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1. Introduction 

This article examines the conditions under which transverse electromagnetic (TEM) waves 

exist in a sourceless medium. It shows that TEM waves can be classified according to 

whether their Poynting vector is identically zero or nonzero. The former are non 

propagating TEM standing waves with E H  and the latter are TEM traveling and standing 

waves with ⊥E H . The Chiral general condition under which TEM standing waves with 

E H  exist is derived. The behavior of these waves under Lorentz transformations is 

discussed and it is shown that these waves are lightlike and that their fields lead to well-

defined Lorentz invariants. Two physical examples of these standing waves are given. 

The first example is about the Dirac Equation for a free electron, which is obtained from the 

Maxwell Equations under the Born Fedorov approach, ( (1 )Tε= + ∇×D E ), and 

( (1 )Tµ= + ∇×B H ).  Here, it is hypothesized that an elementary particle is simply a standing 

enclosed electromagnetic wave with a half or whole number of wavelengths ( λ ). For each 

half number of λ  the wave will twist 180° around its travel path, thereby giving rise to 

chirality. As for photons, the Planck constant (h) can be applied to determine the total 

energy (E): /E nhc λ= , where n = 1/2, 1, 3/2, 2, etc., and c is the speed of light in vacuum. 

The mass m can be expressed as a function of λ , since 2E mc=  gives /m nh cλ= , from the 

formula above. This result is obtained from the resulting wave equation which is  reduced to 

a Beltrami equation (1 / 2 )T∇ × = −E E  when the chiral factor T  is given by /T n mc=  . The 

chiral Pauli matrices are used to obtain the Dirac Equation. 

The second example is on a new interpretation of the atomic spectra of the Hydrogen atom. 

Here we study the energy conversion laws of the macroscopic harmonic LC oscillator, the 

electromagnetic wave (chiral photon) and the hydrogen atom. As our analysis indicates that 

the energies of these apparently different systems obey exactly the same energy conversion 

law. Based on our results and the wave- particle duality of electron, we find that the atom in 

fact is a natural microscopic LC oscillator. 

In the framework of classical electromagnetic field theory we analytically obtain, for the 

hydrogen atom, the quantized electron orbit radius 2
n or a n= , and quantized energy 

2/n HE R hc n= − , (n = 1, 2, 3, · · ·), where 0a   is the Bohr radius and HR  is the Rydberg 
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constant. Without the adaptation of any other fundamental principles of quantum 

mechanics, we present a reasonable explanation of the polarization of photon,selection rules 

and Pauli exclusion principle. Our results also reveal an essential connection between 

electron spin and the intrinsic helical movement of electron and indicate that the spin itself 

is the effect of quantum confinement.  

2. Chiral Transverse Electromagnetic standing waves with E H  

This section provides the basis for reexamining the electromagnetic model of the electron, 
which is developed in others sections appearing in the present paper.  

The solutions of Maxwell’s equations of common interest are concerned with the 

propagation of electromagnetic (EM) energy in the form of transverse electromagnetic 

(TEM) waves in free space, material media, and transmission lines as well as transverse 

electric and magnetic waves in waveguides.  Such solutions are characterized by the 

orthogonality of the electric field E  and the magnetic flux density H : i.e., ⊥E H .  An 

examination of many senior undergraduate and graduate electrodynamics textbooks 

[Jackson,  1975; Marion & Herald, 1980;  Stratton, 1941; Panofsky & Phillips, 1955;  Cook, 

1975;  Reitz & Milford, 1967;  Lorrain & Corson, 1970;   Portis, 1978;   Smythe, 1950; Purcell, 

1965] reveals that there is very little discussion of the conditions under which TEM standing 

waves exist. Textbooks with more of an engineering emphasis [Ramo et al., 1965.; Jordan & 

and Balmain, 1968.; Bekefi. & Barrett, 1977.; Shadowitz, 1975.; Rao, 1977], generally discuss 

standing waves in the context of the measurement of the voltage standing-wave ratio for 

transmission lines [Rao, 1977]. At the first time a work by Chu and Ohkawa [Chu & and  

Ohkawa,  1982] shows that a class of TEM waves with E H  exists, also, Zaghloul et al. 

[Zaghloul, et al.,1988] have derived the general conditions under which we have TEM 

waves with E H . From here, that it is useful to classify TEM waves according to whether 

their Poynting vector is identically zero or nonzero. The former are E H  standing waves 

and the latter are traveling and standing TEM waves with ⊥E H  and E H . Using the Born 

Fedorov formalism [Torres-Silva,  2008], this article provides a discussion of the physical 

properties of TEM standing waves with E H in connection with the interaction matter 

waves from its basic principles. It also suggests that E H  standing waves can be generated 

by the superposition of waves traveling in opposite directions and that the electromagnetic 

density of these standing waves somehow plays the same role in electrodynamics that the 

rest mass plays in relativistic dynamics. The background assumed in this article is that of a 

senior undergraduate physics or electrical student. It is hoped that this article will 

encourage instructors of electrodynamics courses to include a discussion of E H  TEM 

standing waves. 
In this article, SI units are used. Vectors are denoted by bold letters. Other notational 
definitions are given as required. 

2.1 Solutions of Maxwell’s equations in a sourceless medium 

Under the Born-Fedorov, constitutive relations between D , E , B , H  are [Torres-Silva,  
2008] 

 (1 )Tε + ∇×
0

D = E , (1 )Tµ + ∇×
0

B = H  (1a) 
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In such a representation (BF), rotation terms are added to the basic constitutive relation 

whose chiral coefficients Tε or Tµ �can be either positive or negative for two stereoisomer 

structures. Solving the constitutive relation together with Maxwell’s equations, we can 

easily get two eigenwaves, which are left and right circularly polarized with different 

wavevectors. The Maxwell’s equation are 

 
(1 )

0
T

c t

∂ + ∇×
∇ × + =

∂

H
E , 

(1 )
0

T

c t

∂ + ∇×
∇ × =

∂

E
H -  (1b) 

 0∇ =D , 0∇ =B  (1c) 

since 2
0 01 c ε µ= , where c is the speed of light in vacuum and 0ε , 0µ and T (meter) are the 

vacuum permittivity, permeability, and the scalar chiral factor respectively.  

