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1. Introduction 

Human beings spend most of their lifetime indoors. Monitoring indoor airflow in buildings is 
a matter of health safety, and energy savings. Regarding health safety it is proven that 
exposure to aerosol pollution like walls and painting material residues, gasses emitted through 
cooking and heating with biomass fuel, or agricultural residues can result in aggravated health 
damages for the occupants. In the same time, too high air exchange rates increase the heating 
demand in temperate and cold climates. On both cases it is important to control the mixing of 
the air and the pollutant dispersion to ensure the occupants’ comfort and productivity. 
Before monitoring air mixing and pollutants dispersion in rooms, one has to decide whether 
qualitative or quantitative data is needed. Qualitative measurements only allow recovering 
the trajectory and patterns of the airflow in rooms. This is usually done by the use of tracer 
gasses like fumes, incense, or neutrally buoyant particles with suitable light sources. For 
more precise purposes such as comfort parameters measurements (Fanger, 1970) or 
validation of CFD modeling, one need to get access to quantitative data. 
Quantitative air measurement techniques may be divided into Eulerian and Lagrangian 
techniques. Eulerian techniques measure flow velocity at one or several fixed locations at a 
time, as a man on a bridge measures the velocity of a water stream going by below him. 
Eulerian methods used for indoor applications include hot wire and hot film anemometry, 
pulsed wire anemometry, ion anemometry, laser Doppler velocimetry, laser 2-focus 
velocimetry, particle image velocimetry (PIV), stereoscopic PIV, tomographic PIV and 
holographic PIV. Depending on the technique, the result can be a one, two, or three-
dimension velocity vector or velocity vector field. 
But Eulerian techniques suffer from two major drawbacks: First, many are intrusive since 
they involve probes which are inserted in the measured flow. The probes not only change 
the flow by their mere presence, but they also disturb the measure. For example, though hot 
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wire anemometers are widely used in indoor air research, they can produce a 50% error on 
low ascendant flows because the hot probe creates its own convection, which becomes 
predominant. Moreover, most hot wire anemometers cannot achieve quantitative 
measurements of indoor air speeds lower than 10cm/s. Hot-films can reach 2cm/s, but the 
velocity orientation then becomes unavailable. Second, most Eulerian techniques only yield 
point-wise velocity measurements and are therefore ill-adapted to indoor air flows because 
they are unsteady and highly three dimensional. For example, Laser Doppler velocimetry 
can only yield the 3D velocity field inside a measuring volume of a few millimetres large. 
This method is generally restricted to near-the-wall boundary layers measurements. Stereo-
particle image velocimetry can recover the instantaneous 3D velocity of large fields, but only 
for particles situated inside 3 to 10mm-large laser sheets. 
To cope with those impediments, scientists have tried to build Lagrangian measurement 
techniques for nearly three decades: instead of measuring fluid properties from a fixed 
measurement point, the goal is to actually ride the flow as on a boat, thanks to neutrally 
buoyant particles, and monitor the flow’s fluctuations. The more particles we have in the 
fluid, the finer our understanding of its topology. Each individual seeded particle is 
followed through time, in order to get its trajectory.  Consequently, Lagrangian techniques 
provide a better spatial resolution than Eulerian techniques. There are two main Lagrangian 
methods under development for indoor air applications:

 

1.1 Particle streak velocimetry 
Particle streak velocimetry (PSV) uses neutrally buoyant particles whose displacement is 
seen as streaks by setting a long camera exposure time (Dimotakis et al., 1981). Trajectories 
are yielded when the dead time between two long exposures is very short, depending on the 
flow velocity. Each streak’s pixel length and orientation can be calculated as the length and 
orientation of the major axis of the ellipse that has the same normalized second central 
moments as the streak region. Dividing the streak length by the exposure time gives the 
velocity. The third velocity component can be acquired by geometric reconstruction in a 
stereoscopic system of at least two cameras (see Figure 1). The particle streak direction can 
be obtained by setting one of the three cameras with a shorter exposure time (Scholzen & 
Moser, 1996). 
 

 

Fig. 1. Geometric reconstruction of the third displacement component in a stereoscopic system 
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Even though PSV has yielded promising results in indoor applications (Machacek, 2002; Sun 
& Zhang, 2003) the technique suffers from three structural limitations: Firstly, the flow 
velocity has to be high enough for particles to create streaks on camera image planes. This is 
not always possible with indoor air flow as a target. Secondly, many particle streaks may be 
bowed, especially where turbulence takes place. Additional approximation to reconstruct 
the streak length is then unavoidable. Thirdly, the velocity is always calculated as a mean 
over the length of the streak, thus somewhat limiting the spatial resolution of the method. 

1.2 Particle tracking velocimetry 
In particle tracking velocimetry (PTV), particles are detected as single points on each image 

by setting a very short camera exposure time. Velocity is calculated by dividing the 

displacement on object planes by the time between two exposures. PTV yields 3D 

trajectories by using at least two cameras. Depending on the algorithms used, either 

particles are first identified (spatial matching) then individually tracked (temporal tracking), 

or inversely 2D trajectories are first searched separately on each camera before being 

matched. A few schemes to achieve temporal tracking and spatial matching will be detailed 

later in this chapter. 

The main drawback of 3D PTV is the difficulty of finding and tracking particles which 

overlap when the seeding density is strong. Therefore, densities need to be maintained low, 

typically about 0.005 particles per pixel for a system with three cameras (Maas et al., 1993).  

Other drawbacks of PTV are the limited number of suitable tracers and the fact that 

precisely measured 3D positions cannot be prescribed in advance. In spite of those 

drawbacks, PTV features a better spatial and temporal resolution than PSV. Calculated 3D 

velocities range from 0m/s to a maximum speed depending on the speed of the recording 

camera and on the intensity of the light source. Modern cameras go over tens of KHz but a 

very powerful light source is then needed to capture particle images. 

The literature shows that over the past 15 years, most research on 3D PTV has been 
dedicated to volumes from Kolmogorov scales (Virant and Dracos 1997, Lee and Kim 2005) 
to centimetric scales (Suzuki et al., 2000). Small scale 3D PTV can track more than 1000 to 
1500 particles. 3D PTV in air volumes over 1 m3 has seldom been done. It raises new 
challenges in terms of illumination and camera positioning, but also in terms of particle size 
and localization. Pulsed lasers used in small-scale PTV (Adrian, 1991; Ouellette et al., 2006; 
Willneff and Gruen, 2002) cannot be used on larger volumes because the energy density of 
the light decreases rapidly when the beam is expanded. Nanometric and micronic particles 
used in small-scale PTV are extremely difficult to track in big volumes with a reasonable 
density. The use of at least three cameras positioned at large angles with respect to the other 
cameras is crucial to reducing measurement errors. In contrast to small-scale PTV, particle 
size and brilliance vary a lot since they are free of movement. In fact, particles close to the 
cameras create large blobs on the images. 
The purpose of this chapter is to present the 3D particle tracking velocimetry (3D PTV) 
method applied to the monitoring of air displacements and pollutant dispersion in rooms.  
3D PTV is searched in order to yield the three dimensional velocity and the trajectory of the 
air in a single zone versus time. Air exchange measurement and air leakage measurement 
are not within the scope of this chapter. Similarly, the measurement of airflow through 
ducts, fans and heat exchangers will not be covered herein, even though the 3D PTV may be 
extended to that use.  
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The layout of the chapter will be as follows: Section two will present the experimental set up 
required to perform 3D PTV in rooms. Special attention will be given to the choice of the 
tracer particles. Section three will briefly explain the layout of the most common 3D PTV 
algorithms. In particular, an image processing procedure to remove speckles from images of 
particles getting close to the cameras will be detailed. Section 4 will show a few examples of 
the results one might get when using the method. Some helpful guidelines will be provided 
in terms of camera and light positioning, depending on the room layout and wall color. Last, 
Section 5 will clearly state the limitations of the method, and present a few trends about the 
ongoing research on the subject. 

