the mass of molecules bonded to the sensitive surface (Skládal, 1995; Grate et al., 
1993; as all cited in Skládal & Macholán, 1997).  
In the paper (Abad et al., 1998) 3-indolylacetate, which is transformed to indigo as a result of 
enzymatic reactions, was used as a substrate. This insoluble pigment is entrapped on the 
surface of the crystal, which results in frequency changes. The rate and extent of enzymatic 
reaction are proportional to those frequency changes related to thickness of the QCM 
(Quartz crystal microbalance) surface, caused by the product of enzymatic reaction. 
Another piezoelectric biosensor works, instead of detecting the enzyme activity – i.e. a 
substrate transformation, based on the principle of measuring the AChE bond to a reversible 
inhibitor, benzoylecgonine-1,8-dioxaoctane, which is immobilized onto the layer of 11-
mercaptomonoundecanoic acid on the gold surface of the sensor. The AChE bond to the 
inhibitor is detected by a mass-sensitive QCM detector. In case of presence of the 
organophosphate in a sample the enzyme bond to an immobilized reversible inhibitor is 
reduced. The reduction in mass changes is proportional to the concentration of a free 
inhibitor in a sample. This biosensor can be practically applied for control and quick 
analysis of the presence of organophosphates in water streams (Halámek et al., 2005). 

4. Enzyme immobilization 

The most important step in preparation of a biosensor is immobilization and stabilization of 
enzyme on the working surface. It can be an electrode or just a cloth or paper (Tušarová & 
Halámek, 2001). The enzyme immobilization determines the possibilities and construction of 
a biosensor. The selection of an appropriate way of immobilization is important to keep the 
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catalytic activity of the enzyme and the mechanism for signal transmission. This process is 
given by interactions between the enzyme and the surface of the given material which 
serves as a carrier. The principal requirement is to keep the given system sufficiently stable 
and efficient and to preserve its sensitivity and selectivity. An unsubstitutable role is played 
also by the cost of the whole system. 
Carrying matrices, which are used for enzyme immobilization, can be included in groups of 
natural polymers such as polysaccharides or proteins, synthetic polymers such as 
polystyrene, polyacrylates, methacrylates etc. or inorganic carriers such as minerals, active 
carbon, fiber glasses or porous metal oxides (Pohanka et al., 2010 b; Doretti et al., 1998). 
The basic methods for enzyme immobilization include physical adsorption, covalent bond, 
self-assembled monolayer (SAM), physical entrapment and affinity precipitation 
(Andreescu & Marty, 2006). The AChE immobilized for purposes of detection of 
organophosphorus substances, however, should not be entrapped by high affinity. 
The physical adsorption of an enzyme onto the surface is supported by van der Waal’s 
forces, thus the bond is very weak. This way of immobilization is the simplest one within 
the whole range of techniques used. It is characterized by disadvantages such as a weak 
operational stability and limited storing capacities. 
The most often used way of immobilization is the covalent bond. This method commonly 
uses the modifications of converters with a bifunctional cross-linker such as glutaraldehyde, 
carbodiimide/succinimide or aminopropyltriethoxysilanes, albumin, chitosan etc., which 
are scaled on the supporting side activated by amino, carboxyl or hydroxyl groups and on 
the other side with biomolecules. This technique means increasing the stability of enzyme 
but the disadvantage is a great amount of bioreagent and lower reproducibility (Andreescu 
& Marty, 2006; Gyurcsányi et al., 1999; Kandimalla & Ju, 2006; Li et al., 1999; Nunes et al., 
2004). The most often applied immobilization technique is the cross-linking by means of 
glutaraldehyde. The cross-linking of enzyme with glutaraldehyde on an electropolymeric 
polyethyleneimine film on the electrode surface was used for example for potentiometric 
measurement in the paper (Reybier et al., 2002). Polyethylenimine as a carrier for ChE was 
used also for a screen electrode in the paper (Montesinos et al., 2001), chitosan with MWNT 
(Kandimalla & Ju, 2006) or with a glassy carbon electrode (Sun & Wang, 2010); the 
bienzymatic AChE-ChO system is immobilized through glutaraldehyde to a glass electrode 
modified by Au-Pt nanoparticles (Upadhyay et al., 2009) etc. 
