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Computational Fluid Dynamics Analysis 
 of Turbulent Flow 
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Department of Mechanical Engineering, Northern Illinois University, Illinois 

U.S.A 

1. Introduction  

One important characteristics of a turbulent flow is that the velocity and pressure may be 

steady or remain constant at a point, but still may exhibit irregular fluctuations over the 

mean or average value.  The fluid elements which carry out fluctuations both in the 

direction of main flow and at right angles to flow are not individual molecules but rather are 

lumps of fluid of varying sizes known as eddies.  The fluctuating components may be a few 

percent of the mean value, but it is the controlling factor in describing the flow.  A turbulent 

fluid flow is then characterized as the main flow stream super-imposed with localized 

rotational eddies, where motion are three dimensional, unstable, and random. Turbulent 

eddies have a wide range of sizes or length scales. These eddies form continuously and 

disintegrate within few oscillation periods, and hence have very small time scales. In 

general, the frequencies of the unsteadiness and the size of the scales of motion span several 

orders of magnitude.  

The governing equations for fluid flow for a general linear Newtonian viscous fluid are 
Navier-Stokes equations given by the following set of equations:  

 ( ) 0i
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t x

ρ
ρ

∂ ∂
+ =

∂ ∂
  (1) 
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ij
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 − ∇ + + +  ∂ ∂ ∂   

  (2) 

Where iu  and ju  are the mean velocities of water, P  is the pressure, ρ  is the density of the 

water and µ  is the dynamic viscosity. 
In principle, the time dependent three dimensional Navier-Stokes equations can fully 
describe all the physics of a given turbulent flow. This is due to the fact that turbulence is 
continuous process which consist of continuous spectrum of scales ranging from the largest 
one associated with the largest eddy to the smallest scales associated with the smallest eddy, 
referred as Kolmogorov micro-scale, a concept brought by the theory of turbulence statistics. 
These eddies overlap in space, larger one carrying the smaller ones. The process can be 
characterized as a cascading process by which the turbulence dissipates its kinetic energy 
from the larger eddies to the smaller eddies through vortex stretching. The energy is finally 
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dissipated into heat through the action of molecular viscosity in the smallest eddies. These 
larger eddies randomly stretch the vortex elements that compress the smaller eddies 
cascading energy to them. The cascading process give rise to the important features such as 
apparent stresses and enhanced diffusivity, which are several orders of magnitude larger 
than those in corresponding laminar flows.  The scales of motion or wave lengths usually 
extend all the way from a maximum size comparable to the characteristic length of the flow 
channel to a minimum scale corresponding to the smallest eddy fixed by the viscous 
dissipation. The range of these scales or the ratio of minimum to maximum wave lengths 
varies with characteristic flow parameter such as Reynolds number of the flow.  

2. Computational model for turbulence flow 

In the computational simulation of turbulent flow, it is important to decide how finely we 
should resolve theses eddies in the computational model as it has a direct effect on the 
accuracy of the prediction as well as computer time. Methods available for simulating 
turbulent fluid flow are Direct Numerical Simulation (DNS) based on direct solution of 
Navier-Stokes Equations and Averaged or Filtered Simulation based on averaged solution of 
Navier-Stokes Equations. A brief description of these methods is described as follows: 

2.1 Direct Numerical Simulation (DNS) 

A computational model based on the micro-scale discretization is called Direct Numerical 

Simulation (DNS). It involves complete resolution of the flow field by a direct solution of 

unsteady Navier-Stokes Equations resolving all active scales of motion in the flow field 

without using any approximation and models. The grid spacing and time steps should be 

fine enough to capture the dynamics of all scales down to the smallest scale associated with 

the smallest eddy, which is established by the Kolmogorov microscale. The smallest eddy 

based on Kolmogorov micro-scale decreases with the increase in flow Reynolds number in 

proportion to the value of 
9

4Re and could be as small as 0.1-1 mm.  Also, the computational 

domain should be large enough to include the largest scale of the flow dynamic, which is 

established by the characteristic dimension such as the height and width of the flow 

domain. Resolving all scales and frequencies of turbulent eddies based on the Kolmogorov 

microscale requires excessively large number of nodal points and excessively large 

computational time, and faces serious obstacles even with the most powerful 

supercomputers available today.   
There are two basic requirements that a DNS model must meet to represent turbulence. 
These are: 1. It must represent a solution of Navier-Stokes equations resolving all scales of 
motion (viscous dissipation scales) adequately by the computational mesh, and 2. It should 
provide adequate statistical resolution (large samples or smaller time steps) of the set of all 
possible fluid motions allowed by the Navier-Stokes equations.  These two requirements for 
a turbulence simulation conflict. The sample improves as the energy moves to smaller 
scales, but the viscous resolution is degraded. As a result, a DNS model of three-
dimensional time dependent Navier-Stokes Equations for all important scales of turbulence 
has posed a great challenge for computer and numerical techniques in the past due to the 
requirement of extremely fine mesh size distribution and very small time steps to capture 
the essential details of the turbulent structures. Such requirements had limited the past DNS 
studies to very low Reynolds numbers. More detail descriptions of DNS method are given 
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by Eswaran and Pope (1988), Rai and Moin (1991,  Kim et. al. (1997), Rogallo (1981) and  Deb 
and Majumdar (1999).  

2.2 Averaged or filtered simulation 
In order to overcome the computational difficulties in terms grid size limitation imposed by 

Kolmogorov microscale, a simplified approach based on the solution of average Navier-Stokes 

Equations is most often used for turbulent fluid flow. An averaging or filtering operation  is  

employed over the Navier-Stokes equation in order to smooth out certain range of high 

frequency variation of flow variables or smaller scales of turbulent eddies. This averaging or 

filtering operation, also known as coarse graining leads to a new set of flow governing 

equations that represents only the larger scale eddies or lower frequencies of flow variable. 

Because of the smoother variation of the flow variables, the smallest scale are no longer of 

the order of Kolmogorov microscale, but rather limited by the cut-off scale used in the 

averaging or filtering method and this results in a considerable reduction in the number of 

grid points and savings in computational  time. So in the averaged or filtered simulation, 

only large scale of turbulence eddies are resolved, and an average affects of small scale 

eddies on the resolved scales are taken into account by the use of statistical average model, 

known as turbulence closure models. Turbulence modeling is designed to simulate the 

averaged flow Field, named as coarse graining instead of the original flow field. In this coarse 

graining process, small scale eddies that are difficult to resolve are neglected. The small 

eddies that are neglected in coarse graining are included in the simulation through the 

turbulence modeling. 

Options available for analyzing  turbulent flows are either a time-averaged approach using 

Reynolds Averaged Navier-Stokes (RANS) equations along with turbulence closure models, 

or a space-averaged approach using Large Eddy Simulations (LES) that takes into account of 

only large scale eddies and uses turbulence closure model for the smaller eddies, but require 

large amounts of computational time as well.   