2. 3D PTV experimental set-up 

2.1 Choice of the tracer 
The three major parameters for choosing a fluid tracer in any particle image velocimetry 
method are a neutral density with respect to the fluid, a detectability of the particles by the 
cameras, and a size and lifetime that suits the scale and duration of the flow characteristics 
to be measured. Other minor requirements are a low environmental impact (health hazards, 
corrosion on equipment, waste disposal) and an easy storage and manipulation. An 
extensive list of possible tracers for PIV tests was given by (Melling, 1997). For gaseous 
flows he proposes particles from olive oil, wheat oil, oil fumes, glass, polycrystalline, AL2O3, 
TiO2, and ZrO2. (Adamcyzyk & Rimai, 1988) also used nylon micro-balloons for 3D PTV in 
the air in a 5 x 5 x 5 cm section. All those tracers range from less than 1µm to 30 µm. For 
detecability purpose, they are always used with pulsed laser light. In spite of their good size 
for turbulence patterns visualization, the use of such minute particles is impossible in 
volumes as large as ours because they cannot be singled out and tracked. 
In large scale air volumes with feeble pressure gradient, most researchers use helium filled 
soap bubble (Biwole et al. 2009; Kessler & Leith, 1991; Machacek, 2002; Müller & Renz, 1996; 
Okuno et al., 1993; Sholzen & Moser, 1996; Sun and Zhang, 2003; Suzuki & Kazagi, 1999; 
Zhao et al., 1999). The underlying idea is that a liquid film inflated with a lighter-than-air 
gas can produce a neutrally buoyant particle. Those particles fulfill most requirements 
mentioned above, except when studying small scale turbulence patterns because of their 
size (from 1.3mm to 3.8mm, Anonymous, 1988). 
 

 

Fig. 2. Bright spot on a single helium filled soap bubble (from Machacek 2002) 
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The motion of a bubble can be derived from the equation of the movement of a small rigid 
sphere in a non-uniform and incompressible flow (Maxey & Riley, 1983): 
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with mp being the bubble mass, mf the mass of fluid displaced by the sphere, vp the speed of 
the buble, gv the acceleration due to  gravity, vf the speed of the fluid, Y (T) the center of the 
sphere at time t, a the radius of the sphere, µ and ν respectively the dynamic and kinematic 
viscosities of the fluid. If we make the assumptions that the flow is irrotational, that the 
bubbles remain spherical throughout their lifetime and that interactions among bubbles are 
negligible, Maxey and Riley equation simplifies into (Kerho & Bragg, 1994): 
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where D represents the diameter of a bubble, ρ the density of the air, ┫ the density of the 
bubble, CD the coefficient of drag of the bubble, and S the apparent surface (half sphere 
surface). The left hand term of equation 1 represents the inertia force while the right hand 
terms are respectively the buoyancy force, the pressure force, the added mass, the drag term 
and the Basset force. If we assume that the slip velocity and the slip acceleration both 
present in the right-hand term of Eq. 2 are negligible, the equation becomes: 

 ( )
p f

p p f f

dv Dv
m m m g m

dt Dt
= − +  (3) 

The meaning of Eq. 3 is that the movement of a small particle in a flow depends primarily 
on the forces of pressure, inertia and gravitation. For a particle with neutral density with 
respect to the fluid, mp = mf. In that case, pressure forces are balanced by inertia forces. For a 
particle lighter than the fluid, we have mp < mF. The bubble will tend to deviate and to be 
elevated from the real streamlines. The constant diameter assumption is plausible given the 
weak air temperature and pressure gradients usually observed indoors. But when using 
helium filled bubbles as tracers for 3D PTV indoor, the experimenter have to keep in mind 
that the slip velocity and the slip acceleration between the bubble and the surrounding air 
may not be zero. This is a major assumption and still an open question. 

2.2 Choice of the cameras 
Three main features have to be taken into account when choosing a camera for flow 
visualization:  
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- The maximum frame rate:  The frame rate is primarily chosen relatively to the 
maximum flow velocity. The quicker the flow, the higher the frame rate must be. In 
traditional PIV, the maximum time between two frames is calculated so that the fluid 
displacement is less than a quarter of the size of research windows. 3D PTV globally 
follows the same rule. The frame rate has also to be adjusted to the particle seeding 
density in order to help minimizing tracking ambiguities. The denser the seeding, the 
quicker the camera must be. For indoor air speeds, 100fps cameras generally allow a 
satisfying tracking of the flow. 

- The camera resolution: It is chosen depending on the size of the particles employed, the 
size of the field to be visualized - the larger the field, the higher the resolution must be -, 
the illumination employed, and the background. In a case of poor contrast with the 
background or when the light sheet is very large, sensors featuring a high number of 
gray levels should be preferred, typically with at least 8 bits i.e. 28 of gray levels. Large 
pixel size cameras provide better sensitivity but poorer resolution than cameras with 
smaller pixel size. Color images are not preferred in PTV because the complexity of the 
algorithms is increased for a limited gain. Whatever the number of cameras, they must 
all be time-synchronous. 

- The lenses: Fish-eyed lenses may be chosen (Biwole et al. 2008; Biwole et al. 2009) for 
indoor applications, provided the calibration procedure is powerful enough to calculate 
the distortion coefficients and reconstruct the scene. 

2.3 Choice of the light source 
The light source has to be strong and homogeneous enough for the cameras to see the light 

reflected on the tracer shells in every part of the measurement field. Especially in 3D PTV in 

large volumes, this must be true even for particles situated outside of the cameras object plane. 

Besides, the wavelength reemitted has to fit the spectral sensitivity of the recording sensor. 

Finally, light devices must produce low convective heat in order to keep the flow undisturbed.  

The light sources can be either pulsed or continuous. Pulsed lasers used in small scale PTV 

cannot be used on larger volumes because the energy density of the light decreases rapidly 

when the beam is expanded. For indoors applications, continuous type illumination solutions 

are usually preferred because it avoids synchronizing the light with the cameras. Arc lamps 

equipped with a cylindrical lens (Sholzen & Moser, 1996) or especially powerful halogen spot 

lamps (Machacek, 2002; Sun & Zhang, 2003; Biwole et al., 2009) are generally used. To reduce 

heat generation, the light sources can either be placed outside of the test room behind a glass 

panel, or switched on for only the few seconds of the recording. 

To conclude on this section, tests in situ in presence of the particles, the cameras and the 
light sources are always necessary before settling for any specific equipment. 