Considering time variation as 0i te ωE E  etc, the solution of Eqs. (1a)-(1c) can be obtained 

such that 

 2 2 2 1 2 2 1
0 0 0 0 0 0(1 ) 2 ((1 ) 0k k k T T k Tω µ ε− −∇ − + − ∇ × =2

E + E E ,   (2a) 

 2 2 2 1 2 2 1
0 0 0 0 0 0(1 ) 2 ((1 ) 0k k k T T k Tω µ ε− −∇ − + − ∇ × =2

H + H H  (2b) 

Due to the chiral scalar 0T ≥ or  0T ≤ , a general TEM solution of Eq. (2a) can be expressed 

in the form due to d’Alembert [Smythe, 1950], 

 ( ) ( ) ( )r,t η ξ+ −= +E E E , (3) 

where ( ) ( )
3

1 ii i
Eη η+ +=

= lE , ( ) ( )
3

1 ii i
Eξ ξ− −=

= lE , 0k r tη ω≡ − , 0k r tξ ω≡ + , and l i  are 

mutually orthogonal unit vectors in an arbitrary orthogonal coordinate system.  Notice that 

the most general TEM solution of Eq. (2a or 2b) is a sum of solutions of the form of Eq. (3a) 

over all possible propagation vectors, k.  Here, k and ω , the angular frequency, are related 

by 2 2 2
0 0k cω= . The two solutions of Eq. (2a or 2b) given by Eq. (3a) can be considered as the 

vector electromagnetic field of two TEM waves traveling in opposite directions, i.e., energy 

propagation takes place in two opposite directions.  In general, there is more energy flow in 

one direction than in the other so there is net energy flow in one direction.  Such a TEM 

wave is called a traveling wave.  In the special case where the energy propagated in one 

direction is equal to that propagated in the opposite direction, there is no net energy flow in 

the medium and the sum of the two TEM waves form what is generally known as a 

standing wave.  Mathematically, the amount of energy density propagated is proportional 

to the magnitude of the Poynting vector [Marion & Herald, 1980] S , where 

 ∝ ×S E H . (4) 

The condition for a standing wave is that the time average of S  vanishes .  This can be 

achieved if (i) S  is zero all the time everywhere in the region of space under consideration, 

i.e., ( )r, 0t =S , or (ii) S  changes sign with time and has a zero time average, i.e., 

( )
av

r, 0t =S .  Examination of Eq. (4) shows that 0=S  if either E  or H  is zero (the cases of 

electro- and magnetostatics) or if E H . In this last case,  a particular solution of Eq. (2a, 2b) 
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is when 2 2
0 1k T = , where we have the condition  E H , and iηE = H , so we find the 

Beltrami force free equation 2 0T+ ∇ × =E E  and the vector Poynting vanishes. 

This means that for time-varying fields (i) leads to TEM standing waves with E H  whereas 

(ii) leads to the more familiar TEM standing waves with ⊥E H .The fact that ( )r, 0t =S , for 

time-varying fields leads to E H and TEM standing waves will be used to derive the 

general conditions and connection to derive the Dirac equation. 

The derivation of the general conditions for the existence of TEM standing waves with 

E H  was given first in a condensed form by [ Zaghloul, et al.,1988].  Our derivation can be 

simplified by assuming that 2 2
0(1 ) 0k T tφ∇ + ∂ ∂ = A+ ,. If 2 2

0 1k T = , 0tφ∂ ∂ = , and 0φ∇ = .  

This is equivalent and consistent with the  choice of the Lorentz gauge.  

In our approach if only if 1kT = ± , then we have TEM standing waves with E H . Here, T is 

a chiral scalar factor.  This approach defines a class of E H  TEM standing waves that may 

be characterized by the fact that the chiral vector potential F  satisfies the equation 

∇ × kF = F  as has been shown by [Torres-Silva, 2008]. An example of a vector potential 

satisfying ∇ × kF = F  with E H fields 

 ( ) ( )0r, sin ,cos ,0 cost F kz kz tω=F , (5) 

 ( ) ( )0r, sin ,cos ,0 sint F kz kz tω ω=E , (6) 

 ( ) ( )0r, sin ,cos ,0 cost F kz kz tη ω=H . (7) 

This solution corresponds to two circularly polarized waves [Chu & and  Ohkawa,  1982] 
propagating opposite to each other in such a way that their Poynting vectors are cancelled 

out, so = iηE H . Therefore, a single helical photon with energy ω  carries a magnetic 

helicity of c . 

2.2 Physical properties of E H  TEM standing waves 

The TEM waves with E H  do not propagate, and hence are standing waves.  It has been 

shown earlier that they are characterized by ( )r, 0t =S . This means that there is no energy 

transfer between any two points in space at any time.  How such waves can be generated 

and maintained in some region of space is an interesting question.  One answer is that they 

are due to the superposition os waves traveling in opposite directions.  It should be noted 

that for TEM waves with E H , investigation of the direction of E  and H  at any one point 

in space cannot uniquely determine the direction of the propagation vector k . The direction 

of k can be inferred from a consideration of the directions of the fields at different points.  

The two fields E  and H  remain parallel to each other at each point but their direction will 

change from point topoint such that all of these directions lie in parallel planes, the 

transverse planes.  This provides a unique definition of the direction of the propagation 

vector.  It might be more appropriate to use the term wave vector in place of propagation 

vector for these standing waves since they do not propagate. 

If E H  in one Lorentz frame K , then in any other frame K′ , ′E  may not be parallel to '
H .  

Moreover, no frame exists for which ′ ⊥E H' .  This is a direct consequence of the invariance 
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of ⋅E H , which will be discussed in next Sec. The TEM standing waves with E H , like all 

other TEM waves with ⊥E H , keep 2 2
1k η= − 2
E H  and 2 2k η= ⋅E H invariant in all Lorentz 

frames ( /η µ ε= ).  The TEM waves with 1 2 0k k= =  are known as null or pure radiation 

fields . 

Notice that the invariants 1k  and 2k  are also gauge invariant. The EM invariants 1k  and 2k  

can be combined to form another invariant [Zaghloul, et al; Torres-Silva, 2008], 

 

( ) ( )

( )

( )

2 22 2 2 2
1 2

2 22 2

2 2 2

4

4

4

k k

S c

η η

η η

ε

+ = − + ⋅

= + − ×

= −

2

2

E H

E H E H

E H

, (8) 

where ε  is the EM energy density and S  is the Poynting vector. In a reference frame with 

E H and 0=S , 

 2 2 2
1 2 sw4k k ε+ = , (9) 

where swε is the EM standing-wave energy density.  In any other frame, if 0′ ≠S , and 

swε ε′ ≠ , then 

 ( )2 2 2 2 2 2 2 2
1 2 1 2 sw4 4k k S c k kε ε′ ′ ′ ′+ = − = + =  (10) 

or 

 2 2 2 2
swS cε ε′ ′− = . (11) 

Equation (11) states that for any TEM wave, the difference between the square of the EM 

energy density ( ε ′ ) and the square of the magnitude of the Poynting vector ( S′ ) in any 

frame is equal to the square of the EM energy density ( swε ) in the frame for which E H . 

This is true of all EM waves since sw 0ε =  for classical EM traveling waves with ⊥E H  (null 

fields) whilst sw 0ε ≠  for parallelizable fields (generic fields) and for classical standing 

waves with ⊥E H . It should be emphasized that swε is an invariant and that ε  is not an 

invariant [Zaghloul, et al.,1988]. 