2.2.1 Large Eddy Simulation (LES) 
In order avoid the limitation of the DNS method to resolve all scales of turbulence eddies in 

terms of smallest mesh size refinements,  large eddy simulation (LES) are used. In large 

eddy simulation, the unsteady nature of turbulent eddies and only large scale eddies are 

resolved.  The large scale eddies are anisotropic in nature and responsible for the driving 

physical mechanism such as production and major carrier of the turbulent kinetic energy. 

The small scale eddies are only responsible for viscous dissipation of small fraction of 

kinetic energy that they carry. The small scale eddies are modeled based on assuming an 

isotropic or a direction independent nature of eddies that follow a statistically predictive 

behavior for all turbulent flows.  As small scale eddies are not resolved, LES methods are 

computationally less expansive than DNS method in which all scales or turbulence eddies 

are resolved. Nevertheless, LES method still requires finer mesh size distributions and 

computationally more expansive than RANS model. 

2.2.2 Reynolds Averaged Navier-Stokes (RANS) model  
Reynolds Averaged Navier-Stokes (RANS) model is the next level of approximation in 

which no attempts are made to resolve the unsteady nature of any sizes of turbulence 
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eddies. The increased level of mixing and dissipation caused by the turbulent eddies is 

taken into account through the turbulence closure models. In this approximation, the 

turbulence itself is not directly computed, but rather its average effect on mean flow is 

modeled by describing the turbulent motion in terms of time averaged form of Navier-

Stokes equation referred to as the Reynolds-Averaged Navier-Stokes Equations. As 

described before instantaneous turbulent flow quantities are composed of two different 

types of motions: mean motion and a fluctuating motion as described by the following 

expressions for the instantaneous velocity components and pressure as 

 

- -
' ' ' 'u u u ,v v v ,w w w  and p p p

− −

= + = + = + = +    (3) 

The mean velocity components are represented as u , v  and w . The fluctuating (time 

dependent) components 'u , v'  and 'w , when added with the mean (time-independent) u , 

v  and w  components gives the instantaneous velocity components. The time mean of a 

quantity φ is described as 

 

o

o

t T

T
t

1
lim dt

T

+

→∞
φ ≡ φ     (4) 

The velocity fluctuations produce mean rates of momentum transfer in addition to those 
produced by the mean velocity components. Substituting all fluctuating flow quantities 
given by equation (3) into in the Navier-Stokes equation (1-2) and performing the time 
averaged integration, the Reynolds-averaged Navier-Stokes equation is obtained as 
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    (7) 

The time averaged Navier-Stokes equation is complicated by the inclusion of the new 

turbulent term ' '
tij i jT u uρ= − , which represents nine additional turbulent shear stress 

components caused by the cross-products of the fluctuating velocity components and are 

referred to as the Reynolds stress components. The nine components Reynolds stress tensor 

can be summarized by the following: 

 

t

' 2 ' ' ' '

' 2' ' ' ' ' '
ij i j

' 2' ' ' '

u u v u w

T u u u v v v w

u w v w w

= −ρ = ρ   (8) 
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The total stress is written as the sum of laminar viscous shear and turbulent Reynolds stress as 

 

' ' ji
ij i j

j i

uu
T u u

x x
ρ µ

 ∂∂
= − + +  ∂ ∂ 

    (9)  

The new nine-component turbulent stress tensor depend not only on the fluid properties  
but also on the flow conditions such as geometry, velocity surface roughness and the up 
stream conditions, and defined based on the turbulence structure, which needs to be defined 
as well. Major challenge is to express Reynolds stress tensor in terms mean flow. Two 
approaches to evaluate the Reynolds stresses in terms of mean flow variables are 1. 
Boussinesq Eddy viscosity concept and Pradndtl Mixing Length model and 2. Reynolds 
Stress Transport Model. 

Boussinesq eddy viscosity concept and Prandtl mixing length model 

In an effort to mathematically describe turbulent stress in terms of mean flow quantities, 
Boussinesq (1877) introduced the concept of eddy viscosity using the analogy with the 
Newtonian viscous linear stress and strain rate relationship. Boussinesq assumption relates 
Reynolds turbulent stresses to the mean flow and strain rate in similarity with laminar linear 
shear-stress – strain relation as follows: 

 
_____

' '
t t

du dv
u v

dy dx

 
τ = −ρ = µ + 

 
    (10) 

Where tµ  is term as the turbulent viscosity or eddy viscosity and the total stress is given as 

 ( )t t
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  (11) 

This leads to general expression for the Reynolds stress tensor expressed as   
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and the total stress is expressed as the sum of laminar and turbulent stress 
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    (13) 

Where tot tµ = µ + µ = total viscosity, which is the sum of the molecular dynamic viscosity, µ  

and turbulent or eddy viscosity, tµ . 
Turbulent or eddy viscosity value is generally several order of magnitude higher than the 
molecular dynamic viscosity depending on the order of magnitude of the turbulence in the 
flow Another important characteristic of turbulent or eddy viscosity is that it depends not 
only on the fluid, but it varies throughout the flow domain and depends strongly on fluid 
flow characteristics, geometry, roughness and upstream conditions. Prandtl in 1925 

introduced the concept of mixing length ( ml ) theory that closely relates to eddy viscosity 
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concept and form the basis for all turbulent modeling effort. The Prandtl mixing length is 
defined as the average distance travelled by a lump of fluid or the fluid eddy in the normal 
direction to the flow in similarity with the mean free path length of molecules.  Based on this 
concept, the turbulent stress and turbulent eddy viscosity are expressed in terms of Prandtl 
mixing length as follows: 
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∂ 
     (14) 

and 
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∂ 
    (15)  

Different classes of turbulence closure models: 

Turbulence closure models takes into account of statistical average effect of small scale 
eddies on the time averaged mean flow that only resolves large scale eddies. In order to 
define the turbulent eddy viscosity, it is necessary determine a suitable velocity scale and a 
length scale.  The mixing length model is considered as an algebraic model or a zero-
equation turbulence model. Subsequently additional class of turbulence models were 
developed based on number of additional equations to describe the turbulent viscosity.  An 
n-equation turbulence model requires solution of n additional transport equations for 
additional variables used to describe the length and velocity scales used in the estimation of 
turbulent viscosity. In one-equation turbulence model, turbulence kinetic energy (k) was 
introduced to describe the velocity scale. Subsequently, in two-equation model, additional 
variable like the rate of dissipation of turbulence kinetic energy was introduced to represent 
the length scale of turbulence. The estimation of  turbulence viscosity in terms of turbulence 

kinetic energy (k)  and turbulence dissipation rate (ε) is given by the Prandtl-Kolmogorov 
relation: 

 

2
t C k /µµ = ρ ε     (16)  

Turbulence models are classified into following several divisions and subdivisions:  
i. Algebraic turbulence or Zero-equation model 

Algebraic turbulence models are zero-equation turbulence models that do not require 
the solution of any additional equation, and are calculated directly from the flow 
variables. As a consequence, zero equation models do not take into account history 
effects of the turbulence, such as convection and diffusion of turbulent energy and are 
often adequate for simpler flow geometries. Some of the most popular algebraic zero-
equation  turbulence models are a) Cebeci-Smith model, b) Baldwin-Lomax model and 
c) Johnson-King model. Algebraic models are simple, quite robust and computationally 
less expensive. Major limitation of the algebraic turbulence are that they are  semi-
empirical  with weak physical base and  so not applicable to flow problems that are 
significantly different from flow problems for which the empirical constant are derived. 