3. 3D PTV algorithms 

3.1 Calibration 
Before recording the seeded air, all the cameras must be calibrated.  Calibration is the 
process of calculating the parameters taking part in the mathematical relationship between 
the 2D image coordinate system of each camera and a 3D real world coordinate system 
common to all cameras. Those parameters are actually the output of the calibration process. 
Firstly, the coefficients yielded by camera calibration are the intrinsic parameters of each 
camera, i.e. the focal length, the radial and tangential distortion coefficients, the principal point 
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pixel coordinates and the skew coefficient defined as the angle between x and y pixel axes on 
the CCD (Charge-Coupled Devices) or CMOS (Complimentary Metal-Oxide Semiconductor) 
chip. Secondly calibration yields the extrinsic parameters of each camera, namely the rotation 
and translation matrices mapping each camera 3D coordinate system based at the center of the 
lens, to the common 3D coordinate system defined by the calibration target (see Figure 3). 
Thus, if Ti and Ri are respectively the 3 × 1 translation matrix and the 3 × 3 rotation matrix 
which transform camera i 3D reference frame XXci into the calibration target 3D reference 
frame XX, the relationship between the two coordinate systems reads: 

 XXci = Ri ・ XX + Ti  (4) 

Intrinsic and extrinsic parameters are calculated by minimizing the distance between actual 
specific points on a calibration target or a scene, and their simulated location based on the 
fitting of a mathematical camera model. 
 

 

Fig. 3. Image plane coordinate system (cc,x,y) and camera coordinate system (C,Xc,Yc,Zc) in 
the pinhole camera model. Coordinates of point P(X,Y,Z) are given in a real world 3D 
coordinate system which origin is the origin of the calibration target. 

There are roughly two different camera calibration methods (Zhang, 1999): 
Photogrammetric calibration and self-calibration. In photogrammetric calibration, a 3D 
object with precisely known features is observed. The calibration object generally consists of 
two or three perpendicular planes with square or round black and white patterns. 
Photogrammetric calibration can be done very accurately (Faugeras, 1993) but requires a 
very precise and expensive calibration set-up. Self-calibration doesn’t require any calibration 
object. The calibration parameters are derived (Hartley 1994, Luong and Faugeras, 1997; 
Maybank & Faugeras, 1992) by observing a static scene from a moving camera. Yet flexible, 
this method is not yet mature (Bougnoux, 1998) and results obtained are not always reliable. 
Other calibration methods exist, including the vanishing points for orthogonal directions 
method (Caprile & Torre, 1990; Liebowitz & Zisserman, 1998) and the pure rotation 
calibration (Hartley 1994, Stein 1995).  
The multi-camera calibration is done by recomputing the extrinsic parameters of all cameras 
from a single position of the calibration target simultaneously viewed by all the cameras (see 
Figure 4). After calibration, the cameras must not be moved during the whole recording 
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session. This would cause a change in the value of the extrinsic parameters. Though camera 
calibration is usually performed prior to image acquisition, it can also be done after 
recording the particle images, provided the cameras have not been moved. 
 

 

Fig. 4. The calibration target must be viewed simultaneously by all cameras when 
computing the common real world reference frame 

3.2 Particle detection 
The aim of the particle detection procedure is to compute the pixel coordinates of each particle 

center. Unlike traditional 3D PTV, PTV algorithms for large indoor air volumes must include a 

step where oversized particles images are removed from the images. Those oversized particle 

images are here referred to as “blobs”. They are created by images of helium filled bubbles 

getting close to the cameras, since they are not constrained to remain inside a small delimited 

volume. Bubbles creating those blobs are generally out of the common field of vision. The 

particle detection processes usually includes the following steps: 
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1. Creation and subtraction of background from images. 
2. Blob removal. 
3. Calculation of pixel coordinates. 

3.2.1 Creation and subtraction of background from images 
The purpose of this step is to feed the tracking algorithm with grey level images of particles 
over totally black background images. The creation of the background is generally made by 
averaging a certain amount of images. Averaging the background is used to cope with the 
variations of continuous light intensity. It can be made in the presence of particles but 
conducting this process before introducing particles (or after all particles are gone) gives 
better subtraction results. When averaging the background in the presence of particles, it is 
worth averaging the whole set of particle images to be treated by the tracking algorithm. 
When averaging without particles, one should not use more than about 10 images otherwise 
the resulting image gradually becomes saturated.  
After being created, the background is subtracted from each image.  However, the result of 
the process generally does not permit a clear separation of particle images from residual 
noise. The main image processing functions usually used to remove noise are: 
- Thresholding: This operation consists in retaining only the pixels which luminance is 

above a certain value determined empirically. Since noise has generally a luminance 
lower than particles, thresholding permits getting good images of particles. Finding the 
appropriate threshold can be made experimentally (the operation is rather quick) but it 
can also be implemented automatically, for instance by minimizing the interclass-
variance of the segmented black and white pixels (Otsu, 1979). 

- Removal of isolated pixels: Helium filled soap bubbles generally cover more than one 
pixel. Typically they create speckles of diameter three to six pixels. Therefore, isolated 
pixels can more than often be assimilated to remaining noise. They can be removed by 
eroding the image with structuring elements of 2-pixel lengths. 

 

  

Fig. 5. Particle image before and after background and noise removal (the processed image 
is inverted for better clarity) 
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3.2.2 Blob removal 
Blobs must be removed from the images because every single blob displays many isolated 

pixels, thus leading to false particle detection (see Figure 6). Removing round objects of a 

certain diameter from an image is a standard procedure in image processing called opening.  

An opening is an erosion followed by a dilation using the same structuring element for both 

operations. However, this operation generally gives poor results with images of helium filled 

bubbles. Since the particle images are neither perfectly round nor perfectly filled, the bubble 

shells can generally be seen after the processing, as shown in Figure 7. After removing the 

averaged background, blobs can be efficiently removed by the following procedure: 

1. Binarize the image. The binary threshold level can be assigned empirically, or 

automatically calculated from iterative algorithms (Crouser et al. 1997; Otsu, 1979). 

2. Fill-up and bridge all particle images in order to get homogeneous blobs (see Figure 8a). 

This filling-up and bridging may be made by iteratively dilating the image with 

structuring elements [1,1] and  [1,1]T. 

3. Erode the output image with a square structuring element of size the maximum 

diameter of a particle in the common camera’s field of vision (see Figure 8b). Here 

particles of diameter equal or less than the maximum allowed are removed from the 

image. This maximum diameter value is determined empirically. 

4. Dilate the resulting image with a square structuring element larger than the one 

previously used. Good results were achieved with a structuring element twice the size 

of the first one used (see Figure 8c). 

5. Subtract the output image from the original unbinarized particle image (image before 

applying the first step of the procedure) to keep the Gaussian profile of the bubble 

images. The resulting image only contains particles of diameter equal or less than the 

size of the structuring element in step 3 (see Figure 9). 