Equation (11) can be compared with the expression for the invariant squared magnitude of 

the energy-momentum four-vector pµ  of a particle that is given by [Lorrain & Corson, 1970; 

Torres-Silva, 2008] 

 2 2 2 2 2 4
0c p p E c p m cµ

µ = − = , (12) 

where 2E mc=  is the self-energy, p  is the magnitude of the momentum, 0m  is the rest 

mass, and m  is the mass of the particle.  This similarity suggests that somehow swε  plays 

the same role in electrodynamics that the rest energy of a particle plays in relativistic 

dynamics.  In other words, the generation of E H  TEM standing waves allows the 

localization of electromagnetic energy.  This result for E H  standing waves differs from 

that of ⊥E H  standing waves since the energy oscillates back and forth, for the latter waves, 
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and there exists no Lorentz frame where the energy is static, which is the situation for the 

former waves.  This localization of EM energy could open the door for some very interesting 

possibilities such as the storage (“bottling”) of EM energy using, for example, a laser beam 

to make what could be thought of as a laser battery as well as verifying experimentally if the 

storing of EM energy E in a medium can be associated with an increase of the mass of the 

medium by 0m , where 2
0 2 / 2m E c cT= =  . “Electromagnetic mass” where gravitational 

mass and other physical quantities originate from the electromagnetic field alone. We can 

say that the electromagnetic mass models which are the sources of purely electromagnetic 

origin have not only connection associated with the conjecture of Lorentz but even a physics 

having novel features. 

3. Chiral Dirac equation from electromagnetic standing waves with E H  

The purpose of this section is to (a) derive a two-component force-free Dirac particle 
equation that incorporates all of the physically meaningful information about the particle 
contained in the force-free, four-component Dirac equation, (b) solve that two-component 
equation and, from the resulting two-component wave function, obtain the internal spin of 
the particle, (c) show that the spin and rest mass of the particle are the result of the 
phenomenon described by Schrodinger [Schrodinger, 1930] as Zitterbewegung, and (d) 
demonstrate that the relativistic increase in mass with velocity of the force-free particle is 
due to an increase in the rate of Zitterbewegung with velocity.  
We introduce a new unitary transformation under which, for force-free motion, we obtain 
uncoupled two-component equations which we can identify separately as a particle equation and an 
antiparticle equation. In uncoupling the two equations and solving each equation as separate 
from and unrelated to the other, although that information is still there, hidden in the 
Hamiltonian, since the two equations can be put back together and transformed once again 
into the usual four-component Dirac equation, with a particle solution and an antiparticle 
solution. Our particle and antiparticle spinors are not Weyl or Majorana spinors; 
nevertheless and state that two of our spinors equal one pair of particle and antiparticle 
Dirac spinors. 
The Foldy-Wouthuysen transformation [Foldy & Wouthuysen, 1950] decomposes the Dirac 
equation into two-component states of positive and negative energy. However, as the Foldy-
Wouthuysen transformation does not provide a pair of particle and antiparticle equations. 
For the two-component equation produced by our separation process to be an equation for a 
particle (or for the companion equation to be an equation for an antiparticle), we must be 
able of demonstrating that, like the four-component equation, each of the two-component 
equations obtained leads to a relativistically correct four-vector, the fourth component of 
which is a scalar probability density, with a three-vector describing a probability current. 
For definiteness, throughout most of this section we will refer to the particle under 
consideration as an electron. 
Based on the results of Fues and Hellmann [Fues & Hellmann, 1930], Schrödinger had come 
to the conc1usion that it was not practical to obtain general information about the electron 
by solving the four-component Dirac equation directly, and set out in [Schrodinger, 1930] to 
see what general information could be obtained without direct solutions. Schrodinger 
focused on that aspect of the Dirac equation and introduced the concept of Zitterbewegung 
in an attempt to deal with this problem when obtaining general information about solutions 
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to the Dirac equation. In addition to being discussed by Schrödinger in incisive detail in his 
original article [Schrodinger, 1930], Zitterbewegung in the four-component Dirac basis has 
been extensively addressed in books devoted to the the Dirac equation, [Rose, 1961.] and 
[Thaller, 1992] (who summarize Schrödinger's approach), as well as by Hanl and 
Papapetrou [Hanl & Papapetrou, 1940] in a paper that first analyzes Zitterbewegung in 
detail and then attempts to mimic the effects of Zitterbewegung with a mechanical model 
based on a classical point charge. 
The relativistic particle equation in our paper presents an interpretation of Zitterbewegung 
similar to, yet quite different from, the interpretation for the force-free, four-component 
Dirac equation. For the Dirac Hamiltonian Zitterbewegung results from an interference 
between two positive and two negative energy components of the Dirac spinor [Lock, 1979]. 
Solutions of our two-component, force-free equation will be shown to have one positive 
energy component interfering with one negative energy component. In contrast to the 
solutions in the Dirac basis, the concept of the motion of a point has disappeared in our two-
component case, and has been replaced by a density function and an internal motion 
(rotation) of that density function. 
The difference between the interpretation of Zitterbewegung for our two-component particle 
Hamiltonian and for the Dirac Hamiltonian is to be expected, since it has been demonstrated 
that Zitterbewegung has different interpretations after different unitary transformations of 
the Dirac equation [Lock, 1979]. From another perspective, the different interpretation in our 
paper is also to be expected from comparing our result to equation-reduction techniques 
due to Feshbach [Feshbach,  1958]. In particular, whereas the Hamiltonian for the Dirac 
equation is linear in the components of the momentum operator, the Hamiltonian of our 
two-component particle equation is nonlocal. 
The central difference between the two-component relativistic particle equation developed 
in the present section and the four-component Dirac equation is that for the Dirac equation 
the Zitterbewegung is explicit, as demonstrated by Schrödinger. In the case of the two-
component particle equation obtained here, the effect of Zitterbewegung is implicit. Also, as 
Schrödinger noted before demonstrating the utility and importance of the concept of 
Zitterbewegung, information about a Dirac particle described in the usual Dirac basis can be 
difficult to extract. As an example consider Huang’s insight (using the Dirac basis) [Huang, 
2006] into the fact that internal rotation of the Dirac electron is associated with 
Zitterbewegung.  
In many respects, the present section is a direct extension of papers written by Weyl in 1929 
[Weyl, 1929 a;. Weyl, 1929 b; Weyl, 1929 c]. The importance of Weyl in the early 
interpretation of the Dirac equation has been succinctly described by Miller [Miller,1994]. In 
the first of the three papers Weyl asserts that, since the wave function of the electron “can 
only involve two components”, two components of the solution of the Dirac equation 
shou1d be ascribed to the electron and two to the proton [Weyl, 1952]. In light of Weyl’s 
later proof [Dirac, 1931] that negative and positive energy electrons must have the same 
mass, Dirac was led to the concept of the second solution of the Dirac equation being not a 
proton but antimatter, “having the same mass and opposite charge to an electron” 
[Dirac,1928]. However, in our case we have the condition +m, -e, T>0 to the electron and -m, 

+e, T<0 to the positron because for a particle in a rest frame / 2T mc=  . 