ii. One-equation model 
One equation turbulence models include i) Prandtl's one-equation model, ii) Baldwin-
Barth model and iii) Spalart-Allmaras model 
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• Spalart – Allmaras model 
The model proposed by Spalart and Allmaras is a one-equation model that solves for 
kinematic eddy viscosity from the transport equation. It is the preferred model for 
problems involving no separation or weak separation and it is widely used in 
turbomachinary applications. The transport equation is given by 

 ~

~

~ ~
~ ~ ~

2
2

1
( ) ( ) [ { ) } ( ) ]i b

i j j j

u G C Y
t x x x x

ν
ν

ν

ν ν
ρν ρν µ ρν ρ

σ
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+ = + + + −
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 (17) 

Where G  is the production of turbulent viscosity and ~Y
ν

 is the destruction of turbulent 

viscosity that occurs in the near-wall region. The turbulent viscosity (µt) is computed as 

 
~

1t fνµ ρν=  (18a) 

Where  1fν   is the viscous damping function given by 
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~

S is a function of mean rate of rotation tensor and viscous damping function. 
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~

2
1 ( )w wY C f

dν

ν
ρ=  (18d) 

Where  1wf  is a function of vorticity and d is the distance from the wall. 
iii.  Two-equation model 

Two equation turbulence models include two extra transport equations to represent the 

turbulent properties of the flow that accounts for convection and diffusion of turbulent 

energy. Most often one of the transported variables is the turbulent kinetic energy, k . The 

second transport variables varies, however, with different two-equation models. Most 

common choices are the turbulent dissipation, ε , or the specific dissipation, ω . While the 

turbulent kinetic energy, k  represents the energy in the turbulence,  the turbulent 

dissipation, ε , or the specific dissipation, ω  represents the turbulence length-scale. A list 

of some of these widely used two-equation turbulence models is given here: 

k ε−  Turbulence models: k ε−  High Reynolds turbulence model, k ε−  Low Reynolds 

turbulence model, Realisable k ε−  model,  k ε−  Renormalization Group (RNG) turbulence 

model,  k ε−  Chen turbulence model, k ε−  Standard Quadratic High Reynolds Turbulence 

model, k ε−  Suga Quadratic High Reynolds Turbulence models 

k ω−  Turbulence models: k ω−  Standard High Re, k ω−  Standard Low Re, k ω−  SST 

High Re and k ω−  SST Low Re 
iv. Reynolds Stress Model (RSM) 

Reynolds stress model (RSM) discarded the eddy viscosity approach and computes the 
Reynolds stresses directly. It is a higher level more elaborate turbulent model, which 
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introduces exact Reynolds stress transport equations to compute the Reynolds stresses 
directly and accounts for the directional effects of Reynolds stress field. Some of the most 
popular RSM model are RSM/Gibson-Launder (wall Reflection: Standard), RSM/Gibson-
Launder (wall Reflection: Craft) and RSM/Speziale, Sarkar and Gatski. 

2.2.3 The Standard  κ - ε   model 

The standard k ε−  turbulence model is the most widely used one, which is also known as 

k ε−  High Reynolds turbulence model. It includes two transport equations to define the 

turbulence scales. The k  denotes the turbulent kinetic energy (m2/s2), whereas ε  denotes 

the dissipation rate (m2/s3). The model proposed by Launder and Spalding [1974] is based 
on the transport equations for the turbulent kinetic energy, k and its rate of dissipation, ε  as 

follows.  
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The generation of turbulent kinetic energy due to buoyancy is  
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t
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      (21)   

The fluctuating dilatation in compressible turbulence to the overall dissipation rate 

   
2

2
MY

a

ρεκ
=     (22) 

Where, a = Speed of sound.  

The turbulent viscosity is computed by combining k and ε  as 

 

2

t

k
Cµµ ρ

ε
=       (23) 

Where, 0.09Cµ = , 1 21.44, 1.92C Cε ε= =
 

and, 3 0.09C ε = are model constants. 1.0kσ =  and  

1.3εσ =  are the turbulent Prandtl numbers for k and ε  respectively. Sκ and Sε are user-

defined source terms. 
A two-equation k ε−  model could be quite suitable for flow in straight channels without 

the presence of any large scale flow separations and adverse pressure gradient or in 
problems where only average parameters are to be determined without the requirement of 
resolving detail turbulence quantities. This model is found to be quite adequate for many  
industrial applications.   

2.2.4 Low Reynolds  k - ε  turbulence model 

The failure of standard k ε−  model to predict the low-Re and separated flows, introduces 

the k ε−  Low-Re turbulence model {Lam and Bremhorst (1981), Jones and Launder (1972) 
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and Majumdar and Deb (2003)], which has a special near-wall treatment for proper 

prediction of the flow at a region very near to the wall, referred to as the laminar sub-layer.  

It is well known that the turbulent kinetic energy distribution reaches to its peak value in 

the near-wall region. Though ε increases in this region, k  also increase and 2k  plays a very 

important role by changing the tµ  by a large extent. On the other hand, at a location very 

close to the wall, 2k  suppresses tµ . To counteract these effects, two approaches have been 

taken: 
a. The wall-function method, where an empirical wall function has been introduced along 

with k  and  ε  equations. However, it is not suitable for many flows. 

b. The low-Reynolds-number method, where the wall boundary conditions are directly 
applied to the equations without introducing any wall functions.  

Jones and Launder [11] extended the standard k-ε model to the low Reynolds number model, 
which allows calculation through the viscous sub-layer to the wall without using wall function 
formulas. Additional terms were included in the equations for dissipation rate. The equations 
for the rate of dissipation and the turbulence kinetic energy included viscous diffusion term to 
ensure that the total dissipation rate is non-zero at the wall and modified terms containing C's 

to make them dependent upon Reynolds number of turbulence.  The k  equation for this TM is 

the same as equation (19), except the expression of the term tµ , which is defined as 

 

2.
t

C k
f

µ
µ

ρ
µ

ε
=        (24) 
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5.29
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ε  equation: 
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The additional term P′  is given by  

 ( )
22 0.00375 Re
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1.33 1 0.3 2 ytR
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Where  Rey

y k

v
= , y = a normal distance to the nearest wall and  

2

t

k
R

vε
= = Turbulent 

Reynolds Number. 