 

  
               (a)                                                                    (b) 

Fig. 6. (a) Binarized particle image before blob removal (the image is inverted for clarity). (b) 
Standard over-large particle (blob). Blobs create many centroids leading to false detections 
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Fig. 7. Over-large particle image after standard image opening with an 8-pixel large disk-
shaped structuring element. Bubble’s shell is still visible 

 

   

                                                       (a)                                            (b)                                              

 
(c) 

Fig. 8. Proposed procedure for blob removal: (a) Blob filled and bridged. The displayed blob 
covers a 28x27 pixel region. (b) Same blob after an erosion with an 8-pixel square-shaped 
structuring element (16x15 pixel region). (c) Same blob after dilatation with a 16-pixel 
square-shaped structuring element (31x30 pixel region) 
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Fig. 9. Example of output image after the blob removal procedure. The image only contains 
particles of diameter less than 9 pixels 

3.2.3 Calculation of particle centers pixel coordinates 
Particle centers pixel coordinates are here referred to as “centroids”. When calculating 

centroids from helium filled bubble images, template matching (Gruen & Baltsavias, 1988; 

Guezennec et al., 1994) gives poor results with soap bubbles because of the wide range of 

particle shapes and sizes after image processing. Hough transform (Hough, 1962) is ill-

adapted to the smallness of the pixel area covered by average particles which varies from 

2x2 to 8x8 pixels, depending on the distance from the cameras. Invariant second order grey 

moments method (Teh & Chin, 1988) works well when only two particle images are 

overlapping but fail when three particles create a larger speckle.  Higher order moments are 

very noise sensitive. 2D Gaussian fitting (Mann et al., 1999; Nobach & Honkanen 2005) 

works well when particles intensity profile can be approximated by a Gaussian. In our case, 

a single particle often features two intensity peaks. In addition, Gaussian fitting is 

computationally costly and gives better results on large particle images. The same 

drawbacks work for neural network methods (Carosone et al., 1995) though those methods 

are robust in case of noisy images. 

As shown in Figure 2, particles are seen as two (or only one) bright spots on the particle 

shell symmetric relative to the center of the sphere. This fact makes relevant the use of 

weight averaged methods to calculate the center of mass of each particle. For each particle, 

the coordinates (xc,yc) of the center or mass are given by: 
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c
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∑
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where (x,y) are the pixel coordinates of each pixel belonging to the particle and I(x,y) the 
pixel luminance. This method allows recognizing two connected bright spots as a single 
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particle. Its main shortcoming is the creation of two centroids whenever the two bright spots 
are not connected (see Figure 10). 
 

 

Fig. 10. Output of the center of mass calculation by weight averaging on three particles of 
the same image. Far left and center particles yield one centroid whereas far right particle 
displays two disconnected local maximum and therefore yields two centroids 

As shown by (Ouellette et al., 2006), weight averaging methods may be less accurate than 
Gaussian fitting and neural network methods whenever particles are far enough from the 
camera to feature a single local maximum. Nevertheless, this method is efficient, readily 
implemented and rapid. Particle centers are given with sub-pixel accuracy (down to 1e-01) 
with derisive computation time using standard personal computers. Furthermore, in large 
volumes (over 1m3), overlapping cases are estimated to less than 5% of particle images for 
camera resolutions over 1024x1024 pixels. 
Once we can accurately detect particle centers on each image, the next step is to establish 
their 2D or 3D trajectory from successive images. That is particle tracking. 

3.3 Particle tracking 
Particle tracking schemes used for 3D PTV in large scale indoor air applications do not differ 
from particle tracking schemes used in other applications. Particle tracking schemes can be 
divided into three main categories: 
- Image plane based tracking schemes: Particles are tracked on each camera 2D image 

plane separately through time (temporal tracking). Afterwards, the resulting 2D 
trajectories are matched in 3D object space and the 3D coordinates are calculated  
(Biwole et al., 2009; Engelmann, 1998, 2000; Ge & Cha, 2000; Guenzennec et al., 1994; 
Jähne, 1997; Li et al. 2008; Wierzimok & Hering, 1993)  

- Object plan based tracking schemes: Particle 3D coordinates are first calculated at each 
time step separately. Afterwards, the resulting set of time-ordered 3D coordinates is the 
only input for temporal tracking directly in object space. The correspondence problem 
is addressed at the first or only a few time steps of the image sequence (Kasagi & Sata, 
1992; Maas, 1992; Maas et al., 1993; Malik et al., 1993; Nishino et al., 1989; Nishino & 
Kasagi, 1989; Papantonious & Dracos, 1989; Sata et al., 1994; Suzuki et al., 2000; Virant, 
1996; Willneff & Gruen, 2002) 

In spite of their high potential the object plan based tracking algorithms hold two main 
drawbacks: first, the repetitive error in the calculation of particle 3D coordinates aggregates 
as the trajectory gets longer. Second, the unsolved particle 3D correspondences create many 
discarded particles and broken trajectories. On both schemes, Particle tracking from one 
time frame to another is usually based on a set of criteria such as the minimum change in 
particle acceleration, the particle shape and the particle luminance. An additional cost 
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Fig. 11. Comparison of image and object plane based 3D tracking schemes. 

function is applied in case any ambiguity arises. A detailed review of the particle tracking 
algorithms has been proposed by (Ouellette et al., 2006) and will not be repeated herein.  
The one proposed by (Biwole et al., 2009) is detailed here as an example: 

3.3.1 2D tracking  
Based on (Li et al., 2008) 2D tracking scheme, (Biwole et al., 2009) algorithm first utilizes a 
second order polynomial regression method to predict the center of the search region. The 
purpose of the regression is to minimize the changes in particle acceleration: 

 2
pixelix b ci it t= + +a   (6) 

where xpixel stands for the pixel coordinates vector at instant time t and i stands for as much 
as 5  previous but not necessarily consecutive frames.  Two by one constant vectors a, b and 
c are acquired by least square fitting. Then, a cost function ϕ is used to resolve the conflicts 
within the search area:  
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where Dk is the previously linked trajectory displacement between frames k and k+1, τk the 
middle time between frames k and k+1, and G and H the two by one constant vectors 
resulting from the linear regression of order 1 fitting Dk over frames 0 to 3: 

 kD G Hk┬≈ +   (8) 

The cost function thus appears as a regression residual normalized by a geometrical mean 
displacement. Its physical meaning is also to minimize the changes in particle acceleration. 
(Biwole et al., 2009) 2D tracking scheme includes four additional features. First, a “cross-
gap” strategy accounts for particles undetected in a single frame. Whenever a particle is 
absent from the search region at frame n+1, the regression and the search is extended to 
frame n+2 based on the estimate and the trajectory goes on if a suitable particle is found. If a 
suitable particle is not found, the trajectory is ended. Second, particles centroids are 
recomputed at each frame (instead of doing it once and tracking them in 2D space). It allows 
starting new trajectories as new particles enter the field of vision. Third, an overlapping 
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trajectory detection step discards the shortest one of two trajectories with similar 
coordinates. This is done to compensate for the extra trajectories created by the previous 
step. Last, a bridging strategy connects parts of a same trajectory as follows: Let Te be a 
trajectory ending at frame t and Ts a trajectory starting at frame t or t+1. The cost function of 
a new trajectory composed of the last three positions of Te and the first three positions of Ts 
is calculated according to Equation 7. If the cost function is less than a preset parameter ┙ (┙ 
is around 0.2), the bridge is validated. 
This 2D tracking strategy is intended to yield longer trajectories than traditional ones. 

However, its computational cost in terms of space and time is higher than the cost generated 

by traditional algorithms. Going through the process with spatial matching at each time step 

would have been even more costly and error prone. This is why temporal tracking is done 

before spatial matching. As will be shown in section 5, 3D matching is later checked several 

times throughout the trajectory. A more detailed description of this 2D tracking scheme is 

given in (Li et al., 2008). The scheme was validated using simulated data of a jet flow 

impinging on a wall. 