The self-assembled monolayer exploits the placement of a thin layer directly onto the 
converter. The layer is made up of strong adsorption of alkenesilanes or disulfides, sulfides 
and thiols onto the metallic surface of the converter. Very often gold surfaces are used 
(Somerset et al., 2009). However, also other electrode materials are exploited, such as carbon 
nanotubes (Liu & Lin, 2006). The stability of a layer is ensured through formation of long 
chains of n-alkylthiols or silanes. This immobilization technique enables the orientation and 
space control of the enzyme and degradation of diffusion barriers. A disadvantage is the 
repeated layering of biomolecules (Andreescu & Marty, 2006, Arduini et al., 2010). 
The mechanical entrapment is possible through a photopolymeric monomer, sol-gel matrix 
or nanoparticles and magnetic microparticles (Pohanka et al., 2009). The enzyme, 
transmitters and possible additives can be entrapped in one layer (Andreescu & Marty, 
2006). The entrapment in photopolymeric matrix includes mixing the enzyme 
with monomer with subsequent polymerization under the neon lamp (Andreescu et al., 
2002b, c). The photopolymeric matrix is a material suitable for the use with various enzymes 
and for various types of electrodes. The sol-gel procedure enables the entrapment of organic 
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molecules in an inorganic material. Compared to other immobilization techniques it enables 
the anchorage of a great amount of enzyme, thermal and chemical stability, the possibility 
for selection of size and shape of pores for penetration of a substrate or inhibitors and its 
preparation is simple. The so-called microencapsulation in pores of the sol-gel matrix is not 
dependant on protein properties, significantly reduces neither the activity nor the affinity of 
biomolecules, because the enzyme is not covalently bonded to the matrix. Very often the sol-
gel silicate matrices are used for construction of fluorescent fiber-optic biosensors (Díaz & 
Peinado, 1997) or as a carrier for biosensors based on reactions of nanoparticles (Du et al., 
2008). The sol-gel technology was described even based on non-silicate matrices, e.g. with 
aluminium oxide, titanium, vanadium peroxide, zirconium dioxide or zinc oxide (Daigle & 
Leech, 1997; Elessi et al., 1997; Li et al., 1998; Meulenkamp, 1998; as all cited in Sinha et al., 
2010; Sinha et al., 2010).  
Affinity tags represent a modern trend in enzyme immobilizations. This technique is 
focused on oriented and site-specific immobilization of enzymes. One of the trends is the 
formation of a bioaffinity bond between supporting and functional groups of proteins. This 
can be achieved through affinity interactions of functional groups of the activated electrode 
surface (lectins, (strept)avidin, sugars and metal chelates) and affinity tags of ChE. ChEs 
contain a limited number of those groups which are placed far enough from active sites and 
they are suitable for formation of an affinity bond (Andeescu & Marty, 2006). There was a 
description of an immobilization method based on an affinity bond through metal chelate 
(nitriloacetic acid in the complex with nickel ions) and a hexa-histidine bond 
with genetically modified AChE (Andreescu et al., 2001, Andreescu et al., 2002c). Another 
way of affinity interactions includes the bond between avidin and biotin which was used for 
enzyme multilayer membrane sets on the surface of a quartz plate and electrode. The 
enzyme is immobilized in turns onto individual layers. This set can be used for both mono- 
and bienzymatic biosensor (Chen et al., 1998). The streptavidin-biotin was used for AChE 
immobilization onto a carbon nanotube (CNT) (Gao et al., 2009). As for lectins, the use of 
concanavalin A is described. In the paper (Ivanov et al., 2010) there was a test of a biosensor 
with position-specified immobilized AChE through albumin, glutaraldehyde and lectin 
concanavalin A on a hybrid polymer membrane in combination with MWCN; in the paper 
(Bucur et al., 2004) an affinity bond using concanavalin A and a screen electrode is 
applied. 
