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1. Introduction

One important characteristics of a turbulent flow is that the velocity and pressure may be
steady or remain constant at a point, but still may exhibit irregular fluctuations over the
mean or average value. The fluid elements which carry out fluctuations both in the
direction of main flow and at right angles to flow are not individual molecules but rather are
lumps of fluid of varying sizes known as eddies. The fluctuating components may be a few
percent of the mean value, but it is the controlling factor in describing the flow. A turbulent
fluid flow is then characterized as the main flow stream super-imposed with localized
rotational eddies, where motion are three dimensional, unstable, and random. Turbulent
eddies have a wide range of sizes or length scales. These eddies form continuously and
disintegrate within few oscillation periods, and hence have very small time scales. In
general, the frequencies of the unsteadiness and the size of the scales of motion span several
orders of magnitude.

The governing equations for fluid flow for a general linear Newtonian viscous fluid are
Navier-Stokes equations given by the following set of equations:

dp 0
o = (pu)=0 1
D(pu;) d ou, oy, :
L= pg-Vp+—|u| —+—L|+5,AdivV 2
D¢ % p+8xj!'u(axj+8xi G @

Where u, and u,; are the mean velocities of water, P is the pressure, p is the density of the
water and u is the dynamic viscosity.

In principle, the time dependent three dimensional Navier-Stokes equations can fully
describe all the physics of a given turbulent flow. This is due to the fact that turbulence is
continuous process which consist of continuous spectrum of scales ranging from the largest
one associated with the largest eddy to the smallest scales associated with the smallest eddy,
referred as Kolmogorov micro-scale, a concept brought by the theory of turbulence statistics.
These eddies overlap in space, larger one carrying the smaller ones. The process can be
characterized as a cascading process by which the turbulence dissipates its kinetic energy
from the larger eddies to the smaller eddies through vortex stretching. The energy is finally
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256 Computational Fluid Dynamics Technologies and Applications

dissipated into heat through the action of molecular viscosity in the smallest eddies. These
larger eddies randomly stretch the vortex elements that compress the smaller eddies
cascading energy to them. The cascading process give rise to the important features such as
apparent stresses and enhanced diffusivity, which are several orders of magnitude larger
than those in corresponding laminar flows. The scales of motion or wave lengths usually
extend all the way from a maximum size comparable to the characteristic length of the flow
channel to a minimum scale corresponding to the smallest eddy fixed by the viscous
dissipation. The range of these scales or the ratio of minimum to maximum wave lengths
varies with characteristic flow parameter such as Reynolds number of the flow.

2. Computational model for turbulence flow

In the computational simulation of turbulent flow, it is important to decide how finely we
should resolve theses eddies in the computational model as it has a direct effect on the
accuracy of the prediction as well as computer time. Methods available for simulating
turbulent fluid flow are Direct Numerical Simulation (DNS) based on direct solution of
Navier-Stokes Equations and Averaged or Filtered Simulation based on averaged solution of
Navier-Stokes Equations. A brief description of these methods is described as follows:

2.1 Direct Numerical Simulation (DNS)

A computational model based on the micro-scale discretization is called Direct Numerical
Simulation (DNS). It involves complete resolution of the flow field by a direct solution of
unsteady Navier-Stokes Equations resolving all active scales of motion in the flow field
without using any approximation and models. The grid spacing and time steps should be
fine enough to capture the dynamics of all scales down to the smallest scale associated with
the smallest eddy, which is established by the Kolmogorov microscale. The smallest eddy
based on Kolmogorov micro-scgale decreases with the increase in flow Reynolds number in
proportion to the value of Re’* and could be as small as 0.1-1 mm. Also, the computational
domain should be large enough to include the largest scale of the flow dynamic, which is
established by the characteristic dimension such as the height and width of the flow
domain. Resolving all scales and frequencies of turbulent eddies based on the Kolmogorov
microscale requires excessively large number of nodal points and excessively large
computational time, and faces serious obstacles even with the most powerful
supercomputers available today.

There are two basic requirements that a DNS model must meet to represent turbulence.
These are: 1. It must represent a solution of Navier-Stokes equations resolving all scales of
motion (viscous dissipation scales) adequately by the computational mesh, and 2. It should
provide adequate statistical resolution (large samples or smaller time steps) of the set of all
possible fluid motions allowed by the Navier-Stokes equations. These two requirements for
a turbulence simulation conflict. The sample improves as the energy moves to smaller
scales, but the viscous resolution is degraded. As a result, a DNS model of three-
dimensional time dependent Navier-Stokes Equations for all important scales of turbulence
has posed a great challenge for computer and numerical techniques in the past due to the
requirement of extremely fine mesh size distribution and very small time steps to capture
the essential details of the turbulent structures. Such requirements had limited the past DNS
studies to very low Reynolds numbers. More detail descriptions of DNS method are given
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by Eswaran and Pope (1988), Rai and Moin (1991, Kim et. al. (1997), Rogallo (1981) and Deb
and Majumdar (1999).

2.2 Averaged or filtered simulation

In order to overcome the computational difficulties in terms grid size limitation imposed by
Kolmogorov microscale, a simplified approach based on the solution of average Navier-Stokes
Equations is most often used for turbulent fluid flow. An averaging or filtering operation is
employed over the Navier-Stokes equation in order to smooth out certain range of high
frequency variation of flow variables or smaller scales of turbulent eddies. This averaging or
filtering operation, also known as coarse graining leads to a new set of flow governing
equations that represents only the larger scale eddies or lower frequencies of flow variable.
Because of the smoother variation of the flow variables, the smallest scale are no longer of
the order of Kolmogorov microscale, but rather limited by the cut-off scale used in the
averaging or filtering method and this results in a considerable reduction in the number of
grid points and savings in computational time. So in the averaged or filtered simulation,
only large scale of turbulence eddies are resolved, and an average affects of small scale
eddies on the resolved scales are taken into account by the use of statistical average model,
known as turbulence closure models. Turbulence modeling is designed to simulate the
averaged flow Field, named as coarse graining instead of the original flow field. In this coarse
graining process, small scale eddies that are difficult to resolve are neglected. The small
eddies that are neglected in coarse graining are included in the simulation through the
turbulence modeling.

Options available for analyzing turbulent flows are either a time-averaged approach using
Reynolds Averaged Navier-Stokes (RANS) equations along with turbulence closure models,
or a space-averaged approach using Large Eddy Simulations (LES) that takes into account of
only large scale eddies and uses turbulence closure model for the smaller eddies, but require
large amounts of computational time as well.