3.3.2 Stereo pair matching 
Stereo pair matching also called spatial matching is first done using a three-camera 
arrangement. Firstly, the fundamental matrix of each pair of cameras is calculated. For two 
cameras 1 and 2, the fundamental matrix reads: 

  12 1 1 2 2 1 2
T TF T R R T R R

×
⎡ ⎤= − ⋅ ⋅ ⋅⎣ ⎦   (9) 

Matrixes R1, T1, R2 and T2 are extrinsic parameters given by calibration. The cross-product [ 
]x is defined as: 

 [ ]
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−⎛ ⎞
⎜ ⎟= −⎜ ⎟
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  (10) 

Two 2D trajectories are considered matched if 6 pairs of time-synchronous points, one in 
each trajectory, can be found verifying the following equation:  
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⎡ ⎤
⎢ ⎥⎡ ⎤ ⎢ ⎥⎣ ⎦
⎢ ⎥⎣ ⎦

≺   (11) 

where ( )1 1,t tx y  and ( )2 2,t tx y
 
are normalized pixel coordinates from each trajectory, t an 

instant time (t = 1..6), and s is a threshold value. Ideally, the left term of Equation (8) should 

equal zero but it never does, due to experimental and computational errors. This is why s is 

generally given the value 1. Tests showed that if Equation (11) is validated for at least 6 

time-synchronous pairs of points, it is also validated for the others points of the two 

trajectories.  Because of the possible high length of the trajectories, this strategy brings 

additional reliability in contrast to traditional 3D PTV algorithms where spatial matching is 

done only once before temporal tracking. 
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At first, each trajectory is matched using all three fundamental matrixes. The remaining 
unmatched trajectories are then matched using only one fundamental matrix. Those 
trajectories come from particles whose displacement is seen by only two cameras. After 
these two processes, the remaining unmatched trajectories are discarded. 

3.3.3 3D reconstruction 
This section deals with the calculation of final 3D coordinates from multiple views of a 
trajectory point. Let f = (f1,f2)T be the focal length in pixels, cc =(cc1,cc2)T the vector 
containing the principal point pixel coordinates, ┚ the skew coefficient (scalar), k = 
(k1,k2,k3,k4,k5)T the vector containing the image radial (k1,k2,k3) and tangential (k4,k5) 
distortion coefficients given by calibration. Let P be a real world point of which the 
coordinates in the reference frame of one camera are (Xc,Yc,Zc). Let be xn = (x,y) the 
normalized projection of P on the camera image plane. Normalized coordinates are defined 
as the pinhole projection coordinates obtained when using a unit focal length (see Figure 3). 
We can write: 

 n

/
x

/
c c

c c

x X Z

y Y Z

⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 (12) 

Taking into account the relation between each camera 3D reference frame XXc (Xc,Yc,Zc) 
and  the calibration target 3D reference frame XX (X,Y,Z) given in Equation (4), Equation 
(12) can be rewritten for each camera i as: 
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⎨
+ + +⎪ =⎪ + + +⎩

  (13) 

where by abuse of notation, Ti and Ri are the same as in Equation (4), and (xi,yi) are the 
normalized pixel coordinates of the particle on camera i. With i = [1...n] (n cameras), equation 
(10) gives rise to an overdeterminated system of 2n equations for only 3 unknowns which is 
solved by a least squares method. When the calibration target 3D reference frame is different 
from the final reference frame XXo = (Xo,Yo,Zo), equation (10) reads for each camera: 
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  (14) 

www.intechopen.com



Volumetric Monitoring and Modeling of Indoor Air  
and Pollutant Dispersion by the Use of 3D Particle Tracking Velocimetry 

 

523 

where U and V are respectively the matrices of rotation and translation to map from XX to 

XXo similarly to Equation (4). U and V are identical for all cameras and are calculated from 

the experimental set-up. Normalized pixel coordinates are related to actual pixel coordinates 

by the following rationale: 

Let r² = x2+y2. After including lens distortion, the new normalized point coordinate xd is 
defined as follows: 

 1 4 6
d 1 2 5 n x

2

x (1 . ² . . )x dd

d

x
k r k r k r

x

⎡ ⎤
= = + + + +⎢ ⎥
⎣ ⎦

  (15) 

where dx is the tangential distortion vector (Heikkilä & Silvén, 1997 camera model): 
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  (16) 

The final pixel coordinates xpixel of the projection of P on the image plane reads:  

 1 1 2 1

pixel

2 2 2

.( . )
x

.

p d d

p d

x f x x cc

y f x cc

β+ +⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥+⎣ ⎦⎣ ⎦

  (17) 

Thus, from the knowledge of final pixel coordinates on at least 2 image planes, real 3D 

coordinates can be calculated. 

4. Example of results 

This section shows some examples of application of 3D PTV for indoor air flow 

measurement. Some helpful guidelines are given in terms of camera and light positioning, 

depending on the room layout and wall color. The following performance indicators will be 

used: 

• “Tracking density” ratio ξ: it is the ratio of mean particle spacing (in a nearest neighbor 

sense) to mean particle displacement between two consecutive frames. It is an indicator 

of the tracking difficulty (Malik et al., 1993). 

• “Correct tracking” ratio ┛2D (respectively ┛3D):  Proposed by (Li 2008), it is the number 

of 2D (respectively 3D) tracked positions which are identical to the actual 2D/3D 

particle positions divided by the total number of tracked positions. This ratio only deals 

with tracked trajectories and is an indicator of the tracking accuracy. The actual 2D 

particle trajectories are estimated for each camera by adding up all the camera frames 

after background subtraction. The deviation from actual 3D positions is estimated by 

backprojection of calculated 3D trajectories on each camera image plane thanks to 

calibration data. A particle tracked position is considered “correct” when it is either 

identical to the actual particle position or its deviation from the latter position is less 

than the radius of the actual particle. 

• “Total tracking” ratio E3Dtrack (respectively E2Dtrack): proposed by (Malik et al., 1993) as 

the number of correctly tracked 3D (/2D) trajectories divided by the estimated total 

number of input 3D (/2D) trajectories.  
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4.1 3D PTV in a light-gray walled room, low density seeding 
The test-room MINIBAT of the National Institute for Applied Sciences of Lyon, France, has 
two experimental cells of dimensions 3.1mx3.1mx2.5m high each (see Figure 12). The 3D 
PTV set-up included three cameras Dalsa 4M60 set at 1024x1024 pixels and 100 fps each. 
Each camera was mounted with a 15mm Canon lens with a 4.8 aperture. All cameras were 
placed in experimental room noted (6) on Figure 12. The recording computer was located in 
the other experimental room (7) and the door between the two rooms was closed to prevent 
heating up of the flow.  Camera 3 was fixed onto the ceiling while cameras 1 and 2 were 
fixed on the walls as shown in Figure 13. 
Light was provided by four 1000W compact fluorescent lamps situated in the climatic chamber 
(3) and separated from the airflow by the simple glass partition (4) to prevent heating up the 
flow. All lights were set at full power, with not shading grid. Walls of the test room are not 
black but light gray; consequently, it was found that better contrast between particles and 
background was achieved by directing the lights towards the walls and not directly towards 
the particles; therefore, helium filled soap bubbles were indirectly illuminated by reflection of 
the light from walls and ceiling. The calibration target consisted of a planar checkerboard 
composed of black and white 30mm-large squares. The checkerboard had 12 horizontal 
squares and 8 vertical squares as shown in Figure 14. The calibration algorithm by (Bouguet, 
2002) was used. Bubbles were released upward. Index ξ equaled 3.9, 8.1 and 6.3 respectively 
for cameras 1, 2 and 3, which corresponds to a low density seeding. 
 