As Dirac well understood [Dirac, 1928], a two-component theory linear in the derivatives 
with respect to both the time and spatial coordinates is not possible. However, as we will 
demonstrate, by relaxing the restriction of linearity with respect to derivatives of the spatial 
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coordinates, a two-component equation for the force-free electron is possible, and the 
solutions we obtain to that equation provide the insights that Schrödinger was seeking 
[Torres-silva, 2011]. Moreover, when we obtain the complete solution of the two-component 
equation for the electron, we find significant additional characteristics not apparent in 
solutions of the four-component equation of the Dirac theory of the electron. 

Finally, because in the Dirac basis the chirality operator does not commute with the 

Hamiltonian, it might appear that chirality (handedness, as opposed to the kinematic 

concept of helicity, associated with the labels Lψ  and Rψ ) cannot be a characteristic of a 

Dirac particle with mass. We will use our two-component solutions to demonstrate that this 

would be a false conclusion; for a Dirac particle with mass the usual definition of chirality 

can be replaced by a concept specific to a particle with mass, a concept that we will refer to a 

intrinsic electromagnetic chirality, /2T mc=   with L E
ψ ψ σ= = ⋅


E  and R H

ψ ψ σ•

•= = ⋅

H  

explained below. 

3.1 Two-component equations for the electron and anti-electron 

The usual choice of an orthogonal set of four plane-wave solutions of the free-particle Dirac 

equation does not lend itself readily to direct and complete physical interpretation except in 

low energy approximation. A different choice of solutions can be made which yields a direct 

physical interpretation at all energies. Besides the separation of positive and negative energy 

states there is a further separation of states for which the spin is respectively parallel or 

antiparallel to the direction of the momentum vector. This can be obtained from the 

Maxwell’s equation without charges and current in the E H configuration. Dirac's four-

component equation for the relativistic electron is. 

 ˆi DH
t
ψ ψ

∂
=

∂
 , (13) 

where: 

 2ˆˆ ( )DH c p mcα β= ⋅ +


, (14) 

 
0

, 1,2,3,
0

k

k

k

k
σ

α
σ

 
= = 
 

 (15) 

 
0

0

I

I
β

 
=  

− 
 (16) 

and I is the two-by-two identity matrix. We now reduce the force-free Dirac equation. 

This Hamiltonian commutes with the momentum vector p̂ , and the usual procedure is to 

seek simultaneous eigenfunctions of H and p.  These eigenfunctions are, however, not 

uniquely determined, and for given eigenvalues of H and p, there remains a twofold 

degeneracy.  In order to resolve this degeneracy we seek a dynamical variable which 

commutes with both H and p̂ . Such a variable is ˆˆ pσ ⋅ , where σ̂ is the matrix Pauli.  It is 

obvious that this variable commutes with p̂ .  To verify that it also commutes with H, we 

write 1 1
ˆ ˆ ˆα ρ σ σ ρ= =  and recalling that β  commutes with operator σ̂ , we have 
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 1 1
ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆp p p p p p 0H H c cσ σ ρ σ σ σ ρ σ     

⋅ − ⋅ = ⋅ ⋅ − ⋅ ⋅ =     
     

, (17) 

since 1ρ  commutes with σ̂ . 

We now proceed to find simultaneous eigenfunctions of the commuting variables H, p and 
ˆˆ pσ ⋅ .  We have, since the components of p commute, 

 
2

2ˆˆ p pσ 
⋅ = 

 
, (18) 

where p is the magnitude of the momentum vector.  Thus for a simultaneous eigenstate of p̂  

and ˆˆ pσ ⋅ , the value of ˆˆ pσ ⋅  will be +p or –p, corresponding to states for which the spin is 

parallel or antiparallel,  respectively, to the momentum vector. 
A simultaneous eigenfunction of H and p will have the form of a plane wave 

 ( )exp p r , 1,2,3,4j ju i Wt h jψ =  ⋅ −  =  , (19) 

where the jψ  are the four components of the state function and ju  four numbers to be 

determined.  In the argument of the exponential function, p represents the eigenvalues of 

the components of the momentum for this state and E the corresponding eigenvalue of H.  

Then E can have either of the two values. 

 ( )
1
22 4 2 2W m c c pε= ± = ± + . (20) 

We now demand that jψ  be also an eigenfunction of ˆˆ pσ ⋅  belonging to one of the eigenvalues 

p
E

, say, where p p= ±
E

.  Employing the usual matrix representation for σ̂ , we have 

 

0 0

0 0
ˆˆ

0 0

0 0

z x y

x y z

z x y

x y z

p p ip

p ip p
p

p p ip

p ip p

σ

− 
 + − ⋅ =
 −
 

+ − 

. (21) 

In the above matrix, xp , yp , and zp  are operators, but since this matrix is to operate on an 

eigenfunction of p, the operators can be replaced by their eigenvalues.  We shall, without 

risk of confusion, use the same symbols for the eigenvalues as for the corresponding 

operators. 
The eigenvalue equation is 

 ˆˆ p pσ ψ ψ⋅ =
E

, (22) 

Since W can be given either of the two values ε±  and p
E

, the two values p± , we have 

found for given p four linearly independent plane wave solutions.  It is easily verified that 

they are mutually orthogonal. 

The physical interpretation of the solutions is now clear.  Each solution represents a 

homogeneous beam of particles of definite momentum p, of definite energy, either ε± , and 

with the spin polarized either parallel or antiparallel to the direction of propagation. 

www.intechopen.com



  
Behaviour of Electromagnetic Waves in Different Media and Structures 

 

310 

3.2 Dirac equation deduced from Maxwell’s equations with E H  

Following our first section Transverse electromagnetic standing waves with E H the 

vector potential is 

 ( ) ( ) ( ) ( )1r, Re ri t
k kt e k rω − = + ∇ × AF A   (23) 

will lead to TEM standing waves with E H .  This approach defines a class of E H  TEM 

standing waves that may be characterized by the fact that the vector potential A satisfies the 

equation k∇ × =A A , with /k cω= . Thus we have k∇ × =E E  and k• •∇ × =H H , 

where •
H is the complex conjugate of H . If we make the conjecture that the chiral factor T 

considered as a hidden scalar satisfies / 2Tp = ±
E

, then we can transform k∇ × =E E  as 

 ˆ ˆi k iσ σ⋅∇ × = ⋅E E  (24) 

which can be put as 

 ˆ ˆ ˆ( ) ( )p pσ σ σ⋅ ⋅ = ⋅
E

E E  (25) 

where we are considered 0∇ ⋅ =E  (no charges), and 

 

0 0

0 0
ˆ

0 0

0 0

z x y

x y z

z x y

x y z

E E iE

E iE E

E E iE

E ie E

σ

− 
 

+ − ⋅ =  −
  + − 

E  (26) 

The vector function ψ  is given by 

 
2

2

( )

( )

x y

z

x y

z

E E

E

c
E E

W mc

c
E E

W mc

ψ

− 
 

− 
 

=  − −
− 

 
 − −

− 

E

E

E

E

 (27) 

with 
Wmc

eh
=E , E ω=   and 

2
p T n= ±


E

, where n = 1/2, 1, 3/2, 2  In this case of an electron 

n=1/2, the electric and magnetic fields are 90º out of phase, the energy density swε is 

constant and proportional to 2 2 2 2
04 ( ) 4G i k Fπ η π+ E H , which numerically, we find in SI 

units as 2 2 9 1 1 2
04 (1.3 10 )ck F EE mπ − − −= × . Here, cE is the critical field for electron-positron pair 

production 2 1 18 11.3 10c eE m e Vm− −= ×  (see equations (5,6,7 )of this paper) and [Torres-Silva, 

2011]. Here, it is hypothesized that an elementary particle is simply a standing enclosed 

electromagnetic wave with a half or whole number of wavelengths ( λ ). For each half 

number of λ  the wave will twist 180° around its travel path, thereby giving rise to chirality. 