2.2.1 Large Eddy Simulation (LES)

In order avoid the limitation of the DNS method to resolve all scales of turbulence eddies in
terms of smallest mesh size refinements, large eddy simulation (LES) are used. In large
eddy simulation, the unsteady nature of turbulent eddies and only large scale eddies are
resolved. The large scale eddies are anisotropic in nature and responsible for the driving
physical mechanism such as production and major carrier of the turbulent kinetic energy.
The small scale eddies are only responsible for viscous dissipation of small fraction of
kinetic energy that they carry. The small scale eddies are modeled based on assuming an
isotropic or a direction independent nature of eddies that follow a statistically predictive
behavior for all turbulent flows. As small scale eddies are not resolved, LES methods are
computationally less expansive than DNS method in which all scales or turbulence eddies
are resolved. Nevertheless, LES method still requires finer mesh size distributions and
computationally more expansive than RANS model.

2.2.2 Reynolds Averaged Navier-Stokes (RANS) model
Reynolds Averaged Navier-Stokes (RANS) model is the next level of approximation in
which no attempts are made to resolve the unsteady nature of any sizes of turbulence
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eddies. The increased level of mixing and dissipation caused by the turbulent eddies is
taken into account through the turbulence closure models. In this approximation, the
turbulence itself is not directly computed, but rather its average effect on mean flow is
modeled by describing the turbulent motion in terms of time averaged form of Navier-
Stokes equation referred to as the Reynolds-Averaged Navier-Stokes Equations. As
described before instantaneous turbulent flow quantities are composed of two different
types of motions: mean motion and a fluctuating motion as described by the following
expressions for the instantaneous velocity components and pressure as

U=Uu+u,V=viv,w=wtw andp:};+p' 3)

The mean velocity components are represented as u, v and w. The fluctuating (time
dependent) components u , v' and w , when added with the mean (time-independent) u,
v and w components gives the instantaneous velocity components. The time mean of a
quantity ¢is described as

to+T

&1@% [ pdt @)

o

The velocity fluctuations produce mean rates of momentum transfer in addition to those
produced by the mean velocity components. Substituting all fluctuating flow quantities
given by equation (3) into in the Navier-Stokes equation (1-2) and performing the time
averaged integration, the Reynolds-averaged Navier-Stokes equation is obtained as

dp 9
—+—(pu,)=0 5
2o ) ©)
d d oP
—(pu,)+—(puu, -T.)=——+pg, + E 6
o () axj(p =) =gt etk (©)
Where
T. = %4_% _2, g e )
i H ax;  ox; 3M ox, e
The time averaged Navier-Stokes equation is complicated by the inclusion of the new
turbulent term T, =—pu,u,, which represents nine additional turbulent shear stress

components caused by the cross-products of the fluctuating velocity components and are
referred to as the Reynolds stress components. The nine components Reynolds stress tensor
can be summarized by the following;:

u’ uv uw
T, =-pu;u; =pjluv v VW 8)

uw vw  w?
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The total stress is written as the sum of laminar viscous shear and turbulent Reynolds stress as

I aui ou,
T, =-puwu, +ﬂ[£+a—x]} ©)

J 1

The new nine-component turbulent stress tensor depend not only on the fluid properties
but also on the flow conditions such as geometry, velocity surface roughness and the up
stream conditions, and defined based on the turbulence structure, which needs to be defined
as well. Major challenge is to express Reynolds stress tensor in terms mean flow. Two
approaches to evaluate the Reynolds stresses in terms of mean flow variables are 1.
Boussinesq Eddy viscosity concept and Pradndtl Mixing Length model and 2. Reynolds
Stress Transport Model.

Boussinesq eddy viscosity concept and Prandtl mixing length model

In an effort to mathematically describe turbulent stress in terms of mean flow quantities,
Boussinesq (1877) introduced the concept of eddy viscosity using the analogy with the
Newtonian viscous linear stress and strain rate relationship. Boussinesq assumption relates
Reynolds turbulent stresses to the mean flow and strain rate in similarity with laminar linear
shear-stress - strain relation as follows:

- du dv
T, =—puv ut(dy de (10)

Where L, is term as the turbulent viscosity or eddy viscosity and the total stress is given as

du dv
T.= + —+— 11
= (1 ut)[dy dxj (11)
This leads to general expression for the Reynolds stress tensor expressed as
T =|u du, , 9u; _2, % (12)
" lox,  ox 37'0x,
and the total stress is expressed as the sum of laminar and turbulent stress
Ty [0 ] 2, dug (13)
ij tot 6X] axl 3 tot an ij

Where u,,, =p+p, = total viscosity, which is the sum of the molecular dynamic viscosity, p
and turbulent or eddy viscosity, L, .

Turbulent or eddy viscosity value is generally several order of magnitude higher than the
molecular dynamic viscosity depending on the order of magnitude of the turbulence in the
flow Another important characteristic of turbulent or eddy viscosity is that it depends not
only on the fluid, but it varies throughout the flow domain and depends strongly on fluid
flow characteristics, geometry, roughness and upstream conditions. Prandtl in 1925
introduced the concept of mixing length (1) theory that closely relates to eddy viscosity
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concept and form the basis for all turbulent modeling effort. The Prandtl mixing length is
defined as the average distance travelled by a lump of fluid or the fluid eddy in the normal
direction to the flow in similarity with the mean free path length of molecules. Based on this
concept, the turbulent stress and turbulent eddy viscosity are expressed in terms of Prandtl
mixing length as follows:

2
T =—puv =pl? [a—“j (14)
dy
and
b1 (a—“j (15)
dy

Different classes of turbulence closure models:

Turbulence closure models takes into account of statistical average effect of small scale
eddies on the time averaged mean flow that only resolves large scale eddies. In order to
define the turbulent eddy viscosity, it is necessary determine a suitable velocity scale and a
length scale. The mixing length model is considered as an algebraic model or a zero-
equation turbulence model. Subsequently additional class of turbulence models were
developed based on number of additional equations to describe the turbulent viscosity. An
n-equation turbulence model requires solution of mn additional transport equations for
additional variables used to describe the length and velocity scales used in the estimation of
turbulent viscosity. In one-equation turbulence model, turbulence kinetic energy (k) was
introduced to describe the velocity scale. Subsequently, in two-equation model, additional
variable like the rate of dissipation of turbulence kinetic energy was introduced to represent
the length scale of turbulence. The estimation of turbulence viscosity in terms of turbulence
kinetic energy (k) and turbulence dissipation rate (¢) is given by the Prandtl-Kolmogorov
relation:

m=pCk’* /e (16)

Turbulence models are classified into following several divisions and subdivisions:

i. Algebraic turbulence or Zero-equation model
Algebraic turbulence models are zero-equation turbulence models that do not require
the solution of any additional equation, and are calculated directly from the flow
variables. As a consequence, zero equation models do not take into account history
effects of the turbulence, such as convection and diffusion of turbulent energy and are
often adequate for simpler flow geometries. Some of the most popular algebraic zero-
equation turbulence models are a) Cebeci-Smith model, b) Baldwin-Lomax model and
c) Johnson-King model. Algebraic models are simple, quite robust and computationally
less expensive. Major limitation of the algebraic turbulence are that they are semi-
empirical with weak physical base and so not applicable to flow problems that are
significantly different from flow problems for which the empirical constant are derived.

ii. One-equation model
One equation turbulence models include i) Prandtl's one-equation model, ii) Baldwin-
Barth model and iii) Spalart-Allmaras model
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e Spalart - Allmaras model
The model proposed by Spalart and Allmaras is a one-equation model that solves for
kinematic eddy viscosity from the transport equation. It is the preferred model for
problems involving no separation or weak separation and it is widely used in
turbomachinary applications. The transport equation is given by

d, - 9, ~ 1.0 - JV oV
2 — V=G +—[— —1+C,, p(—)*]-Y. 17
ot PV o (Vi) V+qﬁgh{u+pV%%}+ w5 1Y (17)

J J J

Where G is the production of turbulent viscosity and Y. is the destruction of turbulent
viscosity that occurs in the near-wall region. The turbulent viscosity (i) is computed as

u=pvf, (18a)

Where f,, is the viscous damping function given by

3

V4 4
- == 18b
ﬁ/l Z3 + Cg,Vl Z v ( )
G, =C, pSv (18¢)

Sis a function of mean rate of rotation tensor and viscous damping function.