 

Fig. 12. Mock-up of the test-room MINIBAT. Lights were situated behind the glass (4) in the 
climatic chamber (3), cameras were situated in the experimental room (6) and the recording 
computer in experimental room (7) 
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Fig. 13. Camera positioning for 3D PTV on an ascendant free flow.  

 

 

Fig. 14. Calibration target as observed from camera 2 viewpoint. 

Full 3D displacement of particles over 10 frames is shown in Figure 15. The average E2Dtrack 
was 82% over the three cameras with ┛2D = 1. We found E3Dtrack= 88% with ┛3D = 0.9. Having 
E3Dtrack > E2Dtrack is readily explainable by the fact that some extra 3D trajectories were 
produced from particles seen by only two cameras at a time. It is also normal to have ┛3D < 
┛2D because of additional errors due to computational approximations when calculating the 
3D coordinates. 
For validation purpose, all 3D trajectories were projected back onto each camera image 
plane and compared with the real 2D bubbles trajectories obtained by adding up the 
original images. The resulting images for cameras 1 and 2 are shown on Figure 16. On the 
Figure, untracked white streaks are trajectories from particles seen by only one camera. 
From 3D data, the calculated bubbles mean velocity was 0.375m/s with a minimum at 
0.206m/s for bubbles far from the pipe nozzle, and a maximum at 0.651m/s. 
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Fig. 15. 3D path (mm) of tracked particles. The orientation of axes is given by the calibration 
target.  

  
(a)                                                                                  (b) 

Fig. 16. Comparison of real trajectories (white) versus backprojected 3D trajectories (blue) on 
cameras 1 (Figure 16a) and 2 (Figure 16b). Completely white tracks are particle trajectories 
that are seen by only one camera and therefore are not traceable in 3D space. 
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4.2 3D PTV in a black-walled room, high density seeding 
Helium filled soap bubbles were released in the 5.5mx3.7x2.4m high Room Ventilation 

Simulator at the Bio Environmental Engineering laboratory, University of Illinois at Urbana-

Champaign, USA. The bubbles were released from two converging pipes and the 

production was stopped 10s before the recording. To increase the measurement area, camera 

3 was not situated directly above the measurement volume but at an angle of 45° as shown 

in Figure 17. The planar angle between each camera was approximately 120° with six 500W 

spotlights situated onto the horizontal bisectors. To prevent heating, the spotlights were 

turned on only for the two seconds of recording. Cameras were set at 30 fps. Calibration was 

done using the same calibration target as described above. 

Index ξ equalled 3.3, 2.2, and 2.5 respectively for cameras 1, 2 and 3. Such values for ξ 
correspond to a difficult particle tracking situation (see Figure 18). The temporal tracking 

process yielded E2Dtrack = 670/1566 for camera 1, 314/889 for camera 2 and 581/1635 for 

camera 3 with an average ┛2D = 0.9. We found E3Dtrack ≈ 714/1800 with ┛3D = 0.75. Whereas 

the common view area was only 1.5mx1.5mx1m, the actual measured area was 

approximately 3mx3mx1.2m as shown on Figure 19. This is due to the fact that 3D 

coordinates are still calculated if the particles are seen by only two cameras. Figure 19 also 

shows the individual path of a bubble and validation by back-projection is shown in Figure 

10-11. From the 3D data, the calculated bubbles mean velocity was found equal to 0.107m/s 

with a minimum at 0.015m/s and a maximum at 0.521m/s. 

 

 

 

 
 

 

Fig. 17. Camera and light positioning for 3D PTV in a black-walled room.  

Camera 3 

Camera 1 

 

Camera 2 

 

Bubble supply pipes

 Spotlights 
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Fig. 18. Particle images from a region of camera 1 after image processing (inverted and 100% 
zoomed in image). 

 

Fig. 19. 3D path of bubbles over 40 frames in high density case  and 3D path of a single 
bubble over 10 frames. 

4.3 Velocity distribution over a heat source 
An electric heater was placed against one wall of the Room Ventilation Simulator. Helium 

filled bubbles were emitted from two pipes situated on both sides of the radiator.  The 

bubble generation was not stopped during the recording to prevent their rarefaction due to 

the upward convection flow. In order to avoid any impact of the bubble initial velocity 

(5.33m/s) on the measured flow, the pipes nozzles were facing downwards. Therefore, the 

tracers were recorded from the radiator height of 90cm after rebounding on the floor.  
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One camera was placed parallel to the wall and looking downward at the field. The other 

two were facing the wall at a symmetrical angle of 45° as shown on Figure 20. To avoid 

illuminating the background (wall), the spotlights were also placed parallel to the wall on 

both sides of the heater. The targeted measurement field was the area above the heater. 

Therefore, the calibration target was placed over the heater as shown in Figure 21. The 

heating power was set at 600W. Eight T type thermocouples were set to record the 

temperature of the wall and of the air above the heater at 10cm from the wall. The 

temperature distribution was 28.5°C on the wall, 29.8°C above the heater and 29.2°C at the 

center of the room six feet from the wall and three feet from the floor. 

Due to the chimney effect, many particles were driven out of the measurement field. 

Therefore, the tracking was performed in low density. Index ξ was 3.3, 3.9, and 4.8 

respectively for cameras 1, 2 and 3. Results of 3D PTV over the heater are shown in figures 

22 and 23. The measured area was approximately 1.5m x 0.9m x 1.5m high. Temporal 

tracking yielded E2Dtrack = 95/138 for camera 1, 73/90 for camera 2 and 61/65 for camera 3 

with ┛2D = 1. We found E3Dtrack ≈ 106/140 with ┛3D = 0.95. The maximum velocity was 

0.851m/s for a bubble situated above the heater. 

 
 

 

Fig. 20. Cameras and light sources positioned for 3D PTV over a heater   
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Fig. 21. Calibration target reference frame from camera 3 viewpoint 

   

  

(a)                                                     (b) 

 

(c) 

Fig. 22. White arrows show the bubbles 3D trajectories projected on image plane of cameras 
1, 2 and 3 (respectively figures 17a, 17b and 17c). The measured area is approximately 1.5m 
x 0.9m x 1.5m high. 
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Fig. 23. 3D path of bubbles above the heater throughout 30 frames 

4.4 Velocity distribution in an experimental aircraft cabin 
The experimental aircraft cabin used is part of the Bio-Environmental Engineering 

laboratory test facilities. It is a full-scale, fully equipped five row section of a Boeing 767-300 

with dummies to simulate passengers as shown in Figure 24. The cabin is 4m x 3m x 2m 

high. Helium filled bubbles were introduced from two pipes situated at the sides of the 

ceiling middle section. The aircraft ventilation system was on. Three cameras were placed 

outside of the cabin in a triangular pattern. They were directed convergently, with a large 

triangle base. The calibration target was a planar checkerboard composed of a 12 x 12 array 

of 6cm black and white squares as shown in Figure 25. Light was provided by eight 120W 

light bulbs. Two extra 500W spots were facing the cabin from the external side of the glass 

wall. 