2.2.5 k - ε  Chen turbulence model 

The Chen model has been introduced to have a better response of the energy transfer 
mechanism of turbulence towards the mean strain rate. It does not take into account of the 
compressibility and buoyancy effects explicitly.  
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Equation fork : 
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Equation forε : 
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2.2.6 Suga’s High Reynolds number k - ε  turbulence model: 

In Suga’s k ε−  model ε  is solved instead of ε , which is the isotropic part of ε  and is zero 

at the wall. The k  equation for this TM is same as equation (19) and the dissipation equation 

is given as  

Equation forε : 

 ( ) 1 2 3 4
t i

j k t B

j j i

u
u C P C C P C

t x x k k x
ε ε ε ε

ε

µ ε ε ε
ρε ρ ε µ ρ ρ µ ρε

σ

  ∂ ∂ ∂ ∂
+ − + = − + +  

∂ ∂ ∂ ∂   

       (30) 
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Turbulent viscosity tµ  is defined as 
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µ
µ

ρ
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ε
=      (31) 

 

Where  

 

1
2

2

1 exp
90 400

t tR R
fµ

 
    = − − −         

 
   (32) 

2.2.7 The Renormalization Group (RNG) κ -ε  model 

The renormalization group (RNG) κ-ε model [Choudhury, D.  (1993)] originated from the 

instantaneous Navier-Stokes equations, utilizing a mathematical technique called 

renormalization group (RNG) method. This derivation results in additional terms and 

functions in transport equations of k and ε . 
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Transport equation for the RNG κ ε−  model  

The RNG κ ε−  model has similar form to the standard κ ε−  model: 

 

i k eff b M K

i i j

k
( k) ( ku ) ( u ) G Y S

t x x x

∂ ∂ ∂ ∂
ρ + ρ = σ + − ρε − +

∂ ∂ ∂ ∂
   (33) 

 
2

i eff 1 3 b 2

i i j

( ) ( u ) ( u ) C C G C R S
t x x x k

ε ε ε ε ε ε

∂ ∂ ∂ ∂ε ε
ρε + ρε = σ + − ρ − +

∂ ∂ ∂ ∂
  (34) 

The RNG theory results in a differential equation for turbulent viscosity: 

 

2

3

ˆ
ˆ1.72

ˆ 1 v

k v
d dv

v C

ρ

εµ

 
=   − + 

         (35) 

Where ˆ  and 100
eff

vv C
µ

µ
= ≈  

Turbulent quantities change considerably with the effect of swirl in the mean flow direction. 

To incorporate the swirl effect the turbulent viscosity is calculated form 

 

t t0 sf , ,
κ 

µ = µ α Ω ε 
   (36) 

Where 0tµ , is the turbulent viscosity calculated without swirl modification from equation 

(35), sα = 0.05, for moderately swirl flow, Ω  swirl number. For higher Reynolds numbers 

equation turbulent viscosity is calculated by equation (16) and c µ  = 0.0845. The default 

model constants are 1 21.42, 1.68C Cε ε= = . 

2.2.8 The Realizable κ ε−  model 

The Realizable κ ε−  model [Shih, T. and Liou, W.  (1995)] includes additional mathematical 

constraints consistent with certain physics of the turbulent flow. It addresses the deficiencies 

of traditional κ ε−  models by adopting a new eddy-viscosity formula with a variable Cμ 

and a new model equation for dissipation rate ε  based on dynamic equations mean-square 

vorticity fluctuation. The transport equations in realizable κ ε−  model are 
 

 ( ) ( ) t
j b M k

i i k j

k
k ku G Y S

t x x x

µ
ρ ρ µ ρε

σ

  ∂ ∂ ∂ ∂
+ = + + − − +  

∂ ∂ ∂ ∂   
   (37) 

 ( ) ( )
2

1 2 1 3
t

j b k

j i j

u C S C C C G S
t x x x k

ε ε

ε

µ ε ε ε
ρε ρε µ ρ ε ρ

σ κ νε

  ∂ ∂ ∂ ∂
+ = + + − + +  

∂ ∂ ∂ ∂ +   
  (38) 

Where 1 max 0.43,
5

C
η

η

 
=  + 

, 
k

Sη
ε

= , 1C ε =1.44, 2C =1.9, kσ =1.0 and εσ =1.2 are the model 

constants. The eddy viscosity is calculated from equation (16), but               
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  (39) 

 

*
ij ij ij ijU S S≡ + Ω Ω     (40) 

Where ijΩ , is the mean rate-of-rotation tensor viewed in the rotating reference frame with 

an angular velocity. Both the Realizable and RNG k- ε  models have shown substantial 

improvements over the standard k- ε  model where the flow features include strong 

streamline curvature, vortices, and rotation.  
The realizable κ-ε model provides superior performance for flows involving rotation, 

boundary layers under strong adverse pressure gradients, separation, and recirculation. The 

limitations of the realizable κ-ε model are that it produces nonphysical turbulent viscosities 

in situations when the computational domain contains both rotating and stationary fluid 

zones, i.e., use of multiple reference frames or rotating sliding meshes. 

2.2.9 Quadratic High Reynolds  k- ε  turbulence model 

Non-linear turbulence models are introduced to take into account of anisotropic turbulence 

characteristics present in many real flows by adopting non-linear relationships between 

Reynolds stresses and the rate of strain. For quadratic models, the constitutive relations for 

the Reynolds stresses are: 
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Where, 
ijΩ  is the mean vorticity tensor given by 
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Coefficients are defined as, 
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0Ac  1Ac  2Ac  3Ac  1NLc
 2NLc

 3NLc
 6NLc

 7NLc
 

0.667 1.25 1.0 0.9 0.75 3.75 4.75 1000.0 1.0 

Table 1. Empirical coefficients for k ε−  quadratic high Re turbulence model 

2.2.10 k -ω  SST (Shear Stress Transport Turbulence) model 

An alternate approach to the ε−k  model is the ω−k  model, where ω  is the specific 

dissipation rate, which is defined as                 

 
kCµεω =   (44) 

Equation fork : 

 

( ) ( ) ωρβµ
σ

µ
µρρ

ω
kPP

x

k
ku

x
k

t

*
Bt

jk

t
j

j

−+=














∂

∂













+−

∂

∂
+

∂

∂    (45a) 

Equation for ω : 

 ( ) 2
3

t
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  (45b) 

Where, µC  and 
3Cε  are empirical coefficients. 

The coefficients are expressed as follows: 

( ) 2111 CF1CFC φφφ −+=  

Where 
1Cφ  and 

2Cφ  are given by two separate coefficient sets and 
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Where 
 

ωσ 1k  
ω
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1β  κ  

1.176 2.0 0.075 0.09 0.41 

Table 2. Coefficients for ω−k  SST turbulence model 
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2k

ωσ  ω
ωσ 2  2β  

*

2β  κ  

1.0 1.168 0.0828 0.09 0.41 

Table 3. Coefficients for ω−k  SST turbulence model 

With, 

*

22

2

*

2

2

2
βσ

κ

β

β
α

ω
ω

−=
,     

( )
jj2

1
xx

k1
F12S

∂

∂

∂

∂
−=

ω

ωσ ω
ω

ω

 
The turbulent viscosity is defined as, 
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Like standard ε−k  model, the ω−k  model is also widely used in many industrial 

applications involving flow separation and recirculation.  