Y. =Cpf, () (18d)

Where f,, is a function of vorticity and d is the distance from the wall.

iii. Two-equation model

Two equation turbulence models include two extra transport equations to represent the
turbulent properties of the flow that accounts for convection and diffusion of turbulent
energy. Most often one of the transported variables is the turbulent kinetic energy, 2. The
second transport variables varies, however, with different two-equation models. Most
common choices are the turbulent dissipation, £, or the specific dissipation, . While the
turbulent kinetic energy, k£ represents the energy in the turbulence, the turbulent
dissipation, ¢, or the specific dissipation, @ represents the turbulence length-scale. A list
of some of these widely used two-equation turbulence models is given here:

k—¢ Turbulence models: £—¢ High Reynolds turbulence model, £—& Low Reynolds
turbulence model, Realisable £—¢ model, k£—& Renormalization Group (RNG) turbulence
model, k—& Chen turbulence model, £—¢ Standard Quadratic High Reynolds Turbulence
model, £—¢ Suga Quadratic High Reynolds Turbulence models

k— @ Turbulence models: 2—® Standard High Re, £—® Standard Low Re, k—® SST
High Re and 2— @ SST Low Re

iv. Reynolds Stress Model (RSM)

Reynolds stress model (RSM) discarded the eddy viscosity approach and computes the
Reynolds stresses directly. It is a higher level more elaborate turbulent model, which
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introduces exact Reynolds stress transport equations to compute the Reynolds stresses
directly and accounts for the directional effects of Reynolds stress field. Some of the most
popular RSM model are RSM/Gibson-Launder (wall Reflection: Standard), RSM/Gibson-
Launder (wall Reflection: Craft) and RSM/Speziale, Sarkar and Gatski.

2.2.3 The Standard k-&£ model

The standard k—& turbulence model is the most widely used one, which is also known as
k—¢ High Reynolds turbulence model. It includes two transport equations to define the
turbulence scales. The k£ denotes the turbulent kinetic energy (m?2/s2), whereas ¢ denotes
the dissipation rate (m2/s?). The model proposed by Launder and Spalding [1974] is based
on the transport equations for the turbulent kinetic energy, k£ and its rate of dissipation, £ as
follows.

2 o)+ 2 (phay =2 [+ 2 | |G, pe-, 48, (19
ot ox; 0x; 0, ) 0x;
0 0 0 4, | o€ ] £ £
—(pe)+—(peu,)=—| | u+—+ |— |+C,,—(C,,G,)-C,.p—+S, 20
o (PE) o, (pew;) axjﬂﬂ staxj 107, (C3G) = Corp =45, (20)
The generation of turbulent kinetic energy due to buoyancy is
M4, 9p
G=—g -+ = 21
b gl pPrt axi ( )
The fluctuating dilatation in compressible turbulence to the overall dissipation rate
2 pex
Y, = 22 (22)
Where, a = Speed of sound.
The turbulent viscosity is computed by combining k and ¢ as
k2
1=pC, @3)

Where, C,=0.09,C,,=1.44,C,,=1.92 and, C,,=0.09 are model constants. 0¢,=1.0 and
0,=1.3 are the turbulent Prandtl numbers for k and & respectively. S, andsS, are user-
defined source terms.

A two-equation k—¢ model could be quite suitable for flow in straight channels without
the presence of any large scale flow separations and adverse pressure gradient or in
problems where only average parameters are to be determined without the requirement of
resolving detail turbulence quantities. This model is found to be quite adequate for many
industrial applications.

2.2.4 Low Reynolds k-¢& turbulence model

The failure of standard 2—& model to predict the low-Re and separated flows, introduces
the k—¢& Low-Re turbulence model {Lam and Bremhorst (1981), Jones and Launder (1972)
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and Majumdar and Deb (2003)], which has a special near-wall treatment for proper
prediction of the flow at a region very near to the wall, referred to as the laminar sub-layer.
It is well known that the turbulent kinetic energy distribution reaches to its peak value in
the near-wall region. Though ¢ increases in this region, & also increase and &° plays a very
important role by changing the x4, by a large extent. On the other hand, at a location very
close to the wall, &> suppresses 4, . To counteract these effects, two approaches have been
taken:
a. The wall-function method, where an empirical wall function has been introduced along
with £ and & equations. However, it is not suitable for many flows.
b. The low-Reynolds-number method, where the wall boundary conditions are directly
applied to the equations without introducing any wall functions.
Jones and Launder [11] extended the standard k-e¢ model to the low Reynolds number model,
which allows calculation through the viscous sub-layer to the wall without using wall function
formulas. Additional terms were included in the equations for dissipation rate. The equations
for the rate of dissipation and the turbulence kinetic energy included viscous diffusion term to
ensure that the total dissipation rate is non-zero at the wall and modified terms containing C's
to make them dependent upon Reynolds number of turbulence. The & equation for this TM is
the same as equation (19), except the expression of the term 4, , which is defined as

C pk
=1, )
5.29
where f,=[1-e—-0.019Re, | {1 + R—ey} (25)
£ equation:
0 0 U, | o€ £ 2(  du oy,
—(pe)+—| pue—| u+ |— |=C,, {4, (P+ Py + P)—=| i, —-+ pk | —-+ +
= (Pe) , {pu, (u ngaxj} o 314 (P+ By + P) 3{ﬂt o P ]axj} o6
c.tup,-C (1—0.3@’3'2)p8—2+0 pe%
“k “ k% ox;
The additional term P’ is given by
P= 1.33(1 ~03e® )[P+ P, + 2ﬁ£2}e°'0°3751‘ey2 (27)
t
yvk ’
Where Re,==——, y = a normal distance to the nearest wall and R, =— = Turbulent
v ve

Reynolds Number.