After bubble seeding, index ξ was 2.1, 2.3, and 2.3 respectively for cameras 1, 2 and 3. After 

temporal tracking, E2Dtrack averaged 0.4 over the three cameras with ┛2D = 1. Full 3D tracking 

yielded E3Dtrack = 0.63 with ┛3D = 0.7.  A total of 1083 particles were 3D tracked. Velocity 

profiles obtained (see Figure 26) were found similar to those obtained by (Wang et al., 2005) 

on the same experimental set-up. Especially, the same vortices due to recirculation of the air 

over the two aisles could be observed and 3D tracked. The mean velocity equaled 0.48m/s 

over the cabin, with a minimum at 0.018m/s which means quasi static air far from the 

ventilation nozzles. The 3D data enabled the tracking of the air trajectory and the precise 

identification of areas of minimum air displacement. 
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Fig. 24. Experimental aircraft cabin. Cameras positions are marked by white circles. The two 
ventilation inlets are marked by white arrows. 

 

 
 

Fig. 25. Calibration target reference frame from camera 1 viewpoint 
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Fig. 26. Instantaneous 2D velocity in the aircraft cabin using the fast normalized cross-
correlation temporal tracking scheme. Vortices due to recirculation of the air in the cabin can 
be seen over the aisles. University of Illinois at Urbana-Champaign, Department of 
Agricultural and Biological Engineering, Bioengineering Research Laboratory, USA 

5. Conclusion and prospective research 

Recent developments in large scale three dimensional particle tracking velocimetry have 

proven that this technique is suitable for the quantitative measurement en indoor airflow 

and pollutant dispersion. The technological breakthrough comes first from two aspects: first 

the measurement of the air velocity is no longer point-wise like in hot wire anemometry, or 

planar like in stereoscopic particle image velocimetry. On the contrary, the measurement is 

volumetric, with the 3D velocity of several points acquired simultaneously in large volumes. 

Second precise air and pollutants trajectories are acquired versus time. This chapter has 

presented typical experimental set-ups and algorithms that could be used to that purpose. 

The algorithm by (Biwole et al., 2009) has been detailed as an example. Around 1400 

neutrally buoyant particles made of helium filled bubbles were tracked in volumes up to 

3m3. The illumination was provided by halogen lamps. It was also shown that lighting up 

the helium filled bubbles by indirect reflection of the light on walls and ceiling allows a 

better particle detection on non black-walled rooms. 
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Current research on the subject aims at several objectives. Firstly, scientists try to increase 

the seeding density which is still limited to less than 2000 particle because of occlusion 

problems. A densely seeded volume would allow a finer understanding of the flow 

topology and a better modeling by CFD simulation. The measured indoor volumes can also 

be extended by juxtaposing several multi-camera 3D PTV arrangements. Secondly, 

researchers try to increase the range of measurable speeds by the design of algorithms 

coupling large scale 3D PTV with large scale three dimensional particle streak velocimetry. 

The latter technique comes in to capture the velocity of particles which cannot be detected as 

dots by the cameras because of their higher speed. In rooms, such speeds can be found at air 

inlets and outlets. Thirdly, researchers try to combining particles Lagrangian velocity with 

particles Lagrangian temperature. Trying to do so by monitoring the expansion of bubbles 

volume due to temperature is nearly impossible because of the low coefficient of volumetric 

thermal expansion of helium. The most realistic approach is to look for fluorescent bubble 

shells that visually and reversibly change colors at predetermined temperatures. In this 

regard, the use of thermochromic liquid crystals or of polythiophene films could be of some 

help. 

6. References 

Adamczyk, A.A. & Rimai, L. (1988). Reconstruction of a 3-dimensional flow field from 

orthogonal views of seed track video images. Experiments in Fluids, Vol.6, No.6, pp. 

380-386 

Adrian, R.J. (1991). Particle-imaging techniques for experimental fluid mechanics. Annual 

Review of Fluid Mechanics, Vol.23, pp. 261–304 

Biwole, P.H.; Krauss G.; Favier, E; Rusaouen, G. & Roux J.-J. (2008). Non-stereoscopic 3D 

particle tracking velocimetry for full scale rooms, Proceedings of Advanced building 

ventilation and environmental technology for addressing climate change issues, Kyoto, 

Japan, October 2008 

Biwole, P.H.; Yan, W.; Zhang, Y. & Roux, J-J. (2009). A complete 3D particle tracking 

algorithm and its applications to indoor airflow study. Measurement Science and 

Technology, Vol.20, 115403 (13 pp) 

Bougnoux, S. (1998). From projective to Euclidean space under practical situation, a criticism 

of self calibration, Proceedings of the 6th European conference on computer vision, pp. 

790-796, January 1998 

Bouguet, J-Y. (2002). Camera Calibration Toolbox for Matlab, Available from 

http://www.vision.caltech.edu/bouguetj/calib_doc/ 

Caprile, B. & Torre, V. (1990). Using vanishing points for camera calibration. The 

International Journal of Computer Vision Vol.4, No.2, pp. 127-140 

Carosone, F.; Cenedese, A. & Querzoli, G. (1995). Recognition of partially overlapped 

particle images using the Kohonen neural network. Experiments in Fluids, Vol.19, 

pp. 225–232 

Crouser, P.D.; Bethea, M.D. & Merat, F.L. (1997). Unattenuated tracer particle extraction 

through time-averaged, background image subtraction with outlier rejection. 

Experiments in Fluids, Vol.22, No.3, pp. 220-228 

www.intechopen.com



Volumetric Monitoring and Modeling of Indoor Air  
and Pollutant Dispersion by the Use of 3D Particle Tracking Velocimetry 

 

535 

Dimotakis, P.E.; Debussy, F.D. & Koochesfahani, M.M. (1981). Particle streak velocity field 

in two-dimensional mixing layer. Physics of Fluids, Vol.24, p. 995 

Engelmann, D.; Garbe, C.; Stšhr, M.; Geissler, P.; Hering, F. & Jähne, B. (1998). Stereo Particle 

Tracking, Proceedings of the 8th International Symposium on Flow Visualisation, pages 

240.1249.9, Sorrento, Italy, September 1-4, 1998 

Engelmann, D. (2000).  3D-Flow Measurement  by Stereo Imaging,  Dissertation,  Rupertus 

Carola University of Heidelberg, Germany. 

Faugeras, O. (1993). Three-dimensionl computer vision: a geometric viewpoint, MIT press, 

London, 1993, 663 p. 

Fanger, P.O. (1970). Thermal comfort: analysis and applications in environmental engineering, Mc 

Graw Hill ed., New-York, 1970, 244p. 

Ge, Y. & Cha, S.S. (2000). Application of Neural Networks to Spectoscopic Imaging 

Velocimetry. AIAA Journal, Vol.38, pp 487-492 

Gruen, A. & Baltsavias, E. (1988). Geometrically constrained multi-photo matching. 