2.2.11 Reynolds Stress Model 
In the Reynolds stress model [Gibson and Launder (1978), Launder (1989) and  Launder et 
al. (1975)], additional transport equations are used in the calculation of the Reynolds 
stresses. The stresses obtained are used to calculate the average momentum. Due the 
additional transportation equations, Reynolds stress model (RSM) model shows superior 
results with flows involving anisotropic turbulence. It includes seven additional equations 
and account for higher accuracy and however, require additional computational resources. 
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Like any other transport equation the Equation (46b) for the Reynolds stress transport 

includes number of terms including convection, turbulent diffusion, molecular diffusion, 

buoyancy,  stress production,  and rotation production, pressure strain, viscous dissipation 

and user defined source term. Some of the most commonly used RSM models are i. Gibson 

and Launder model and ii) Speziale, Sarker and Gatski model. 

A RSM model is generally required in problems involving strong anisotropic effects. 
Usually one would start with the simplest model such as the standard model with wall 

function or a low Reynolds number model with fine mesh size near the wall to see if 

reasonably acceptable engineering results are obtained.  In order to narrow down the choice 

of turbulence model in terms of stable converging solutions, each class of turbulence models 

are to compared among themselves first before comparing all models with the experimental 

data or DNS/LES. 

2.3 Boundary condition for turbulence quantities 
One of major requirement for the solution of turbulent flow is the specification of turbulence 

quantities such as turbulence kinetic energy and turbulence dissipation rate or the mixing 

length or the ratio of turbulence viscosity to molecular viscosity at the inlet. While results 

are not strongly influenced by the inlet turbulence level for problems with inlet located far 

away from the region of interest, the specified values have a significant effect on the 

resulting flow solution for problems with smaller entry length. So, one approach is to assign 

directly the values of turbulent kinetic energy and turbulent dissipation rate. However, 

specification of turbulence quantities such as turbulence kinetic energy and turbulence 

dissipation rate at inlet can be quite difficult and often rely on engineering judgments. It is 

always, however, preferred to assign experimentally measured values of turbulence 

quantities.  If such data are not available, then values can be prescribed based on 

engineering assumptions and a numerical sensitivity study must be performed to 

understand the sensitivity of inlet turbulence conditions on the  solutions.   

For the specification of the turbulent kinetic energy, appropriate values can be specified 

through turbulence intensity (I), which is defined by the ratio of the fluctuating components 

of the velocity to the mean velocity. In general, the inlet turbulence is a function of the 

upstream flow conditions. Approximate values for the turbulence kinetic energy can be 

determined according to the following relationship: 

 
( )2

2

3
IUk inletinlet =

    (47a) 

Inlet dissipation rate can be specified based length scale as  

 l

2/3k4/3C
inlet

µ
=ε  (47b) 

Where Hl 0.1D=  

In external aerodynamic flows over airfoils, the turbulence intensity level is typically 0.3% 

For atmospheric boundary layer flows, the level can be as high as two orders of 

magnitude – 30%. The range of turbulence intensity for a moderately turbulent flow is 

around 1-10%.  
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The turbulence intensity at the core of a fully developed duct flow is estimated from the 
following formula: 

 ( ) 8/1
Re16.0 DHI =    (48)     

Near-wall region modeling 

Another important  aspect of using some of the turbulence closure models are that they are 
valid only in the fully turbulent region due to the laminarization of flow or the presence of 
laminar viscous sub-layer near the wall. In regions close to the wall, viscous effects 
dominate over turbulence effects due to the small local Reynolds number of turbulence.  The 
near-wall modeling consists of two approaches. The first approach involves modifying the 
turbulence models such as low Reynolds number models and by using an appropriate fine 
grid to resolve the near-wall viscous effects. In low Reynolds number modeling methods k 

and ε equations are modified such that they are valid throughout the laminar, semi-laminar 
and fully turbulent regions 
In the second approach, the viscosity-affected region is not resolved and wall functions are 
used to bridge the viscosity-affected region between the wall and the fully turbulent region. 
The standard high Reynolds number turbulence models need not be modified if the wall 
functions are used to account for the presence of walls. The two most popular types of wall 
functions are the standard wall functions and non-equilibrium wall functions.  

In the wall function method the grid size distribution is selected in such a way that the 

adjacent grid point P is sufficiently remote from the wall. This causes local Reynolds 

number of turbulence at point P to be much greater than one, so that the viscous effects are 

dominating in this region. The standard wall functions proposed by Launder and Spalding 

[17] relate the non-dimensional distance ( y+ ) to the distance of the nearest cell point P ( py ) 

from the wall as 

1/4 1/2
P PC k y

y
µρ

µ
+ =   

Where kp is the turbulent kinetic energy at point P and μ is the dynamic viscosity of the 
fluid.   

In addition, the momentum and heat flux between the wall and the adjacent grid point P is 

assumed to obey certain relations in the numerical calculations.  The refined mesh size 

distribution near the wall is limited by satisfying +y  requirement, which defines the 

minimum distance of the computational cell from the wall boundary. Having the correct +y  

value for the cells next to the wall is extremely important to obtain the correct velocity, 

pressure and shear stress values. Also for using turbulence models with wall functions, the 
+y  value of the near wall cells is a basic requirement that has to be satisfied.  All 

computational turbulence studies starts with an initial search for the correct cell size to 

satisfy the +y  requirement for the turbulence model used. For example, in the study of 

ε−k  high Reynolds number turbulence closure model with standard wall function the +y  

value are required to be kept within 30 – 120.  
Non-equilibrium wall functions solve for mean velocity near the wall region incorporating 
pressure gradient effects. The non-equilibrium wall function employs a two-layer concept in 
computing the turbulence kinetic energy at the wall-adjacent cells. The standard wall 

www.intechopen.com



 
Computational Fluid Dynamics Analysis of Turbulent Flow 

 

271 

functions are generally used for high Reynolds number wall bounded flows and for 
satisfying equilibrium conditions for production and dissipation of turbulent kinetic energy 
at the wall. For flows that involve adverse pressure gradient, rotation, and strong streamline 
curvature, the flow conditions depart from equilibrium. The non-equilibrium wall functions 
take into account of the effects of pressure gradient and departure from equilibrium 
conditions and are generally involve severe pressure gradient.  

3. Case study examples 

3.1 Case – I: Computational fluid dynamic analysis of turbulent flow in blade 
passages of centrifugal fan impeller 
The objective of the present study is to analyze the three-dimensional turbulent flow in a 
single blade passage of a centrifugal fan impeller at design and off-design conditions. 
Numerical calculations are performed using commercial code FLUENT. A computational 
treatment of turbulent flow in a single blade passage of the centrifugal fan impeller is 
considered in this study. The geometric description of the impeller used for CFD simulation 
is presented in form of Pro/E solid model with different views describing the centrifugal fan 
geometrical features is shown in Figure 1.  The assembly consists of a hub mounted on a 
back plate. The back plate is flat and circular with blades arranged in circular symmetry. 
The shroud is tapered from inlet to outlet with higher cross-sectional area at the inlet.  The 
blades are straight and radial and their sectional width extends from the back plate all the 
way to the shroud, thus making the size of the tip gap region reduce to zero. 
 

 
 a)   Assembled view  b)   Impeller without shroud 

 
 c)   Impeller Hub    d)   Impeller shroud 

Fig. 1. Solid model of the impeller design 

3.1.1 Physical representation of the problem 
A three-dimensional flow in a single blade passage of the centrifugal fan impeller is 
considered, taking into account of the cyclic nature of the flow and impeller geometry. The 
computational domain is depicted in Figure 2.  Periodic boundaries are assumed at the inlet, 
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blade surface, and outlet. The flow includes important features like: Flow separation at the 
blade leading edge and Secondary flows arising in the channel due to centrifugal forces and 
Coriolis forces acting on the working fluid.  
 