2.2.5 k-¢& Chen turbulence model

The Chen model has been introduced to have a better response of the energy transfer
mechanism of turbulence towards the mean strain rate. It does not take into account of the
compressibility and buoyancy effects explicitly.
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Equation fork:
d d U, | ok 2 oy o,
—(pk)+—| puk—| u+~+ |— |= 4, (P+PB,)— pe —= L+ pk |— 28
= (PF) axj{pu, (ﬂ akJaxJ #,(P+By) - pe 3(ﬂtaxj p]axj (28)

Equation fore :

d d U, | o€ £ 2 oy, du,
- Ll oue—| u+ |2\ &l up-2| 4 g pp [T
3t(p€)+axj {pujs £ﬂ+6 jax} glk[ﬂt 3[!% o ]axj]+

£ J

£ g ou, u, P
+C,lupP,-C pE+C peiic it
£3 k:ut B £2p k 54p axj €5 p k

2.2.6 Suga’s High Reynolds number k -¢& turbulence model:

In Suga’s k—¢& model € is solved instead of € , which is the isotropic part of ¢ and is zero
at the wall. The & equation for this TM is same as equation (19) and the dissipation equation
is given as

Equation fore :

d, ~ 0 < o0& é é oy,
g(pg) + 87|:puj€ - (‘U + %Jg} = pcgl E})k - pcs2 + Ce3 %lutPB + C£4p€a_xl (30)
J £ J i
Where
J— 2 2
pBEila_p , P, :_ui‘uj’%, R =k_~, F=g—2v Wk
Oy P OX; ox; vé ox;
Turbulent viscosity g, is defined as
C,pk
does not take into account of U= f,—= /Z (31)
Where
L2 N
R ) (R
=1- - =L | —| = 32
fo1-e) - [ (&) @

2.2.7 The Renormalization Group (RNG) «-&¢ model

The renormalization group (RNG) x-¢ model [Choudhury, D. (1993)] originated from the
instantaneous Navier-Stokes equations, wutilizing a mathematical technique called
renormalization group (RNG) method. This derivation results in additional terms and
functions in transport equations of k and € .
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Transport equation for the RNG x—& model

The RNG x—¢ model has similar form to the standard x—& model:

2 (pK) Pk )= (0 5) + Gy —pe =Yy + 5 @)
ot ox, ox, 0x;
0 0 0 e e
5 P+ a—Xi(Pﬁui)Za—&(Geueﬁ a—xj) T GGGy = Cop -~ R 45, (34)
The RNG theory results in a differential equation for turbulent viscosity:
Pk v .
d =1.72—————d (35)
(@ J J0'-1+C,

Where ﬁ:@ and C, =100
Y

Turbulent quantities change considerably with the effect of swirl in the mean flow direction.
To incorporate the swirl effect the turbulent viscosity is calculated form

K
=t 0,0, (36)

Where y,,, is the turbulent viscosity calculated without swirl modification from equation
(35), o, = 0.05, for moderately swirl flow, Q swirl number. For higher Reynolds numbers
equation turbulent viscosity is calculated by equation (16) and ¢, = 0.0845. The default
model constants are C,,=1.42,C,,=1.68.

2.2.8 The Realizable x—< model

The Realizable x—¢& model [Shih, T. and Liou, W. (1995)] includes additional mathematical
constraints consistent with certain physics of the turbulent flow. It addresses the deficiencies
of traditional x—& models by adopting a new eddy-viscosity formula with a variable Cp
and a new model equation for dissipation rate £ based on dynamic equations mean-square
vorticity fluctuation. The transport equations in realizable x—& model are

J d d ) o
g(pk)+a—xl(pku1):a—xl|:(ﬂ+;kja—xj}+Gb—pg—YM+Sk (37)
0 0 0 U, | o€ £ £
9 o)+ (peu) =2 us “ 4 poSe—po—E 1 fC.G+S (38
at(pg) axj(peu,) ox; Kﬂ O'e]axj} Pe ALy K +ve g et %)

Where Clzmax[0.43,i5} , 77:Sﬁ , C,=144, C,=1.9, 0,=1.0 and o, =1.2 are the model
n+ £

constants. The eddy viscosity is calculated from equation (16), but
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1
C,=—— (39)
Y7
A, +A, —kU
£
U= SySg + fzyfzy (40)

Where Qij , is the mean rate-of-rotation tensor viewed in the rotating reference frame with
an angular velocity. Both the Realizable and RNG k- & models have shown substantial
improvements over the standard k-& model where the flow features include strong
streamline curvature, vortices, and rotation.

The realizable x-¢ model provides superior performance for flows involving rotation,
boundary layers under strong adverse pressure gradients, separation, and recirculation. The
limitations of the realizable x-e model are that it produces nonphysical turbulent viscosities
in situations when the computational domain contains both rotating and stationary fluid
zones, i.e., use of multiple reference frames or rotating sliding meshes.

2.2.9 Quadratic High Reynolds k- & turbulence model

Non-linear turbulence models are introduced to take into account of anisotropic turbulence
characteristics present in many real flows by adopting non-linear relationships between
Reynolds stresses and the rate of strain. For quadratic models, the constitutive relations for
the Reynolds stresses are:

ufu'j 2 uy ouy My My 1
PSS e s e e sush ~Saususa |+

k 3
41)
u u I (
C, ?I[Qik Skj + 92 i Sk J+c; ?I{Qik Qy - §5ij~(3k1~(3k1 }
Where, 02y is the mean vorticity tensor given by
ou: Oou;
Q=1 -
ax j axl- ( )
Coefficients are defined as,
c c c
C = NLI - C, = NL2 - C; = NL3 - 43)
(CNL6 +enp7S )Cy (CNL(S +enp7S )Cﬂ (CNL6 +enp7S )Cy
Where,
c
Cy= A0 ,S:ES*and_Q:EQ*,

CA]+CA2S+CA3.Q e e

i 1 * 1
S =358y and Q" = 52y
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CA0

CAI

CA2

CA3

CNLI

CNL2

CNL3

CNL6

CNL7

0.667

1.25

1.0

0.9

0.75

3.75

4.75

1000.0

1.0

Table 1. Empirical coefficients for £—¢& quadratic high Re turbulence model

2.2.10 k-w SST (Shear Stress Transport Turbulence) model
An alternate approach to the k—& model is the f — g model, where ¢ is the specific
dissipation rate, which is defined as

w=¢/C,k (44)
Equation fork:
9 (pk)+ =2 pu ik —| p+ £ KNy (P+ Py)-pB ko0 (15a)
ot axj O-I?) axj

Equation for @:

d 0 M, 0w 0]
g(pa)) + J{puja)— (,u + O'_Z’Ja_xj = az,utP— ppo’ + pS, +C .1, BC 0 (45b)

J w

Where, C p and C .3 are empirical coefficients.

