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1. Introduction 

Accurate measurement of surface roughness of machined workpieces is of fundamental 

importance particularly in the precision engineering and manufacturing industry. This is 

mainly due to the more stringent demand on material quality as well as the miniaturization 

of product components in these industries [1-3]. For instance, in the disk drive industry, to 

maintain the quality of the electrical components mounted on an optical disk, the surface 

roughness of the disk must be accurately measured and controlled. Hence, the surface 

finish, normally expressed in terms of surface roughness, is a critical parameter used for the 

acceptance or rejection of a product. 

Surface roughness is usually determined by a mechanical stylus profilometer. However, the 

stylus technique has certain limitations: the mechanical contact between the stylus and the 

object can cause deformations or damage on the specimen surface and it is a pointwise 

measurement method and is time consuming. Hence a noncontact and more speed optical 

method would be attractive. Different optical noncontact methods for measuring surface 

roughness have been developed mainly based on reflected light detection, focus error 

detection, laser scattering, speckle and the interference method [4-10]. Some of these have 

good resolutions and are being applied in some sectors where mechanical measuring 

methods previously enjoyed clear predominance. Among these methods, the light scattering 

method [11] which is a noncontact area-averaging technique, is potentially more speedy for 

surface inspection than other profiling techniques particularly the traditional stylus 

technique. Other commercially available products such as the scanning tunneling 

microscope (STM), the atomic force microscope (AFM) and subwavelength photoresist 

gratings [12-15], which are pointwise techniques, are used mainly for optically smooth 

surfaces with roughnesses in the nanometer range. 

In this chapter in the frame of the Kirchhoff method (scalar model) the average coefficient of 

light scattering by surface fractal structures was calculated. A normalized band-limited 

Weierstrass function is presented for modeling 2D fractal rough surfaces. On the basis of 

numerical calculation of average scattering coefficient the scattering indicatrises diagrams 

for various surfaces and falling angles were calculated. The analysis of the diagrams results 

in the following conclusions: the scattering is symmetrically concerning a plane of fall; with 
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increase the degree of a surface calibration the picture becomes complicated; the greatest 

intensity of a scattering wave is observed in a mirror direction; there are other direction in 

which the bursts of intensity are observed. 

2. Fractal model for two-dimensional rough surfaces 

At theoretical research of processes of electromagnetic waves scattering selfsimilar 

heterogeneous objects (by rough surfaces) is a necessity to use the mathematical models of 

dispersive objects. As a basic dispersive object we will choose a rough surface. As is 

generally known, she is described by the function ( )z x, y of rejections z of points of M of 

surface from a supporting plane (x,y) (fig.1) and requires the direct task of relief to the 

surface. 
 

 

Fig. 1. Schematic image of rough surface 

There are different modifications of Weierstrass–Mandelbrot function in the modern models 

of rough surface are used. For a design a rough surface we is used the Weierstrass limited to 

the stripe function [3,4] 
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where cw is a constant which ensures that W(x, y) has a unit perturbation amplitude; q(q> 1) 

is the fundamental spatial frequency; D (2 < D< 3) is the fractal dimension; K is the 
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fundamental wave number; N and M are number of tones, and nmϕ  is a phase term that has 

a uniform distribution over the interval [ , ]−π π . 
The above function is a combination of both deterministic periodic and random structures. 

This function is anisotropic in the two directions if M and N are not too large. It has a large 

derivative and is self similar. It is a multi-scale surface that has same roughness down to 

some fine scales. Since natural surfaces are generally neither purely random nor purely 

periodic and often anisotropic, the above proposed function is a good candidate for 

modeling natural surfaces. 

The phases nmϕ  can be chosen determinedly or casually, receiving accordingly determine or 

stochastic function ( ),z x y . We further shall consider nmϕ  as casual values, which in regular 

distributed on a piece ;−π π   . With each particular choice of numerical meanings all N M×  

phases nmϕ  (for example, with the help of the generator of random numbers) we receive 

particular (with the beforehand chosen meanings of parameters wc , , , , ,q K D N M ) 

realization of function ( ),z x y . The every possible realizations of function ( ),z x y  form 

ensemble of surfaces. 
A deviation of points of a rough surface from a basic plane proportional wc , therefore this 

parameter is connected to height of inequalities of a structure of a surface. Further it is 

found to set a rough surface, specifying root-mean-square height of its structure σ , which is 

determined by such grade: 

 2 ,hσ ≡     (2) 

where ( ),h z x y= ,  
1

0 1

... (...)
2

N M
nm

n m

d
π−

= = −π

ϕ
=

π
∏∏  - averaging on ensemble of surfaces. 