The biosensor selectivity and sensitivity depend on the conditions of immobilization. Very 
often we discuss the rule saying “a lower enzyme activity or a thinner enzymatic membrane 
means higher sensitivity or a lower detection limit of the inhibitor identified”. According to 
the study (Ivanov et al., 2000) a thinner film with quicker reaction will be produced thanks 
to direct enzyme immobilization onto the electrode surface; however, this does not mean 
increasing the sensitivity of biosensor. It is caused by relative saturation of the enzyme layer 
with a substrate or an inhibitor and it depends on diffusion of reactants to this membrane. 
Buffering properties of the membrane material may contribute to relative accumulation of 
products of the catalyzed hydrolysis. This compensates for the lower enzyme activity and 
causes increasing the response of biosensor. It is important that the accumulation intensifies 
the changes to enzyme activity thanks to the contact of enzyme with inhibitor. The above-
said results in reduction of a detection limit and a relative sensitivity reduction compared to 
biosensors without diffusion limits or mass transfers to the membrane surface. The influence 
of diffusion factors can be affected also by pre-concentrating of the pesticide at a membrane. 
Then the identification of inhibitor depends on its hydrophobicity (Ivanov et al., 2000). 
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Membranes placed onto the enzymatic layer reduce the relative saturation of this layer with 
substrate and thus they increase the linear extent of the identified substrate concentration. 
When applying the enzyme inhibitors, they do not provide any bigger advantage because 
the maximum inhibitor sensitivity requires substrate saturation of the membrane. One of the 
possibilities for membrane protection is the nafion layer placed between the working surface 
of the sensor and the enzymatic layer. This configuration means reducing the response of 
biosensor on one hand but on the other hand it provides higher stability of the carbon layer 
and greater stability of the thin layer of immobilized ChE and it does not reduce the 
biosensor sensitivity (Gogol et al., 2000).  
The metal nanoparticles can be of great importance for increasing the stability and speed of 
the response of biosensors. The nanoparticles act as transmitters of an electron transfer from 
an enzyme molecule to an electrode. Very often gold nanoparticles are used because of their 
biocompatibility with enzymes (Marinov et al., 2010; Pavlov et al., 2005; Yin et al., 2009). 
They roughen the surface and subsequently increase interactions on the electrode (Shulga & 
Kirchoff, 2007). Also other nanoparticles were used, Au-CdS, placed on a gold electrode 
with AChE (Zayats et al., 2003; as cited in Shulga & Kirchoff, 2007). The use of nanoparticles 
also includes carbon, zircon and CdS particles (Ion et al., 2010; Liu et al., 2008). 

5. Conclusion 

Many substances with an anti-cholinergic effect can be, besides extensive industrial 
applications, used in the military or misused for terrorist purposes as it is shown by events 
from the recent past when in 1988 the nerve agents were used by Iraq against the Kurdish 
minority or in 1995 during the terrorist attack in Tokyo subway, conducted by the Aum 
Shinrikyo sect. Every year millions of tons of those substances/agents are produced for the 
needs of agriculture, medicine, industry and many other branches. They are quite toxic and 
for living organisms they mean a considerable risk even at very low concentrations. For 
these reasons the importance of early detection and analysis is growing. Many analytical 
methods (GC, MS, GC-MS, HPLC etc.) require a long preparation of samples such as 
homogenization, extraction, purification or derivatization. Some of these procedures may 
lead to sample devaluation. An alternative for those lengthy and laborious procedures is 
offered by biosensors. They meet the requirements for a rapid detection of nerve agents or 
organophosphorus pesticides for a quick adoption of protective measures to conceal, 
evacuate the inhabitants and conduct decontamination with checking its efficiency. The 
above requirements also include an easy handling and low cost. Their other indisputable 
benefits include a low sample volume, a partial protection of the immobilized enzyme 
against undesirable physical phenomena, a possibility for monitoring of kinetic and 
dissociation constants and the type of inhibition. Newly the biosensors are used for 
evaluation of new AChE reactivators (Pohanka et al., 2007). 
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