As for photons, the Planck constant (h) can be applied to determine the total energy (E): 
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/E nhc λ= , where n = 1/2, 1, 3/2, 2, etc., and c is the speed of light in vacuum. The mass 

(m) can be expressed as a function of λ , since 2E mc=  gives /m nh cλ= , from the formula 

above. 

In this form we have a close connection between the Dirac Equation and the Maxwell’ 

equations, with a direct and complete physical interpretation in the E H configuration. 

Here we are obtained a clear connection between the Planck constant  , the quiral factor T, 

and the electromagnetic mass m. 
To find the two uncoupled, two-component equations, one for the electron and one for the 
anti-electron (positron), we begin this reduction with the Cini-Touschek transformation 
[Cini & Touschek,  1958]. 

 1ˆ ˆT DH MH M−= , (28) 

where: 

 [ ]expM iS= , (29) 

 
ˆi ˆ arc  cot 

ˆ2

p
S p

p mc
β α

  = ⋅     

 
, (30) 

and p̂


 and p̂  are defined by 

 ˆ ˆ ˆˆ ip
x y z

 ∂ ∂ ∂
= − + + 

∂ ∂ ∂ 
i j k

  ; 2 ˆ ˆp̂ p p= ⋅
 

. (31) 

Under this transformation 

 
2 4

2

2
ˆˆ ˆ

ˆ
D T m c

H H c p
p

α
 

→ = + ⋅ 
 

 
. (32) 

Instead of the transformation M in Eq. (29) we introduce the transformation 

 chiralU N M= , (33) 

where 

 
1

2
chiral

I I
N

I I

 
=  

− 
 (34) 

in which each component I is the two-by-two identity matrix. 

Now we operate Eq. (25) with i / t∂ ∂ . This reduces the force-free Dirac equation  to the pair 

of uncoupled two-spinor equations 

 
2 4

2

2
ˆi ( ) ( )

ˆ

m c
E c p E

t p
σ σ σ

 ∂
⋅ = + ⋅ ⋅ 

∂  

     (35) 

and 
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2 4

2

2
ˆ-i ( ) ( )

ˆ

m c
H c p H

t p
σ σ σ

• • ∂
⋅ = + ⋅ ⋅ 

∂  

    . (36) 

In addition to Eqs. (35) and (36), it is instructive to factor the operator 2p̂  out of the 

denominator and write Eqs. (35) and (36), respectively, as 

 2 4 2 2

2

1 ˆˆi ( ) ( ) ( )
ˆ

E m c c p p E
t p

σ σ σ
∂

⋅ = + ⋅ ⋅
∂

    ,  ( 0 / 1T cω ≤ )  (37) 

and 

 2 4 2 2

2

1 ˆˆ-i ( ) ( ) ( )
ˆ

H m c c p p H
t p

σ σ σ
• •∂

⋅ = + ⋅ ⋅
∂

    , ( 0 / 1T cω ≤ ) (38) 

Where, L Eψ ψ σ= = ⋅


E
, and R Hψ ψ σ•

•
= = ⋅


H

. In this form it is easy to see that one can 

obtain Eq. (38) from Eq. (37) either by replacing t in Eq. (37) by -t, or by replacing 

( )2 4 2 2ˆm c c p+ , the energy operator for a particle of momentum p


, by the operator 

( )2 4 2 2ˆm c c p− + , the operator for the negative of the energy in Eq. (37). 
For the equation as written by Dirac, the pair of solutions are states of positive and negative 
energy, interpreted by Dirac and others as the electron and, eventually, the anti-e1ectron 
(the positron). A later interpretation [Mulligan, 2008], [Feynman, 1949] treats the solutions of 
the Dirac equation as a pair of different types of solutions-one type moving forward in time 
and the other type moving backward in time; 
the solutions which move forward in time are interpreted as electrons, while those that 
move backwards in time are interpreted as anti-electrons. Although a study of the literature 
shows that the physical implications of the two different interpretations are profound, 
Feynman demonstrated that, mathematically, organizing the types of solutions according to 
his interpretation is equivalent to organizing the solutions according to the Dirac 
interpretation. From the way in which we rewrite the Dirac equation here as the 
combination of Eqs. (37) and (38), the difference between the two interpretations can easily 
be seen as simply a matter of whether to associate a minus sign with the energy E or with 
the time t compared with the sign of the chiral scalar T. 

That Eq. (38) be a time-reversed or negative energy solution of Eq. (37) is clearly a necessary 

condition for recognizing the two-component spinor Eσ ⋅


 as a force-free electron.  

As required by Dirac, the four-component operator ˆ DH  in Eq. (13) depends only linearly on 

the operator p̂


. In contrast, the operator on the right-hand side of Eqs. (35) and (36) also 

depends on 2p̂


, which appears in the denominator. A series expansion of the right-hand 

side of Eqs. (37) and (38) involves 2p̂


 to all orders. Thus, whereas the Hamiltonian in Eq. (1) 

is local, the operator on the right-hand side of Eqs. (37) and (38) is nonlocal. It is well-known 

that nonlocality can result [13,14] when eliminating explicit reference to channels-in this 

case, the reference to the coupling of anti-electrons to electrons, which is explicit in Eq. (19) 

but no longer explicit in Eqs. (37) and (38), since each equation can be solved independently 

of the other but with the connection iη=E H  . 

One of the conditions imposed by Dirac in writing down a relativistic equation for the 

electron was that the “square” of that equation be the Klein-Gordon equation. Imposing the 
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additional condition of linearity of ˆ DH  in the components ˆ
kp  led Dirac to Eqs. (13) and (14). It 

is trivial to see that squaring either Eqs. (37) and (38) also leads to the Klein-Gordon equation. 

3.3 Internal rotation and electron mass 

As was the case with the four-component force-free Dirac equation, our two-component 
force-free equation exhibits Zitterbewegung as an interference between components. In our 
case, each solution has one positive energy component and one negative energy component. 
Also, our solutions immediately exhibit a frequency 

 Ω ' =W /  (39) 

and relate that frequency to an internal rotation of the electron. This frequency agrees with 
the frequency of rotation determined by Huang from consideration of the characteristics of 
the Zitterbewegung associated with the Dirac equation, but not obtained there so readily; as 
Huang points out, Zitterbewegung as rotation is not a feature which is immediately apparent 
in the four-component solutions of the Dirac equation. 
Here, we consider in more detail the mass of the electron as a property which can be 
attributed to its internal rotation. 