The coefficients are expressed as follows:
C,=FC, +(-F)C,,

Where C 61 and C g2 are given by two separate coefficient sets and

F, = tanh(arg;’)

Jk o 500v 4 pk
0.09wy" y’w ) c2,CD,,y’

arg, = min{max(

CD,, =ma pr a—ka—w,IO_zo
00, 0x; 0X;,
Where
O-I:U ] O-Z)l ,3 1 ﬂ 1* K
1.176 2.0 0.075 0.09 0.41
Table 2. Coefficients for k — @ SST turbulence model
With,
2
o P K

B ooB
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0-13)2 0_00)12 ﬂZ ﬂ; K

1.0 1.168 0.0828 0.09 0.41

Table 3. Coefficients for k — @ SST turbulence model

With,
2
o, =P - Swzz(z—F])wLa—ka—w
B, o° 132’ O W OX; OX

The turbulent viscosity is defined as,

i = ak
t max(a]a),Q*F2)
Where,
a,=031 F, = tanh(argj)
and
Jk - 500v
arg, = max| 2 s
0.09wy y

Like standard k—¢& model, the k—w model is also widely used in many industrial
applications involving flow separation and recirculation.

2.2.11 Reynolds Stress Model

In the Reynolds stress model [Gibson and Launder (1978), Launder (1989) and Launder et
al. (1975)], additional transport equations are used in the calculation of the Reynolds
stresses. The stresses obtained are used to calculate the average momentum. Due the
additional transportation equations, Reynolds stress model (RSM) model shows superior
results with flows involving anisotropic turbulence. It includes seven additional equations
and account for higher accuracy and however, require additional computational resources.

0 0 dgp 0 ou; Ouj 2 _ oy P .
— o )+ —\puju ;) =—+ Lt ———0; +—|-pu;u; (46a)
at (pul) ij (pul J) axl- ax] {L{axj axi 3 v axl aXJ pulu]
a p _'_l_ + a pu _l_l_ p _l_l__l + (_5___'__'__6‘___' j
—| Puju; |+— uju i | =——| Pujuiu D| OjujtOjflj
ot iuj axk k Uil g axk iujuk JHLTEIRT ]
d d T o j o aui L
— lu—uu.||- — tuu, —L |- .u.f .u.0
+8x ”ax luJ Pty ox +uJuk ox PP 8 uJ *8; uj
k k k k
du;  du Sy ' — —
+ L Ll =2u 4% ~7] _ . . A 46b
p an+ax] ,Uax]lc T Zka[u jitm glkm+“iumgjkmj (46Db)
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Like any other transport equation the Equation (46b) for the Reynolds stress transport
includes number of terms including convection, turbulent diffusion, molecular diffusion,
buoyancy, stress production, and rotation production, pressure strain, viscous dissipation
and user defined source term. Some of the most commonly used RSM models are i. Gibson
and Launder model and ii) Speziale, Sarker and Gatski model.

A RSM model is generally required in problems involving strong anisotropic effects.

Usually one would start with the simplest model such as the standard model with wall
function or a low Reynolds number model with fine mesh size near the wall to see if
reasonably acceptable engineering results are obtained. In order to narrow down the choice
of turbulence model in terms of stable converging solutions, each class of turbulence models
are to compared among themselves first before comparing all models with the experimental
data or DNS/LES.

2.3 Boundary condition for turbulence quantities

One of major requirement for the solution of turbulent flow is the specification of turbulence
quantities such as turbulence kinetic energy and turbulence dissipation rate or the mixing
length or the ratio of turbulence viscosity to molecular viscosity at the inlet. While results
are not strongly influenced by the inlet turbulence level for problems with inlet located far
away from the region of interest, the specified values have a significant effect on the
resulting flow solution for problems with smaller entry length. So, one approach is to assign
directly the values of turbulent kinetic energy and turbulent dissipation rate. However,
specification of turbulence quantities such as turbulence kinetic energy and turbulence
dissipation rate at inlet can be quite difficult and often rely on engineering judgments. It is
always, however, preferred to assign experimentally measured values of turbulence
quantities. If such data are not available, then values can be prescribed based on
engineering assumptions and a numerical sensitivity study must be performed to
understand the sensitivity of inlet turbulence conditions on the solutions.

For the specification of the turbulent kinetic energy, appropriate values can be specified
through turbulence intensity (I), which is defined by the ratio of the fluctuating components
of the velocity to the mean velocity. In general, the inlet turbulence is a function of the
upstream flow conditions. Approximate values for the turbulence kinetic energy can be
determined according to the following relationship:

kinler T E (Uinlerl)z
2 (47a)
Inlet dissipation rate can be specified based length scale as
c3/4,3/2 b
€inlet = 1 (47b)

Where 1=0.1Dy

In external aerodynamic flows over airfoils, the turbulence intensity level is typically 0.3%
For atmospheric boundary layer flows, the level can be as high as two orders of
magnitude - 30%. The range of turbulence intensity for a moderately turbulent flow is
around 1-10%.
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The turbulence intensity at the core of a fully developed duct flow is estimated from the
following formula:

1=0.16(Repy )" (48)
Near-wall region modeling

Another important aspect of using some of the turbulence closure models are that they are
valid only in the fully turbulent region due to the laminarization of flow or the presence of
laminar viscous sub-layer near the wall. In regions close to the wall, viscous effects
dominate over turbulence effects due to the small local Reynolds number of turbulence. The
near-wall modeling consists of two approaches. The first approach involves modifying the
turbulence models such as low Reynolds number models and by using an appropriate fine
grid to resolve the near-wall viscous effects. In low Reynolds number modeling methods k
and € equations are modified such that they are valid throughout the laminar, semi-laminar
and fully turbulent regions

In the second approach, the viscosity-affected region is not resolved and wall functions are
used to bridge the viscosity-affected region between the wall and the fully turbulent region.
The standard high Reynolds number turbulence models need not be modified if the wall
functions are used to account for the presence of walls. The two most popular types of wall
functions are the standard wall functions and non-equilibrium wall functions.

In the wall function method the grid size distribution is selected in such a way that the
adjacent grid point P is sufficiently remote from the wall. This causes local Reynolds
number of turbulence at point P to be much greater than one, so that the viscous effects are
dominating in this region. The standard wall functions proposed by Launder and Spalding
[17] relate the non-dimensional distance (") to the distance of the nearest cell point P (y,)
from the wall as

PRy,
U

y

Where k; is the turbulent kinetic energy at point P and p is the dynamic viscosity of the
fluid.

In addition, the momentum and heat flux between the wall and the adjacent grid point P is
assumed to obey certain relations in the numerical calculations. The refined mesh size
distribution near the wall is limited by satisfying y* requirement, which defines the
minimum distance of the computational cell from the wall boundary. Having the correct y*
value for the cells next to the wall is extremely important to obtain the correct velocity,
pressure and shear stress values. Also for using turbulence models with wall functions, the
y* value of the near wall cells is a basic requirement that has to be satisfied. All
computational turbulence studies starts with an initial search for the correct cell size to
satisfy the y* requirement for the turbulence model used. For example, in the study of
k — & high Reynolds number turbulence closure model with standard wall function the y*

value are required to be kept within 30 - 120.