The connection between wc  and σ  can be established, directly calculating integrals: 
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So, the rough surface in our model is described by function from six parameters: wc  (or ), 

, , , ,q K D N M . The influence of different parameters on a kind of a surface can be 

investigated analytically, and also studying structures of surfaces constructed by results of 

numerical accounts of Weierstrass function. Analysis of the surface profiles built by us on 

results of numeral calculations (fig. 2) due to the next conclusions: 

- the wave number K  sets length of a wave of the basic harmonic of a surface; 

- the numbers N , M , D  and q  determine a degree of a surface calibration at the 

expense of imposing on the basic wave from additional harmonics, and N  and M  

determine the number of harmonics, which are imposed; 

- D  determines amplitude of harmonics;  

- q  - both amplitude, and frequency of harmonics. 

Let's notice that with increase , ,N M D  and q  the spatial uniformity of a surface on a large 

scale is increased also. 
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Fig. 2. Examples of rough surface by the Weierstrass function 2K = π ; 5N M= = ; 1σ = . 

2,1D = ; 2,5D = ; 2,9D =  (from above to the bottom) 1,1q = ; 3q = ; 7q =  (from left to 

right) 

By means of the original program worked out by us in the environment of Mathematika 5.1 

there was the created base of these various types of fractal dispersive surfaces on the basis of 

Weierstrass function. 

Influence each of parameters  q K D N M, , , ,  on character of profile of surface it appears 

difficult enough and determined by values all other parameters. So, for example, at a value 

2,1D = , what near to minimum ( 2D = ), the increase of size q does not almost change the 

type of surface (see the first column on fig.2). With the increase of size D the profile of 

surface becomes more sensible to the value q (see the second and third columns on fig.2). 

Will notice that with an increase , ,N M D  and q increases and spatial homogeneity of 

surface on grand the scale: large-scale "hills" disappear, and finely scale heterogeneities 

remind a more mesentery on a flat surface.  
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3. Electromagnetic wave scattering on surface fractal structures 

At falling of electromagnetic wave there is her dispersion on the area of rough surface - the 

removed wave scattering not only in direction of floppy, and, in general speaking, in 

different directions. Intensity of the radiation dissipated in that or other direction is 

determined by both parameters actually surfaces (by a reflectivity, in high, by a form and 

character of location of inequalities) and parameters of falling wave (frequency, 

polarization) and parameters of geometry of experiment (corner of falling). The task of this 

subdivision is establishing a connection between intensity of the light dissipated by a fractal 

surface in that or other direction, and parameters of surface. 

 

 

Fig. 3. The scheme of experiment on light scattering by fractal surface: S is a scattering 

surface; D-detector, 1θ  is a falling angle; 2θ  is a polar angle; 3θ is an azimuthally angle 

The initial light wave falls on a rough surface S under a angle 1θ  and scattering in all 

directions. The scattering wave is observed by means of the detector D in a direction which 

is characterized by a polar angle 2θ  and an azimuthally angle 3θ . The measured size is 

intensity of light sI  scattered at a direction ( )2 3,θ θ . Our purpose is construction scattering 

indicatrise of an electromagnetic wave by a fractal surface (1). 

As *
s s sI E E= ⋅
 

 (where sE


 is an electric field of the scattering wave in complex representation) 

that the problem of a finding sI  is reduced to a finding of the scattered field sE


. 
The scattered field we shall find behind Kirchhoff method [16], and considering complexity 

of a problem, we shall take advantage of more simple scalar variant of the theory according 

to which the electromagnetic field is described by scalar size. Thus we lose an opportunity 

to analyze polarizing effects 

The base formula of a Kirchhoff method allows to find the scattered field under such 

conditions: 

- the falling wave is monochromatic and plane; 
- a scattered surface rough inside of some rectangular (-X <x0 <X, -Y <y0 <Y) and 

corpulent outside of its borders; 
- the size of a rough site much greater for length of a falling wave;  
- all points of a surface have the ended gradient;  
- the reflection coefficient identical to all points of a surface;  
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- the scattering field is observed in a wave zone, i.e. is far enough from a scattering 
surface. 

Under these conditions the scattered field is given by 

 ( ) ( )
0

1 2 3 0 0 0 0
exp( )

, , exp[ ( , )] ( )
2

s e

S

ikr
E r ikrF ik x y dx dy E r

r
= − θ θ θ ϕ +

π 
 

,   (4) 

Where k  is the wave number of falling wave; 2 2 2
1 2 3

R
F( , , ) (A B C )

2C
θ θ θ = − + +   is a angle 

factor; R  - scattering coefficient; 0 0 0 0 0 0(x ,y ) Ax By Ch(x ,y )ϕ = + +  is the phase function; 
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  (5) 

After calculation of integrals (4) and (5) by means of the formula 
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(where ( )lI z  is the Bessel function of the whole order), we receive 
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sinc ( )kAX sinc ( )kBY . 