The angular frequency 'Ω  given by Eq. (39) is the accepted value of the rotational frequency 

associated with the intrinsic spin of an electron in motion with momentum p


, as discussed 

by Huang [Huang, 2006]. An additional important aspect of the internal rotation of the 

electron is the realization and identification that the rest-mass energy of a Dirac particle 

“appears simply as the energy of the internal motion in the rest frame.” 

The condition 0 / 1T cω = , in eq. allow to write the angular frequency Ω  for an electron at 

rest, Eq. (39) becomes 

 
2

0

2
/ 1 o

mc
T cω ω= → = Ω =


 (40) 

Eq. (40) demonstrates that if Zitterbewegung is the mechanism that gives rise to the rest mass 
of the electron, it also must be the mechanism that gives rise to the relativistic mass as a 
function of the velocity of the electron. 

Moreover, we can attribute the increase in Zitterbewegung for an electron in motion directly 

to the time dilation due to motion of the electron relative to the observer. This can be 

demonstrated by repeating the well-known fact that if we define a velocity zυ  for the 

electron by 

 zυ zp

M
= ,  (41) 

where M the relativistic mass 

 
2
z
2

υ
1

c

m
M =

−

, (42) 

the expression 2 4 2 2
zm c p c+  for the energy E becomes 
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2

2
z
2

υ
1

c

mc
E =

−

 (43) 

The time dependence of the angle of the intrinsic rotation of the electron is given by 
2

Et


, or  

 
2

2
z
2

2 2

υ
1

c

mc
Et t=

−
 

  (44) 

We can write Eq. (75) in the alternate form  

 22 2
Et mc τ=

 
, (45) 

where 

 
2

2

1

1 z

t

c

τ
υ

=

−

. (46) 

Consequently, the angular frequency 'Ω  of the rotation measured by an observer who sees 

the electron moving with velocity υz  is related to the rest frame angular frequency Ω  by 

 
2
z
2

'
υ

1
c

Ω
Ω =

−

. (47) 

The above discussion is presented in detail because Hönl and Papapetrou, in their 

mechanical model of of the electron, accidentally apply time dilation to decrease the 

rotational frequency, rather than to dilate the time. Accordingly, they conclude that the rate 

of rotation decreases rather than increases as the velocity of the particle increases. In light of 

Torres-Silva's [18] insight that the internal motion of the electron is the source of its mass, 

the relation between increased internal motion and increased mass becomes a critical aspect 

of the source of mass in a Dirac particle. 

Dorling [Dorling, 1970] recognized that Eq. (47) represents an adjustment to a frequency 

associated with the electron at rest and attempts to relate this frequency to Zitterbewegung. 

We can now readily make the necessary connection based on our results for the force-free 

electron. To effect the decrease in mass required by the binding process, according to our 

results the rotational frequency associated with the Zitterbewegung would have to decrease 

by an amount appropriate in energy of the electron. That is exactly what Eq. (47) describes. 

Therefore, in the case of Eq. (47) the role of time as measured by a clock attached to the 

electron and a dock held by an external observer is the reverse of that for the free electron. 

For the bound electron the external observer sees the rate of rotation due to Zitterbewegung 

correspondingly reduced. 
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In his paper on Zitterbewegung [Schrodinger, 1930], Schrödinger demonstrates that 
Zitterbewegung introduces motion perpendicular to the direction of net motion of the 
electron.  

The need to introduce components px and py was first recognized by Neamtan [Neamtan, 

1952], who did not associate these components with Zitterbewegung. Moreover, Neamtan 

was working with the four-component Dirac equation, and his solutions do not lend 

themselves to the interpretation possible here as a result of our use of two-component wave 

functions, to which we can apply Eqs. (37)-(38). 

Our results allow us to write a solution for a particle which is intrinsically right-handed, a 

particle which is intrinsically left-handed, or, by taking a linear combination of solutions, a 

particle such as the electron that has no intrinsic chirality. In obtaining the solution of Eq. 

(35)  we have effectively solved the Dirac equation for the particle moving in the direction of 

the positive z-axis and projected out that part of the particle wave function with positive 

helicity and positive intrinsic chirality; in obtaining one  solution, we have effectively solved 

the Dirac equation for the particle moving in the direction of the positive z-axis and 

projected out that part of the particle wave function with positive helicity and negative 

intrinsic chirality. This is of substantial practical importance, since in electron β -decay only 

that part of the wave function with negative intrinsic chirality takes part.  

The general consensus of papers on Zitterbewegung is that in the rest frame of the electron 

Zitterbewegung has a characteristic amplitude of / 2mc . This information can be used to 

obtain an order of magnitude estimate of el. in the rest frame. We set 

 

( )

( )

2/

0

2/

0

e d

2
e d

x

x

x x

mc
x

α

α

−∞

−∞
=









 (48) 

which yields 

 mcα = . (49) 

Before leaving the subject of the relation of Zitterbewegung to mass, we return to discussion 

of Zitterbewegung in the context of the Weyl equations. he treats the mass term in each of 

the two coupled spinors of the Weyl basis as a source for the other, a coupling proportional 

to the electron mass. Accordingly, while we already have related the size of the electron 

perpendicular to its motion to the electron mass. Our analysis allows us also to relate the 

length of the electron to its mass. Penrose describes the motion of the Dirac point position of 

the stationary electron along the axis of rotation of the electron (which we have taken to be 

the z-axis) as motion first with velocity e and negative helicity in the positive z-direction and 

then with positive helicity in the negative z-direction. The Dirac point performs this 

oscillatory motion with the de Broglie frequency  

 
2

υ
2  

mc

π
=


. (50) 

Multiplying the time for one motion in each direction by the velocity c gives for the length L 
of the electron 
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 L
mc

π
=


. (51) 

While this calculation results in an order of magnitude estimate of the length of the electron, 
even when at rest the motion of the electron distribution along its axis of rotation. 

4. New interpretation of the atomic spectra of the hydrogen atom: a mixed 
mechanism of classical LC circuits and quantum wave-particle duality 

Following Huang, [Huang, 2006], we study the energy conversion laws of the macroscopic 
harmonic LC oscillator, the electromagnetic wave (photon) and the hydrogen atom. As our 
analysis indicates that the energies of these apparently different systems obey exactly the 
same energy conversion law. Based on our results and the wave- particle duality of electron, 
we find that the atom of Hydrogen in fact is a natural chiral microscopic LC oscillator. 

In the framework of classical electromagnetic field theory we analytically obtain, for the 

hydrogen atom, the quantized electron orbit radius 2
n or a n= , and quantized energy 

2/n HW R hc n= − , (n = 1, 2, 3, ·), where oa is the Bohr radius and HR  is the Rydberg constant. 