Non-equilibrium wall functions solve for mean velocity near the wall region incorporating
pressure gradient effects. The non-equilibrium wall function employs a two-layer concept in
computing the turbulence kinetic energy at the wall-adjacent cells. The standard wall
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functions are generally used for high Reynolds number wall bounded flows and for
satisfying equilibrium conditions for production and dissipation of turbulent kinetic energy
at the wall. For flows that involve adverse pressure gradient, rotation, and strong streamline
curvature, the flow conditions depart from equilibrium. The non-equilibrium wall functions
take into account of the effects of pressure gradient and departure from equilibrium
conditions and are generally involve severe pressure gradient.

3. Case study examples

3.1 Case — I: Computational fluid dynamic analysis of turbulent flow in blade
passages of centrifugal fan impeller

The objective of the present study is to analyze the three-dimensional turbulent flow in a
single blade passage of a centrifugal fan impeller at design and off-design conditions.
Numerical calculations are performed using commercial code FLUENT. A computational
treatment of turbulent flow in a single blade passage of the centrifugal fan impeller is
considered in this study. The geometric description of the impeller used for CFD simulation
is presented in form of Pro/E solid model with different views describing the centrifugal fan
geometrical features is shown in Figure 1. The assembly consists of a hub mounted on a
back plate. The back plate is flat and circular with blades arranged in circular symmetry.
The shroud is tapered from inlet to outlet with higher cross-sectional area at the inlet. The
blades are straight and radial and their sectional width extends from the back plate all the
way to the shroud, thus making the size of the tip gap region reduce to zero.

a) Assembled view b) Impeller without shroud
c) Impeller Hub d) Impeller shroud

Fig. 1. Solid model of the impeller design

3.1.1 Physical representation of the problem

A three-dimensional flow in a single blade passage of the centrifugal fan impeller is
considered, taking into account of the cyclic nature of the flow and impeller geometry. The
computational domain is depicted in Figure 2. Periodic boundaries are assumed at the inlet,
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blade surface, and outlet. The flow includes important features like: Flow separation at the
blade leading edge and Secondary flows arising in the channel due to centrifugal forces and
Coriolis forces acting on the working fluid.

Inlet: p, Ts specified
Blade

Periodic boundary

Outlet: Mass flow rate
0 specified

Fig. 2. Computational domain

A mathematical model for the flow field with associated boundary conditions and
turbulence models are discussed

3.1.2 Governing equations

The RANS model for steady-state, turbulent, compressible flow in a rotating frame
expressed in cylindrical coordinate system has been considered. Due to the rotation effects,
the centrifugal forces and Coriolis forces act on the fluid. These effects are incorporated in
the relative velocity formulation of the governing equations. The Reynolds turbulent
stresses which arise due to the fluctuating velocity components are related to the mean flow
variables calculated through different turbulence models. Turbulence closure model
considered are 1. Spalart - Allmaras Model, 2. The Standard x—& Model, 3. The Realizable
k—& Model and 3. The RNG x—& Model The near-wall modeling is performed considering
both the standard wall function and the non-equilibrium wall function. After initial
evaluation of all turbulence models using both the wall functions, final results in the present
study are presented with the standard wall functions in the RNG and standard x-¢ models,
and the non-equilibrium wall functions are used for the realizable x-¢ model.

3.1.2.1 Boundary conditions

Inlet: Static pressure is specified at the channel inlet.

Outlet boundary condition: The mass flow outlet adjusts the exit pressure such that a target
mass flow rate (i.e., mass flow at the inlet) is obtained at convergence. This type of approach
is used in problems where the outlet static pressure is unknown at the beginning of solution.
Turbulence: The turbulent intensity and hydraulic diameter were specified at the inlet. The
turbulent intensity is calculated based on Eq. (48).

Periodic boundary conditions are imposed between the channel inlet and outlet as the flow
field is symmetric from blade to blade and the boundary conditions are uniform in
circumferential direction. In the periodic boundary condition, each surface of the periodic
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pair is treated as an internal surface. The pressure jump across the periodic boundaries was
specified to be zero.

3.1.2.2 low Parameters
Reynolds number

The incoming flow into the impeller is from a circular pipe. Therefore the Reynolds number
at the channel inlet is defined by

Re, =YD (48)
U
Where v is the velocity of the fluid, D is the hydraulic diameter
The Reynolds number at the channel exit is defined as
Re=PCVe (49)

U

Where C is the chord length of the blade and Vy is the tip speed of the impeller. For the base
case (o = 3300 RPM), the Reynolds number typically varies from 301900 to 1760000.

3.1.3 Computational model

A computational model based on the mathematical model presented is developed in
GAMBIT. The edge set required to form the turbo volume was imported from Pro/E
assembly file with edge set consisting of the hub, blade, and the casing cross-sections. Only
a single blade passage was modeled assuming 22.5-degree (2*pi/Z) as the rotationally
periodic conditions, Since there is no relative velocity difference between the fluid zone and
the different wall zones (hub, blade, shroud), the whole geometry was modeled as a single
rotating reference frame with the axis of rotation directed along the z-axis. After
constructing the turbo volume, H template decomposition is adopted to split the volume
bounded by the hub and casing with the surfaces representing the pressure and suction
sides of the blades, and this results in four volumes as shown in Figure 3.

_ volume 4
volume 3 casing

pressure side

Inlet

volume 2 outlet
(suction

olume 1
Vol side)

Fig. 3. Domain decomposition of turbo volume
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3.1.3.1 Meshing the geometry

The mesh for the prescribed control volume shape and regulated order of spacing is
achieved through a mapped meshing and using a combination of 8-node hexagonal brick
volumes and 10-node clipped cube volumes. A soft nonuniform grading scheme is used for
edge meshing. The turbo decomposition divides the impeller region into four volumes, each
of which could be mapped with hexahedral structured mesh. It sets the interval count and
grading on the edges and also sets face vertex types for the volume to be meshed. Hexahedral
elements developed in the streamline direction of expected flow helps in improving the
convergence of solution. The mesh for single blade passage grid is shown in Figure 4.

(a) meridional view (b) mesh at outlet

(c) mesh at casing (d) isometric view
Fig. 4. Single passage grid modeling

The grid system for the bases case consists of 78x40x30 hexahedral elements in pitch, axial
and radial directions respectively. The impeller region is meshed with 78x140x30 hexahedral
elements along pitch, meridional, and span-wise directions respectively. The model uses
segregated solver in which all the equations are solved sequentially along with the second-
order upwind discretization scheme for convective terms in momentum, energy, turbulence
kinetic energy and the rate of dissipation of turbulent kinetic energy. A linear interpolation
scheme is used to estimate the cell face pressure as the average of all the pressure values in
the adjacent cells. The density interpolation scheme is based on upwind interpolation of
density at the cell faces for compressible flow calculations. The pressure-velocity coupling
method is based on SIMPLE algorithm and a point implicit Gauss-Seidel linear equation
solver is used in conjunction with the algebraic multigrid (AMG) method to solve the
resultant scalar system of equations for the dependent variable in each cell with a specified

convergence limit of 1x10°
Fluid flow characteristics in the single blade passage of the centrifugal fan impeller are
analyzed in this section. The distribution of pressure and velocity field and its impact on the
losses inside the channel are studied. The results presented in this section include
implementation of two numerical approaches for turbo modeling, and performance of
different turbulence models.