Inlet: p, Ts specified 

Outlet: Mass flow rate 

specified 

Periodic boundary 
r 

θ 

z 

Blade 

 

Fig. 2. Computational domain 

A mathematical model for the flow field with associated boundary conditions and 
turbulence models are discussed 

3.1.2 Governing equations 
The RANS model for steady-state, turbulent, compressible flow in a rotating frame 
expressed in cylindrical coordinate system has been considered. Due to the rotation effects, 
the centrifugal forces and Coriolis forces act on the fluid. These effects are incorporated in 
the relative velocity formulation of the governing equations. The Reynolds turbulent 
stresses which arise due to the fluctuating velocity components are related to the mean flow 
variables calculated through different turbulence models. Turbulence closure model 
considered are 1. Spalart – Allmaras Model, 2. The Standard  κ ε−   Model, 3. The Realizable 

κ ε−  Model and 3. The RNG κ ε−  Model The near-wall modeling is performed considering 

both the standard wall function and the non-equilibrium wall function. After initial 
evaluation of all turbulence models using both the wall functions, final results in the present 
study are presented with the standard wall functions in the RNG and standard κ-ε models, 
and the non-equilibrium wall functions are used for the realizable κ-ε model. 

3.1.2.1 Boundary conditions 

Inlet: Static pressure is specified at the channel inlet. 
Outlet boundary condition: The mass flow outlet adjusts the exit pressure such that a target 
mass flow rate (i.e., mass flow at the inlet) is obtained at convergence. This type of approach 
is used in problems where the outlet static pressure is unknown at the beginning of solution. 
Turbulence:  The turbulent intensity and hydraulic diameter were specified at the inlet. The 
turbulent intensity is calculated  based on Eq. (48). 
Periodic boundary conditions are imposed between the channel inlet and outlet as the flow 
field is symmetric from blade to blade and the boundary conditions are uniform in 
circumferential direction. In the periodic boundary condition, each surface of the periodic 
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pair is treated as an internal surface. The pressure jump across the periodic boundaries was 
specified to be zero.  

3.1.2.2 Flow Parameters 

Reynolds number 

The incoming flow into the impeller is from a circular pipe. Therefore the Reynolds number 
at the channel inlet is defined by 

 
ρv

Rein

D

µ
=  (48) 

Where v is the velocity of the fluid, D is the hydraulic diameter 
The Reynolds number at the channel exit is defined as 

 
ρ v

Re
C θ

µ
=  (49) 

Where C is the chord length of the blade and Vθ is the tip speed of the impeller. For the base 
case (ω = 3300 RPM), the Reynolds number typically varies from 301900 to 1760000.  

3.1.3 Computational model 
A computational model based on the mathematical model presented is developed in 
GAMBIT.  The edge set required to form the turbo volume was imported from Pro/E 
assembly file with edge set consisting of the hub, blade, and the casing cross-sections. Only 
a single blade passage was modeled assuming 22.5-degree (2*pi/Z) as the rotationally 
periodic conditions, Since there is no relative velocity difference between the fluid zone and 
the different wall zones (hub, blade, shroud), the whole geometry was modeled as a single 
rotating reference frame with the axis of rotation directed along the z-axis. After 
constructing the turbo volume, H template decomposition is adopted to split the volume 
bounded by the hub and casing with the surfaces representing the pressure and suction 
sides of the blades, and this results in four volumes as shown in Figure 3. 
 

Inlet 

volume 1 

volume 2 

(suction 

side) 

blade 

hub 

volume 3 

pressure side 
casing 

volume 4 

outlet 

 

Fig. 3. Domain decomposition of turbo volume 
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3.1.3.1 Meshing the geometry 

The mesh for the prescribed control volume shape and regulated order of spacing is 
achieved through a mapped meshing and using a combination of 8-node hexagonal brick 
volumes and 10-node clipped cube volumes. A soft nonuniform grading scheme is used for 
edge meshing. The turbo decomposition divides the impeller region into four volumes, each 
of which could be mapped with hexahedral structured mesh. It sets the interval count and 
grading on the edges and also sets face vertex types for the volume to be meshed.  Hexahedral 
elements developed in the streamline direction of expected flow helps in improving the 
convergence of solution.  The mesh for single blade passage grid is shown in Figure 4. 
 

(a) meridional view  (b) mesh at outlet 

(c) mesh at casing  (d) isometric view 
 

Fig. 4.  Single passage grid modeling 

The grid system for the bases case consists of 78x40x30 hexahedral elements in pitch, axial 
and radial directions respectively. The impeller region is meshed with 78x140x30 hexahedral 
elements along pitch, meridional, and span-wise directions respectively. The model uses 
segregated solver in which all the equations are solved sequentially along with the second-
order upwind discretization scheme for convective terms in momentum, energy, turbulence 
kinetic energy and the rate of dissipation of turbulent kinetic energy.  A linear interpolation 
scheme is used to estimate the cell face pressure as the average of all the pressure values in 
the adjacent cells.  The density interpolation scheme is based on upwind interpolation of 
density at the cell faces for compressible flow calculations. The pressure-velocity coupling 
method is based on SIMPLE algorithm and a point implicit Gauss-Seidel linear equation 
solver is used in conjunction with the algebraic multigrid (AMG) method to solve the 
resultant scalar system of equations for the dependent variable in each cell with a specified 

convergence limit of 61 10−× . 

Fluid flow characteristics in the single blade passage of the centrifugal fan impeller are 
analyzed in this section. The distribution of pressure and velocity field and its impact on the 
losses inside the channel are studied. The results presented in this section include 
implementation of two numerical approaches for turbo modeling, and performance of 
different turbulence models.   

3.1.3.2 Turbulence modeling 

A turbulence model study is conducted on the single blade passage of the impeller in order 
to understand the flow characteristics and pressure   losses occurring due to flow separation 
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and circulatory flows. The different turbulence models considered are the Spalart-Allmaras 
model, which is a one-equation model; the two-equation model, namely the standard k-ε 
model; realizable k-ε model with non-equilibrium wall functions, and the RNG model. Since 
the maximum losses occur at around x/c=0.3 location in meridional direction along the 
passage, the performance of turbulence models is compared in this region to predict the 
flow behavior for the base case.   

3.1.4 Analysis of flow field 
Figure 5 shows the static pressure distribution for all the turbulence models considered for 
the base case. Results show similar static pressure distribution on the pressure side of the 
blade. However, there is a significant variation of static pressure distribution and the size of 
the low-pressure region on the blade suction side predicted by the different turbulence 
models.   Figure 6 shows the distribution of dynamic pressure at the blades leading edge. 
 