Without the adaptation of any other fundamental principles of quantum mechanics, we 

present a reasonable explanation of the polarization of photon, selection rules and Pauli 

exclusion principle. Our results also reveal an essential connection between electron spin 

and the intrinsic helical movement of electron and indicate that the spin itself is the effect of 

quantum confinement.  
In fact, at the heart of quantum mechanics lies only the Schrödinger equation, which is the 
fundamental equation governing the electron. According to quantum theory, it is the 
electromagnetic interaction (by the exchange of photons) which hold electrons and nuclei 
together in the atoms [Planck, 1900; Einstein, 1905; Bohr, 1913; Stern,1920; de Broglie, 1924 ; 
Pauli, 1924 ; Heisenberg, 1927 ; Yang, 1950]. But, up to now, quantum theory never provides 
a practical scheme that electron and nuclei can absorb and emit photons. 
In this section, we investigate the energy relationship of electron in the hydrogen atom. 
Significantly, we find a process of perfect transformation of two forms of energy (kinetic and 
field energy) inside the atom and the conservation of energy in the system. By applying the 
principle of wave-particle duality and comparing to known results of the macroscopic 
harmonic LC oscillator and microscopic photon, we are assured that electron kinetic energy 
in fact is a kind of magnetic energy and the atom is a natural microscopic LC oscillator. 
Moreover, the mixed mechanism (classical LC circuits / quantum wave particle duality) 
turns out to have remarkably rich and physical properties which can used to describe some 
important quantum principles and phenomena, for instance, polarization of photon, 
Zeeman effect, Selection rules, the electron’s mass and spin, zero point energy (ZPE) , the 
Pauli exclusion principle. 

4.1 Energy transformation and conversion in hydrogen atom 
Classically, as shown in Fig. 1, the hydrogen atom consists of one electron in orbit around 
one proton with the electron being held in place via the electric Coulomb force. Equation of 
motion is 

 
2 2

2
04

ee m u

r rπε
= ,  (52) 

www.intechopen.com



Chiral Transverse Electromagnetic Standing Waves  
with E H  in the Dirac Equation and the Spectra of the Hydrogen Atom 

 

317 

where em  is mass of electron. Eq. (52) can be rewritten in the form of kinetic energy kW  and 

field energy fW  (stored in the capacitor of hydrogen atom) as follows: 

 
2

21

2 2
e

r

e
m u

C
= ,  (53) 

 

+e

C  =4πε r
r 0

r

-e

u
m

e

 

Fig. 1. The diagram illustrating the hydrogen atom 

where 04rC rπε=  is the capacitance of the hydrogen system. Thus the total energy of the 

hydrogen system is given by 

 
2 2

2

0

1

2 4 2
total e

r

e e
W m u

r Cπε
= − = . (54) 

It should be pointed out that Eq. (53) and (54) are the foundation of our study. These two 
equations together indicate a process of perfect periodically transformation of two forms of 

energy (kinetic energy 2 / 2k eW m u=  and field energy
2

2
f

r

e
W

C
= ) inside the atom and the 

conservation of energy in the system 

 total f kW W W= =   (55) 

Recall the macroscopic harmonic LC oscillator where two forms of energy, the maximum 

field energy 
2
0

2
f

Q
W

C
=  of the capacitor C (carrying a charge 0Q ) and the maximum magnetic 

energy 
2
0

2
m

L
W

L
=  of the inductor L, are mutually interchangeable ( total f kW W W= = ) with a 

exchange periodic 2T LCπ= . And for a microscopic photon (electromagnetic wave), the 

maximum field energy  2
0 0

1

2
fW ε= E  and the maximum magnetic energy 2

0 0

1

2
mW µ= H   also  

satisfy total f kW W W= = . 
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Based on the above energy relationship for three totally different systems and the 
requirement of the electromagnetic interaction (by exchanging photon) between electron 
and nuclei, we assure that the kinetic energy of electron, Eq. (53) is a kind of magnetic 
energy and the hydrogen atom is a natural microscopic LC oscillator. 
Recently, a multinational team of physicists had observed for the first time a process of 
internal conversion between bound atomic states when the binding energy of the converted 
electron becomes larger than the nuclear transition energy [Carreyre et al. 2000; Kishimoto 
et al. 2000]. This observation indicate that energy can pass resonantly between the nuclear 
and electronic parts of the atom by a resonant process similar to that which operates 
between an inductor and a capacitor in an LC circuit. These experimental results can be 
considered a conclusive evidence of reliability of our LC mechanism. 
Here raise an important question: how can the electron function as an excellent microscopic 
inductor?  
 

 
 a) Left hand electron (S=1), b) Right hand electron (S=-1) 

Fig. 2. A free electron moving along a helical orbit with a helical pitch of de Broglie 

wavelength eλ  

The answer lies in the intrinsic wave-particle duality nature of electron. In our opinion, the 
wave-particle nature of electron is only a macroscopic behavior of the intrinsic helical 
motion of electron within its world. 

4.2 Chirality and “inducton” of free electron 

De Broglie suggested that all particles, not just photons, have both wave and particle 
properties [Reines  &  Sobel, 1974]. The momentum wavelength relationship for any 
material particles was given by 

 /h pλ = , (56) 

where λ is called de Broglie wavelength, h is Planck’s constant and p  the momentum of the 

particle. The subsequent experiments established the wave nature of the electron [9, 10]. Eq. 

(56) implies that, for a particle moving at high speed, the momentum is large and the 

wavelength is small. In other words, the faster a particle moves, the shorter is its 

wavelength. Furthermore, it should be noted that any confinement of the studied particle 

will shorten than λ and help to enhance the so-called quantum confinement effects. 
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As shown in Fig. 2 (a) and (b), based on Eq. (56) and the demanding that the electron would 

be a microscopic inductor, we propose that a free electron can move along a helical orbit (the 

helical pitch is de Broglie wavelength eλ ) of left-handed or right-handed. In this paper, the 

corresponding electrons are called “Left-hand” and “Right-hand” electron which are 

denoted by Chirality Indexes S = 1 and S = −1, respectively. Hence, the electron can now be 

considered as a periodic-motion quantized inductive particle which is called “inducton” (see 

Fig. 2). Moreover, the particle-like kinetic energy of electron can be replaced with a dual 

magnetic energy carried by a “inducton”. Therefore, we have 

 2 21 1

2 2
k e eW m u L I= = , (57) 

where u is the axial velocity of the helical moving electron and eL  is the inductance of the 

quantized “inducton”. 
The above relation indicates that the mass of electron is associated with an amount of 
magnetic energy. From Fig. 2, the electric current, for one de Broglie wavelength, is given by 

 
e

eu
I

λ
= . (58) 

From Eq. (58), it is important to note that the electric current should be defined within an 

integral number of de Broglie wavelength. Hence, the electric current 
2

eu
I

rπ
=

2

eu
I

rπ
=  

(where r is the electronic orbital radius in the hydrogen atom), which was widely used in the 
semiclassical Bohr model, may be physically invalid. Collecting Eq. (57) and (58) together, 
we have the inductance of single “inducton” 

 
2

2
e e

e

m
L

e

λ
= . (59) 

Then the dual nature of electron can be uniquely determined by eL , the periodic T (or 

frequency 
1

e

u
f

T λ
= = ), the initial phase 0ϕ  and the chirality (S = 1 or S = −1). 