Thus, expression (6) gives the decision of a problem about finding a field scattering by a 

fractal  surface , within the limits of Kirchhoff method. 
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Now under the formula (4) it is possible to calculate intensity of scattered waves if to set 

parameters of a disseminating surface wc  (or) σ , , , , , , , nmD q K N M X Y φ , parameter k  (or 

2

k

π
λ = ) a falling wave and parameters 1 2 3, ,θ θ θ  of geometry of experiment. This intensity 

will be to characterize scattering on concrete realization of a surface ( , )z x y  (with a concrete 

set of casual phases nmφ ). For comparison of calculations with experimental data it is 

necessary to operate with average on ensemble of surfaces intensity s s sI E E∗=
 

. Such 

intensity has appeared proportional intensity 
2

1
0

2 coskXY
I

r

Θ 
=  π 

 of the wave reflected 

from the corresponding smooth basic surface, therefore for the theoretical analysis of results 
it is more convenient to use average scattering coefficient 

0

.
s

s

I

I
ρ =  

After calculation sI  and leaving from (6), we shall receive exact expression 
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sinc2 ( )kAX sinc2 ( )kBY    (7) 

As expression (7) consist the infinite sum to use it for numerical calculations inconveniently. 

Essential simplification is reached in case of n 1ξ < . Using thus decomposition function in a 

line  
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that rejecting members of orders, greater than 2
nξ . We shall receive the approached 

expression for average scattering coefficient 
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where                             
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( )

( )

1
2 D 3 2

f w 2N D 3

2 1 q
c kc C k C

M 1 q

−

−

 −
≡ = σ ⋅ 

−  
. 

4. Results of numerical calculations 

On the basis of numerical calculations of average factor of dispersion under the formula (8) 

we had been constructed the average scattering coefficient sρ  from 2θ  and 3.θ  (scattering 

indicatrix diagrams) for different types of scattering surfaces. At the calculations we have 

supposed R 1= , and consequently did not consider real dependence of reflection coefficient 

R  from the length of a falling wave λ  and a falling angle 1θ . The received results are 

presented on fig. 4. 
 

 

Fig. 4. Dependencies of the slog ρ  from the angles θ2 and  θ3 for the various type of fractal 

surfaces: a, a’, a’’ – the samples of rough surfaces, which the calculation of dispersion 

indexes was produced; from top to bottom the change of scattering index is rotined for three 

angles of incidence 0
1 30, 40, 60θ =  (a-d, a’-d’, a’’-d’’) at N=5, M=10, D=2.9, q=1.1; n=2, M=3, 

D=2.5, q=3; N=5, M=10, D.2.5, q=3 accordingly 
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The analysis of schedules leads to such results: 

• Scattering is symmetric concerning of a falling plane; 

• The greatest intensity of the scattering wave is observed in a direction of mirror 
reflection;   

• There are other directions in which splashes in intensity are observed; 

• With increase in a calibration degree of surfaces (or with growth of its large-scale 
heterogeneity) the picture of scattering becomes complicated. Independence of the type 
of scattering surface there is dependence of the scattering coefficient from the incidence 
angle of light wave. As far as an increase of the incidence angle from 300 to 600 amounts 

of additional peaks diminishes. Is their most number observed at 0
1 30θ = . It is related 

to influence on the scattering process of the height of heterogeneity of the surface. At 
the increase of the angle of incidence of the falling light begins as though not to “notice” 
the height of non heterogeneity and deposit from them diminishes. 

The noted features of dispersion are investigation of combination of chaoticness and self-
similarity relief of scattering surface. 

5. Conclusion 

In this chapter in the frame of the Kirchhoff method the average coefficient of light 
scattering by surface fractal structures was calculated. A normalized band-limited 
Weierstrass function is presented for modeling 2D fractal rough surfaces. On the basis of 
numerical calculation of average scattering coefficient the scattering indicatrises diagrams 
for various surfaces and falling angles were calculated. The analysis of the diagrams results 
in the following conclusions: the scattering is symmetrically concerning a plane of fall; with 
increase the degree of a surface calibration the picture becomes complicated; the greatest 
intensity of a scattering wave is observed in a mirror direction; there are other direction in 
which the bursts of intensity are observed. 
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