 

(a)Spalart Allmaras 

model 
(b) Standard k-ε 

model  

(c) Realizable k-ε 

model  

(d) RNG 

model 
 

Fig. 5.  Static pressure at x/c = 0.3 

It can be seen that all the models predict large recirculation regions on the blade suction 
side.  On the pressure side of the blade, low-pressure region is developed at the hub-
pressure side corner and on the suction side at the suction-casing corner. The vector plot of 
relative velocity vectors in the meridional view, as presented in Figure 7, reveal large areas 
of low velocity regions on the blade suction side.  The flow separation region is developed 
close to suction-casing corner due to the flow turning from the axial direction to radial 
direction.  It can be seen that the RNG model predicts larger area of flow separation 
compared to other turbulence models considered. 
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(a)Spalart-

Allmaras model  
(b)Standard k-ε 

model  

(c) Realizable k-ε 

model  

(d) RNG 

Method 
 

Fig. 6. Dynamic pressure distribution at x/c = 0.3 

Plots of relative velocity vectors both at the critical section and at the mid-span region are 
presented in figures 7 and 8. 
 

(a) Spalart 

Allmaras model 

(b) Standard k-

ε model 

(c) Realizable 

k-ε model 

(d) RNG 

model  

Fig. 7. Relative velocity vectors magnitude at x/c = 0.3 
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(a)Spalart-Allmaras 

 

(b)Standard k-ε model

 

model

 

k-ε model(c) Realizable

 

(d)   RNG model
  

Fig. 8. Relative velocity vectors magnitude at mid-span  

The plot of velocity vectors at mid-span of the passage, as given by Figure 8, shows flow 

separation on the blade suction side close to the leading edge. The realizable k-ε model 

and RNG model predict higher flow separation region compared to the Spalart-Allmaras 

and the standard k-ε models. Figure 9 shows the shadow graph plots of the normalized 

turbulent kinetic energy distribution along the blade passage. It can be seen from the 

contour plots of turbulent kinetic energy that the turbulence is stronger on the blade 

suction side due to the presence of higher momentum fluid. The realizable k-ε model and 

the RNG model show a better resolution of the turbulence compared to the standard k-ε 
model.  

Results in figure 10 at the mid-span show that the turbulence structure predicted by the 

RNG model spreads from the blade leading edge on suction side to about 70%  

of the passage distance which is higher than the structure predicted by the realizable k-ε 
model and the standard k-ε model, but the intensity of the turbulence magnitude 

predicted decreases from the standard k-ε model to realizable k-ε model and to the 

RNG model. 
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 ε-k dardtanS)a(

 

(c) RNG
 

(b) Realizable 

k-ε model 

 

Fig. 9. Normalized turbulent kinetic energy contours along the passage 
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          (a) Standard k-ε  

(c) RNG  

(b) Realizable k-ε

 

Fig. 10. Normalized turbulent kinetic energy contours at mid-span     
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The variation of area-averaged normalized turbulent kinetic energy and dissipation rate is 
shown in Figures 11 and 12 respectively.  The turbulent dissipation rate is normalized with 
respect to the inlet velocity and the blade chord length. 
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Fig. 11. Variation of normalized turbulent kinetic energy along the passage 
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Fig. 12. Variation of normalized dissipation rate along the passage 

From figure 11 it is observed that the turbulence kinetic energy develops from the inlet and 
rises to a peak value at approximately the center of channel. The standard k-ε model over 
predicts the turbulent kinetic energy more than the other Realizable and RNG models. From 
figure 12 it can be seen that the realizable k-ε model predicts less dissipation rate than the 
standard k-ε model because the transport equation for dissipation rate is based on the 
dynamic equation of mean square vorticity fluctuation. The RNG model predicts the least 
dissipation rate of the other two turbulent models since it contains additional terms in the 
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transport equation for k and ε, which are more suitable for flows with high streamline 
curvature and high rapid strain rate. 
Following are the conclusions of the study: 
1. The computational model demonstrated the secondary flow or slip losses in blade 

passages due to varying velocity gradient between the blade pressure side and suction 
side. 

2. The RNG turbulence model gave more detailed resolution of flow separation and 
recirculation in the intake region. However, in terms of total pressure rise, the results 
predicted by the RNG model and the standard κ-ε models were within 0.6%. 

3. Further design analysis of centrifugal fan impeller can be performed using standard κ-ε 
model along with standard wall function to resolve near wall region. 

3.2 Case –II: numerical simulation of turbulent fluid flow over a surface- mounted  
Fluid flow and heat transfer over a block in square tubes; ducts and channels have an 
extensive application in electronics cooling and heat exchanger design. The objective of this 
work is to study three-dimensional turbulent flow over a surface mounted block in a 
channel with adverse pressure gradient giving rise to flow separation and reattachment. The 
study focuses on evaluating different turbulence models for simulating turbulence and flow 
statistics using FLUENT commercial code. Computational solution is compared with 
existing experimental data in the literature. A parametric study is also conducted to analyze 
the flow separation, turbulence statistics and pressure coefficient with varying geometrical 
parameters over a range of Reynolds number. Figure 1 gives the schematic representation of 
the problem.  
 

4h 

xr 

h 

Recirculatin

g Zone 
Near-Wall 

Zone 

Outer Zone 

Flow Direction 

 

Fig. 13. Schematic representation of the problem 

3.2.1 Governing equations 

RNS  flow equation with Reynolds stresses expressed via the eddy viscosity concept has 

been used. Turbulence closure model considered are 1. High Reynolds number κ ε−  

turbulent model, 2. The RNG κ ε−  model, 3. The Reynolds Stress model. 

3.2.1.1 Mesh generation 

Volumetric mesh with regulated spacing of the control volume is done using mapped 
meshing technique as shown in figure 14. A soft non-uniform grading scheme is used for 
edge meshing. Near wall meshing is performed based on the distance established by wall 
function treatment.  Mesh size distribution nears wall is selected based on satisfying wall 

function requirement and keeping the values of y+ along the wall surfaces within 30 to 60. 
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Fig. 14. Mesh size distribution 

Core mesh is refined until the percentage relative error of the centerline velocities decreases 
and the maximum percentage relative error is below 0.003413 %. Typical mesh of the model is 
with 201895 cells, 62876 faces, 222604 nodes, 1 cell zones, and 5 face zones. Mesh is refined 
along x, y and z directions and the velocity variation is studied for different kinds of mesh 
generated. The element used in the mesh generation is an 8-node hexahedron volume element. 
In order to validate the accuracy of turbulence models, results are compared with the 
experimental data obtained from the test case of Kasagi and Matsunga [1993]. The test case 
is the flow over a backward facing step involving adverse pressure gradient and boundary 
layer separation. The schematic representation of the flow filed is show in the figure 15.  A 
steam-wise fully developed flow passes over the backward-facing step with an expansion 
ratio of 1.504. The hydraulic Reynolds number flow as defined by the step height is 5540. 
The experiment was conducted in a closed-loop water channel flow facility. Numerical 
simulations with different turbulent model are compared with the experimental data. 
 