4.3 Atomic spectra of hydrogen atom 

A. Quantized radius and energy by the application of helical electron orbit to the hydrogen 

atom (Fig. 2), we can explain the stability of the atom but also give a theoretical 

interpretation of the atomic spectra. Fig. 3 shows four possible kinds of stable helical 

electron orbits in hydrogen atom, and each subgraph corresponds to a electron of different 

motion manner within the atom. The electrons can be distinguished by the following two 

aspects. First consider the chirality of electron orbits, as shown in Fig. 3, the electrons of Fig. 

3(a) and (c) are “Left-hand” labelled by S = 1, while electrons of Fig. 3(b) and (d) are “Right-

hand” labelled by S = −1. Secondly consider the direction of electron orbital magnetic 

moment μL, Fig. 3(a) and (b) show that the μL are in the Z direction (Up) while (c) and (d) in 

the −Z direction (Down), the corresponding electrons are labelled by J = 1 and J = −1, 

respectively, here J is called Magnetic Index. Hence, the electrons of different physical 
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properties become distinguishable, they are Up “Left-hand” (ULH) electron (J = 1, S = 1), Up 

“Right-hand” (URH) electron (J = 1, S = −1), Down “Left-hand” (DLH) electron (J = −1, S = 

1) and Down “Right-hand” (DRH) electron (J = −1, S = −1). 

As shown in Fig. 3(a), the helical moving electron around the orbit mean radius r can now 

be regarded as a quantized “inducton” of 
r

λ , thus the hydrogen atom is a natural 

microscopic LC oscillator.  
 

 

 

Fig. 3. The quadruple degenerate stable helical electron or-bits in hydrogen atom. a) Up Left-
hand electron ULH electron (J=1, S=1); b) Up Right-hand electron URH electron (J=1, S=-1); 
c) Down Left-hand electron DLH electron (J=-1, S=1); d) Down Right-hand electron DRH 
electron (J=-1, S=-1) 

We consider that the physical properties of the hydrogen atom can be uniquely determined 
by these natural LC parameters. To prove that our theory is valid in explaining the structure 
of atomic spectra, we study the quantized orbit radius and the quantized energy of 
hydrogen atom and make a comparison between our results of LC mechanism and the 

known results of quantum theory. For the system of rλ , the LC parameters of the hydrogen 

atom is illustrated in Fig. 3. Then the LC resonant frequency is 

 
1

2
r

r rL C
ν

π
= . (60) 

Recall the well-known relationship rE hν= , we have  

 
2

08
r

e
W E h

r
ν

πε
= = = . (61) 
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Combining Eq. 60 and Eq. 61 gives 

 0

2
/r e

h
r m

e
λ πε= . (62) 

Then the stable electron orbits are determined by 

 
2

r

r
n

π

λ
= , (n = 1, 2, 3 ···), (63) 

where n is called Principal oscillator number. The integer n shows that the orbital allow 

integer number of “induction” of the de Broglie wavelength rλ . From Eq. 52 and Eq. 53, the 

quantized electron orbit mean radius is given by 

 
2

2 20
02n

e

h
r n a n

m e

ε

π
= = ,  (64) 

where 0a  is the Bohr radius. And the quantized energy is 

 
2 4

2 2 2 2
0 0

1

8 8
e

n H

n

e m e hc
W R

r h n nπε ε
= − = − = − ,  (65) 

where HR  is the Rydberg constant. Surprisingly, the results of Eq. (64) and (65) are in 

excellent agreement with Bohr model. Besides, taking Fig. 3 into account, we can conclude 

that the quantized energies of Eq. (65) are quadruple degenerate.  

5. Concluding remarks  

In this article we have examined the conditions under which transverse electromagnetic 

(TEM) waves according to whether their Poynting vector is identically zero or nonzero. We 

have studied the non propagating TEM standing waves with E H . The Chiral general 

condition under which TEM standing waves with E H  exist is derived. Two physical 

examples of these standing waves are given. 

The first example is about the Dirac Equation for a free electron, which is obtained from the 

Maxwell Equations under the Born Fedorov approach, ( 0(1 )Tε= + ∇×D E ), and 

( 0(1 )Tµ= + ∇×B H ).  Here, it is hypothesized that an elementary particle is simply a 

standing enclosed electromagnetic wave with a half or whole number of wavelengths ( λ ). 

For each half number of λ  the wave will twist 180° around its travel path, thereby giving 

rise to chirality. As for photons, the Planck constant (h) can be applied to determine the total 

energy (E): /E nhc λ= , where n = 1/2, 1, 3/2, 2, etc., and c is the speed of light in vacuum. 

The mass m can be expressed as a function of λ , since 2E mc=  gives /m nh cλ= , from the 

formula above. This result is obtained from the resulting wave equation which is reduced to 

a Beltrami equation (1 / 2 )T∇ × = −E E  when the chiral factor T  is given by /T n mc=  . The 

chiral Pauli matrices are used to obtain the Dirac Equation. 
In the second example, we have found a perfect transformation of two forms of energy 
(kinetic and field energy) inside the hydrogen atom and the conservation of energy in the 
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system. Then, we have shown that the helical moving electron can be regarded as an 
inductive particle (“inducton”) while atom as a microscopic LC oscillator, then the 
indeterministic quantum phenomena can be well explained by the deterministic classical 
theory. For a microscopic photon (electromagnetic wave), the maximum field energy 

2
0 0

1

2
fW ε= E  and the maximum magnetic energy 2

0 0

1

2
mW µ= H   are connected iff ηiE = H . 

The Poynting vector vanishes and the Hydrogen atom does not radiate and it is stable. In 
particular, with this approach we can show another phenomena such how a pairing Pauli 
electron can move closely and steadily in a DNA-like double helical electron orbit. 
Moreover, we can have pointed out that the mass of electron, the intrinsic “electron spin”, 
the Pauli exclusion principle and the Dirac equation are all really the quantum confinement 
effects of the intrinsic chirality of particles of helical motion produced by electromagnetic 
fields.. 

We have shown that the quantum mechanism is nothing but an electromagnetic theory 

(with the radius of the helical orbit 0er → ) of the LC/wave-particle duality mixed 

mechanism. Our mixed mechanics force us to rethink the nature and the nature of physical 

world. We believe all elementary particles, similar to photon and electron, are only some 

different types of energy representation. 

From our study, it has been shown that the electron follows a perfectly defined trajectory in 

its motion, which confirms the de Broglie-Bohm’s prediction (Bohm, 1952). Also in our 

work, it is found that the known wave-particle duality can be best manifested by showing 

that the wave motion associated with a electron is just the phenomenon of its complex 

helical motion in real space.  

It is hoped that this article will encourage electrodynamics course instructors to include a 

discussion of E H  TEM standing waves in atomic systems. 
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