3.1.3.2 Turbulence modeling

A turbulence model study is conducted on the single blade passage of the impeller in order
to understand the flow characteristics and pressure losses occurring due to flow separation
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and circulatory flows. The different turbulence models considered are the Spalart-Allmaras
model, which is a one-equation model; the two-equation model, namely the standard k-e
model; realizable k-¢ model with non-equilibrium wall functions, and the RNG model. Since
the maximum losses occur at around x/c=0.3 location in meridional direction along the
passage, the performance of turbulence models is compared in this region to predict the
flow behavior for the base case.

3.1.4 Analysis of flow field

Figure 5 shows the static pressure distribution for all the turbulence models considered for
the base case. Results show similar static pressure distribution on the pressure side of the
blade. However, there is a significant variation of static pressure distribution and the size of
the low-pressure region on the blade suction side predicted by the different turbulence
models. Figure 6 shows the distribution of dynamic pressure at the blades leading edge.

(a)Spalart Allmaras (b) Standard k-¢

del
fmode model

(c) Realizable k-€ (d) RNG
model model

Fig. 5. Static pressure at x/c =0.3

It can be seen that all the models predict large recirculation regions on the blade suction
side. On the pressure side of the blade, low-pressure region is developed at the hub-
pressure side corner and on the suction side at the suction-casing corner. The vector plot of
relative velocity vectors in the meridional view, as presented in Figure 7, reveal large areas
of low velocity regions on the blade suction side. The flow separation region is developed
close to suction-casing corner due to the flow turning from the axial direction to radial
direction. It can be seen that the RNG model predicts larger area of flow separation
compared to other turbulence models considered.
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Wi

!Hfilliill t

[t

(a)Spalart- (b)Standard k-¢
Allmaras model model

(c) Realizable k-¢ (d) RNG

model Method

Fig. 6. Dynamic pressure distribution at x/c = 0.3

Plots of relative velocity vectors both at the critical section and at the mid-span region are
presented in figures 7 and 8.

| R =
= i l !5
= > j HE' § .!ﬁ ;Fu’

E R B el |
(a) Spalart (b) Standard k-
Allmaras model € model

g 1 E g j ¥ 1
= [ E 13
= Wl el S . Wi
= o e ——
(c) Realizable (d) RNG
k-£ model model

Fig. 7. Relative velocity vectors magnitude at x/c = 0.3
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Fig. 8. Relative velocity vectors magnitude at mid-span

The plot of velocity vectors at mid-span of the passage, as given by Figure 8, shows flow
separation on the blade suction side close to the leading edge. The realizable k-e¢ model
and RNG model predict higher flow separation region compared to the Spalart-Allmaras
and the standard k-e models. Figure 9 shows the shadow graph plots of the normalized
turbulent kinetic energy distribution along the blade passage. It can be seen from the
contour plots of turbulent kinetic energy that the turbulence is stronger on the blade
suction side due to the presence of higher momentum fluid. The realizable k-¢ model and
the RNG model show a better resolution of the turbulence compared to the standard k-e
model.

Results in figure 10 at the mid-span show that the turbulence structure predicted by the
RNG model spreads from the blade leading edge on suction side to about 70%
of the passage distance which is higher than the structure predicted by the realizable k-e
model and the standard k-e¢ model, but the intensity of the turbulence magnitude
predicted decreases from the standard k-e¢ model to realizable k-¢ model and to the
RNG model.
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Fig. 9. Normalized turbulent kinetic energy contours along the passage
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Fig. 10. Normalized turbulent kinetic energy contours at mid-span
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The variation of area-averaged normalized turbulent kinetic energy and dissipation rate is
shown in Figures 11 and 12 respectively. The turbulent dissipation rate is normalized with
respect to the inlet velocity and the blade chord length.

—&— Standard k-
epsilon model

—l— Realizable k-
epsilon model

—a—RNG k -
epsilon model

0.12

0.1

0.08

X 0.06

0.04

0.02

0 0.5 1
Meridional distance

Fig. 11. Variation of normalized turbulent kinetic energy along the passage
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Fig. 12. Variation of normalized dissipation rate along the passage

From figure 11 it is observed that the turbulence kinetic energy develops from the inlet and
rises to a peak value at approximately the center of channel. The standard k-e¢ model over
predicts the turbulent kinetic energy more than the other Realizable and RNG models. From
figure 12 it can be seen that the realizable k-¢ model predicts less dissipation rate than the
standard k-e¢ model because the transport equation for dissipation rate is based on the
dynamic equation of mean square vorticity fluctuation. The RNG model predicts the least
dissipation rate of the other two turbulent models since it contains additional terms in the

www.intechopen.com



Computational Fluid Dynamics Analysis of Turbulent Flow 281

transport equation for k and e, which are more suitable for flows with high streamline

curvature and high rapid strain rate.

Following are the conclusions of the study:

1. The computational model demonstrated the secondary flow or slip losses in blade
passages due to varying velocity gradient between the blade pressure side and suction
side.

2. The RNG turbulence model gave more detailed resolution of flow separation and
recirculation in the intake region. However, in terms of total pressure rise, the results
predicted by the RNG model and the standard x-e models were within 0.6%.

3. Further design analysis of centrifugal fan impeller can be performed using standard x-¢
model along with standard wall function to resolve near wall region.

3.2 Case —lI: numerical simulation of turbulent fluid flow over a surface- mounted
Fluid flow and heat transfer over a block in square tubes; ducts and channels have an
extensive application in electronics cooling and heat exchanger design. The objective of this
work is to study three-dimensional turbulent flow over a surface mounted block in a
channel with adverse pressure gradient giving rise to flow separation and reattachment. The
study focuses on evaluating different turbulence models for simulating turbulence and flow
statistics using FLUENT commercial code. Computational solution is compared with
existing experimental data in the literature. A parametric study is also conducted to analyze
the flow separation, turbulence statistics and pressure coefficient with varying geometrical
parameters over a range of Reynolds number. Figure 1 gives the schematic representation of
the problem.

Outer Zone
N —
/
"4

» Flow Direction 4h

hI Recirculatin Near-Wall
>: > < —/  Zone

X

- -
A A

Fig. 13. Schematic representation of the problem

3.2.1 Governing equations

RNS flow equation with Reynolds stresses expressed via the eddy viscosity concept has
been used. Turbulence closure model considered are 1. High Reynolds number x-é&
turbulent model, 2. The RNG x—¢& model, 3. The Reynolds Stress model.