h 

z/h 

y/h 

x/h 

Flow Direction 

 

Fig. 15. Schematic representation of the experiment conducted by Kasagi and Matsunga [1993] 

The non-dimensional x-velocity profile at the center of the channel at different x-locations is 
shown in the Fig. 16.  As it can be seen that the velocity distribution at a distance of 0.0244h 
is closely predicted by all four models. However prediction is exceptionally accurate for 
Reynolds stress model. Since the flow in this region is primarily a core turbulent flow.  
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(a) Comparison  at x =  0.0244h 
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(b) Comparison  at x=1.01h 
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(c) Comparison  at x = 2.02h 
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(d) Comparison at x = 3.00h 
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(e) Comparison at x=4.02h 

Fig. 16. Comparison with experimental data  

Fluid flow after the step height is highly unsteady for many reasons. Distortion of boundary 
layer, adverse pressure gradient, normal shear stress and, secondary or backflow are some 
of the reason. At x/h = 1.01, a reverse flow is observed (as shown in Figure: 16b). All the 
turbulent models predict the reversed flow. But, magnitudes of the reversed flow are 
different form the experimental data.  This portion fall under the core of the recirculation 
zone, where maximum deviation between the numerical and experimental data is observed. 
As we move away from this region representation of the recirculation region is more 
accurate as discussed in the following section. The intensity of the back flow decreases as we 
traverse along the flow direction. The secondary flow and effect of swirl on the flow 
decrease.  In figures 16c-e, the x component of velocity at different locations in the 
recirculation is compared. The deviation form the experimental data decreases as the flow 
becomes to stabilize. A better prediction is observed as we move away from the wall and the 
recirculation zone. The major contribution of this may be due to the numerical computation 
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given by different turbulent closure model. The seven equations, Reynolds stress model 
predicts better results in comparison with the other turbulent models used.          
Velocity contours plots at the center plane of the flow regime are presented for the range of 
Reynolds number in Fig. 17. Two critical points are observed. The obstruction in the 
direction of the fluid flow causes in an increase in the thickness of boundary layer followed 
by the point of detachment. The recirculation of the flow right after the obstruction is 
evident from the figures. The number of contours in the recirculation zone increases as the 
Reynolds number increase, signifying the increase in the recirculation strength. 
 

     
 ReDH = 2500  ReDH = 3000 

   
 ReDH = 3500  ReDH = 4000 

 
ReDH = 4500 

Fig. 17. Velocity contour plot at the center plane  
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The pressure coefficient (CP) along the flow direction at the center of the flow is plotted for 
different Reynolds numbers ranging from 2500-4500 in the Fig. 18. The detachment of the 
boundary layer causes adverse pressure gradients. Cp decrease as the velocity at the inlet 
increases.  With the increase in ReDH, the pressure drop increases.  The comparison of static 
pressure at x =1.75 cm on the center plane with different Reynolds numbers is shown in Fig. 
18. If the pressure gradient continues to increase, the velocities eventually come to zero and 
reversal of the flow will occur (backflow). To compensate the effect of the pressure gradient, 
the flow velocity decelerates to maintain the continuity of the domain 
 

 

Fig. 18. Comparison of CP with different Reynolds numbers 

Velocity vector plots are presented in Fig. 19. It is evident that the size of the recirculating 
eddy as well as the magnitude of reversed flow (i.e. the negative velocities) increases as the 
Reynolds number increases.  
Backflow is also a result of turbulent statistics moving upstream for some distance, then 
reversing and being convected downstream. The rate at which this phenomenon occur 
increase as the detachment location is approached. Velocity vector along the x-direction, at 
the mid-section of the block along the flow direction, for different Reynolds numbers are 
shown in the following Fig. 20. As the Reynolds number increases the swirl velocity and the 
eddy formation around the block dramatically increases. 
The turbulent flow consists of production, convection, diffusion and, dissipation of 
turbulent energy. Dissipation and production play crucial role on turbulent energy in order 
to minimize the pressure gradient in the region far away from the wall. In the recirculating 
region, turbulent intensity increases as the Reynolds number increases. The turbulent 
viscosity, kinetic energy and, its dissipation rate along the y-axis at the x=1.75 cm on the 
center plane are plotted in the Fig. 21. In the recirculating region, viscosity decreases as the 
Reynolds number increases. It can be observed that as the velocity of the fluid field increase, 
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the pressure in the recirculating zone decreases and the turbulent properties such as 
turbulent kinetic energy, its dissipation rate increases, but the turbulent viscosity 
decreases. 

 

         
 Red = 2500   ReDH = 3000 

 

        
 Red = 3500   ReDH = 4000 

 

 
ReDH = 4500 

Fig. 19. Velocity vectors along the x-direction at the center plane   

The reattachment length (xr). is the distance from the point of detachment of the fluid from 

solid to the point of attachment. The change in reattachment over varying Reynolds number 

is studied. The reattachment length is a critical quantity because the re-development of the 
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boundary layer and pressure recovery starts at this point.  Since the maximum reattachment 

is observed at the center due to the effect of the y and z velocities the center plane is chosen. 

Figure 22 shows that the reattachment point moves along the flow direction with increase in 

Reynolds number. 

 
 

          
 ReDH = 2500    ReDH = 3000 

 

   
 ReDH = 3500  ReDH = 4000 

 

 
ReDH = 4500 

Fig. 20. Velocity vectors around the block  
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 Turbulent intensity at x = 1.75 cm  Turbulent viscosity at x =1.75 cm  

 

   
 Kinetic energy rate  Dissipation rate  

Fig. 21. Comparison of turbulent quantities at x = 1.75 cm with varying Reynolds number 

4. Conclusion 

A description of computational fluid dynamics analysis methods for turbulent fluid flow in 

number engineering problems is discussed. While a brief description of different turbulent 

modeling approaches such as Reynolds Averaged Nervier-Stokes (RANS) equations, Large 

Eddy Simulations (LES) and Direct Numerical Simulation (DNS) is given, a more detail 

consideration is given to the of RANS method with turbulence closure models and to the 

computational challenges such as the selection of appropriate turbulence closure model, 

wall function treatment, inlet turbulent and application to number of engineering problems. 

Four different classes of turbulence closure models such as i) algebraic zero-order equation 

k ε−  turbulence models including low Reynolds number models, iv) k ω−  turbulence 

models, and v) Reynolds Stress Model (RSM) and. their selection of an appropriate model 

for a specific application is  considered.  Examples are drawn from practical industrial 

applications, and results from extensive numerical experimentations and validations with 

experimental data are presente3d to demonstrate the challenges in turbulent flow 

simulations.  
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 (a) ReDH = 2500   (b) ReDH = 3000 

   
 (c)  ReDH = 3500  (d) ReDH = 4000 

 
(e) ReDH = 4500 

Fig. 22. Flow separation and reattachment at different Reynolds number. 
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