3.2.1.1 Mesh generation

Volumetric mesh with regulated spacing of the control volume is done using mapped
meshing technique as shown in figure 14. A soft non-uniform grading scheme is used for
edge meshing. Near wall meshing is performed based on the distance established by wall
function treatment. Mesh size distribution nears wall is selected based on satisfying wall

function requirement and keeping the values of y* along the wall surfaces within 30 to 60.
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Fig. 14. Mesh size distribution

Core mesh is refined until the percentage relative error of the centerline velocities decreases
and the maximum percentage relative error is below 0.003413 %. Typical mesh of the model is
with 201895 cells, 62876 faces, 222604 nodes, 1 cell zones, and 5 face zones. Mesh is refined
along x, y and z directions and the velocity variation is studied for different kinds of mesh
generated. The element used in the mesh generation is an 8-node hexahedron volume element.
In order to validate the accuracy of turbulence models, results are compared with the
experimental data obtained from the test case of Kasagi and Matsunga [1993]. The test case
is the flow over a backward facing step involving adverse pressure gradient and boundary
layer separation. The schematic representation of the flow filed is show in the figure 15. A
steam-wise fully developed flow passes over the backward-facing step with an expansion
ratio of 1.504. The hydraulic Reynolds number flow as defined by the step height is 5540.
The experiment was conducted in a closed-loop water channel flow facility. Numerical
simulations with different turbulent model are compared with the experimental data.

J\

—  Flow Direction

y/h

z/h x/h \/\
A 4

Fig. 15. Schematic representation of the experiment conducted by Kasagi and Matsunga [1993]

The non-dimensional x-velocity profile at the center of the channel at different x-locations is
shown in the Fig. 16. As it can be seen that the velocity distribution at a distance of 0.0244h
is closely predicted by all four models. However prediction is exceptionally accurate for
Reynolds stress model. Since the flow in this region is primarily a core turbulent flow.
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Fig. 16. Comparison with experimental data

Fluid flow after the step height is highly unsteady for many reasons. Distortion of boundary
layer, adverse pressure gradient, normal shear stress and, secondary or backflow are some
of the reason. At x/h = 1.01, a reverse flow is observed (as shown in Figure: 16b). All the
turbulent models predict the reversed flow. But, magnitudes of the reversed flow are
different form the experimental data. This portion fall under the core of the recirculation
zone, where maximum deviation between the numerical and experimental data is observed.
As we move away from this region representation of the recirculation region is more
accurate as discussed in the following section. The intensity of the back flow decreases as we
traverse along the flow direction. The secondary flow and effect of swirl on the flow
decrease. In figures 16c-e, the x component of velocity at different locations in the
recirculation is compared. The deviation form the experimental data decreases as the flow
becomes to stabilize. A better prediction is observed as we move away from the wall and the
recirculation zone. The major contribution of this may be due to the numerical computation
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given by different turbulent closure model. The seven equations, Reynolds stress model
predicts better results in comparison with the other turbulent models used.

Velocity contours plots at the center plane of the flow regime are presented for the range of
Reynolds number in Fig. 17. Two critical points are observed. The obstruction in the
direction of the fluid flow causes in an increase in the thickness of boundary layer followed
by the point of detachment. The recirculation of the flow right after the obstruction is
evident from the figures. The number of contours in the recirculation zone increases as the
Reynolds number increase, signifying the increase in the recirculation strength.
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The pressure coefficient (Cp) along the flow direction at the center of the flow is plotted for
different Reynolds numbers ranging from 2500-4500 in the Fig. 18. The detachment of the
boundary layer causes adverse pressure gradients. C, decrease as the velocity at the inlet
increases. With the increase in Repy, the pressure drop increases. The comparison of static
pressure at x =1.75 cm on the center plane with different Reynolds numbers is shown in Fig.
18. If the pressure gradient continues to increase, the velocities eventually come to zero and
reversal of the flow will occur (backflow). To compensate the effect of the pressure gradient,
the flow velocity decelerates to maintain the continuity of the domain

—€—ra- 2500
—€—ra-3000
re-3500
—&—re-000
re-4500

Pressure &
Coefficient

#-Coordinate (o)

Pressure Coctficient vz, X-Coordinate Dec 0F, 2003
FLOENT &1 [34d, segregated, RBEH)

Fig. 18. Comparison of Cp with different Reynolds numbers

Velocity vector plots are presented in Fig. 19. It is evident that the size of the recirculating
eddy as well as the magnitude of reversed flow (i.e. the negative velocities) increases as the
Reynolds number increases.

Backflow is also a result of turbulent statistics moving upstream for some distance, then
reversing and being convected downstream. The rate at which this phenomenon occur
increase as the detachment location is approached. Velocity vector along the x-direction, at
the mid-section of the block along the flow direction, for different Reynolds numbers are
shown in the following Fig. 20. As the Reynolds number increases the swirl velocity and the
eddy formation around the block dramatically increases.

The turbulent flow consists of production, convection, diffusion and, dissipation of
turbulent energy. Dissipation and production play crucial role on turbulent energy in order
to minimize the pressure gradient in the region far away from the wall. In the recirculating
region, turbulent intensity increases as the Reynolds number increases. The turbulent
viscosity, kinetic energy and, its dissipation rate along the y-axis at the x=1.75 cm on the
center plane are plotted in the Fig. 21. In the recirculating region, viscosity decreases as the
Reynolds number increases. It can be observed that as the velocity of the fluid field increase,
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the pressure in the recirculating zone decreases and the turbulent properties such as
turbulent kinetic energy, its dissipation rate increases, but the turbulent viscosity
decreases.
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Fig. 19. Velocity vectors along the x-direction at the center plane

The reattachment length (x;). is the distance from the point of detachment of the fluid from
solid to the point of attachment. The change in reattachment over varying Reynolds number
is studied. The reattachment length is a critical quantity because the re-development of the
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boundary layer and pressure recovery starts at this point. Since the maximum reattachment
is observed at the center due to the effect of the y and z velocities the center plane is chosen.
Figure 22 shows that the reattachment point moves along the flow direction with increase in
Reynolds number.
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Fig. 21. Comparison of turbulent quantities at x = 1.75 cm with varying Reynolds number

4. Conclusion

A description of computational fluid dynamics analysis methods for turbulent fluid flow in
number engineering problems is discussed. While a brief description of different turbulent
modeling approaches such as Reynolds Averaged Nervier-Stokes (RANS) equations, Large
Eddy Simulations (LES) and Direct Numerical Simulation (DNS) is given, a more detail
consideration is given to the of RANS method with turbulence closure models and to the
computational challenges such as the selection of appropriate turbulence closure model,
wall function treatment, inlet turbulent and application to number of engineering problems.
Four different classes of turbulence closure models such as i) algebraic zero-order equation
k—¢ turbulence models including low Reynolds number models, iv) k—@ turbulence
models, and v) Reynolds Stress Model (RSM) and. their selection of an appropriate model
for a specific application is considered. Examples are drawn from practical industrial
applications, and results from extensive numerical experimentations and validations with
experimental data are presente3d to demonstrate the challenges in turbulent flow
simulations.
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