Photogrammetric Engineering, Vol.54, pp. 633-641 

Guezennec, Y.G.; Brodkey, R.S.; Trigui, N. & Kent J.C. (1994). Algorithms for fully 

automated three-dimensional particle tracking velocimetry. Experiments in Fluids, 

Vol.17, pp. 209–219 

Hartley, R. (1994). Self calibration from multiple views with a rotating camera, Proceedings of 

3rd European Conference on Computer Vision, pp. 471-478, Stockholm, Sweden, May, 

1994 

Heikkilä J. & Silvén O. (1997). A Four step camera calibration procedure with implicit image 

correction, Conference on Computer Vision and Pattern Recognition (CVPR’97), San 

Juan, Puerto Rico, 1997 

Hough P. (1962). Method and means for recognizing complex patterns, U.S. Patent 3069654 

Jähne, B. (1997). Digitale Bildverarbeitung. 4. Außage, Springer Verlag 

Kasagi, N. &  Sata, Y. (1992). Recent developments in three-dimensional particle tracking 

velocimetry.  Proceedings of the 6th International Symposium on Flow Visualization, pp. 

832-837, Yokohama, Japan, October, 1992 

Kessler, M. & Leith, D. (1991). Flow measurement and efficiency modeling of cyclones for 

particle collection, Aerosol Science and Technology 15, pp. 8-18 

Kerho, M.F. & Bragg M.B. (1994). Neutrally buoyant bubbles used as flow tracers in air, 

Experiments in Fluids 6, pp. 393-400 

Lee, S.J. & Kim, S. (2005). Simultaneous measurement of size and velocity of microbubbles in 

opaque tube using 

 X-ray particle tracking velocimetry technique. Experiments in Fluids, Vol.39, No.3, 

pp. 492-497 

Li, D.; Zhang, Y.; Sun, Y. & Yan W. (2008). A multi-frame particle tracking algorithm robust 

against input noise, Measurement Science and Technology 19, 105401 (11pp)  

Liebowitz, D. & Zisserman, A. (1998). Metric rectification for perspective images of planes. 

Proceedings of IEEE conference on computer vision and pattern recognition, Santa Barbara, 

California, June 1998, pp. 482-488 

www.intechopen.com



 
Chemistry, Emission Control, Radioactive Pollution and Indoor Air Quality 

 

536 

Luong, Q.T. & Faugeras, O. (1997). Self-calibration of a moving camera from point 

correspondences and fundamental matrices, The International Journal of Computer 

Vision 22 (3), pp. 261-289 

Maas, H.G. (1992) Complexity analysis for the establishment of image correspondences of 

dense spatial target fields, International Advances of Photogrammetry and Remote 

Sensing, XXIX (B5), pp. 102-107 

Maas, H.G.; Gruen, A. & Papantonious, D. (1993). Particle tracking velocimetry in three-

dimensional flows, Experiments in Fluids 15, pp. 133-146 

Machacek, M. (2002). A Quantitative Visualization Tool for Large Wind Tunnel 

Experiments. PhD Thesis, Zurich: Swiss Federal Institute of Technology 

Malik, N.A.; Dracos, Th. & Papantoniou, D.A. (1993). Particle tracking velocimetry in three-

dimensional flows—part 2: Particle tracking. Experiments in Fluids 15, pp. 279–294 

Mann J., Ott S. & Andersen J.S. (1999). Experimental study of relative, turbulent diffusion, Risø 

National Laboratory Report Risø-R-1036 (EN) 

Maxey, M.R. & Riley, J.J. (1983). Equation of motion of a small rigid sphere in a nonuniform 

flow. Physics of Fluids Vol.26, No.4, pp. 883-889 

Maybank, S.J. & Faugeras, O. (1992). A theory of self-calibration of a moving camera. The 

International Journal of Computer Vision, Vol.8, No.2, pp. 123-152 

Melling, A. (1997). Tracer particles and seeding for particle image velocimetry. Measurement 

Science and Technology, Vol.8, pp. 1406-1416 

Muller, D. & Renz, U. (1996). Determination of all airflow velocity components by a particle-

image-velocimetry system, Proceedings of 5th International Conference on Air 

Distribution in Rooms: ROOMVENT’96, pp. 413-419, Yokohama, Japan, July 17-19, 

1996 

Nishino, K.; Kasagi, N. & Hirata, M. (1989). Three-dimensional Particle Tracking 

Velocimetry based on automated digital image processing. Journal of Fluid 

Engineering, Vol.111, pp. 384-391 

Nishino, K. & Kasagi, N. (1989). Turbulence statistics in a two-dimensional channel  

ßow using a three-dimensional Particle Tracking Velocimeter, Proceedings  

on the Seventh Symposium on Turbulent Sheer Flows, Stanford University, August 

21-23 

Nobach, H. & Honkanen, M. (2005). Two-dimensional Gaussian regression for sub-pixel 

displacement estimation in particle image velocimetry or particle position 

estimation in particle tracking velocimetry. Experiments in Fluids, Vol.38, No.4, pp. 

511-515 

Okuno, Y.; Fukuda, T.; Miwata, Y. & Kobayashi, T. (1993). Development of three-

dimensional air flow measuring method using soap bubbles. Japanese Society of 

Automotive Engineers (JSAE) Review, Vol.14, No.4, pp. 50-55 

Otsu, N. (1979). A threshold selection method from gray-level histogram. IEEE Transactions 

on Systems, Man, and Cybernetics, Vol.9, No.1, pp. 62-66 

Ouellette, N.T.; Xu, H. & Bodenschatz, E. (2006). A quantitative study of three-dimensional 

Lagrangian particle tracking algorithms. Experiments in Fluids, Vol.40, pp.  

301–313 

www.intechopen.com



Volumetric Monitoring and Modeling of Indoor Air  
and Pollutant Dispersion by the Use of 3D Particle Tracking Velocimetry 

 

537 

Papantoniou, D. & Dracos, T.  (1989). Analyzing 3-Dimensional Turbulent Motions in Open 

Channel Flow by Use of Stereoscopy and Particle Tracking, In: Advances in 

Turbulence 2, Hernholz & Fiedler, Springer Verlag, Heidelberg 

Sata, Y.; Sato, K.; Kasagi, N. & Takamura, N. (1994).  Application of the three-dimensional 

particle tracking velocimeter to a turbulent air flow, In: Proceedings of the 3rd Asian 

Symposium on Visualization, Y., Nakayama, Springer-Verlag, pp. 705-709 

Scholzen, F. & Moser, A. (1996). Three-dimensional particle streak velocimetry for room air 

flows with automatic stereo-photogrammetric image processing, Proceedings of 5th 

International Conference on Air Distribution in Rooms: ROOMVENT’96, pp. 555-562, 

Yokohama, Japan, July 17-19, 1996  

Stein, G. (1995). Accurate internal camera calibration using rotation, with analysis of sources 

of errors. Proceedings of the 5th International Conference on Computer Vision, pp. 230-

236, Cambridge, Massachusetts, June 1995 

Sun, Y. & Zhang, Y. (2003). Development of a stereoscopic particle image velocimetry 

system for full-scale room airflow studies, Part II: experimental setup. Transaction of 

the American society of Heating, Refrigerating and Air-Conditioning Engineers 

(ASHRAE), Vol.9, No.2, pp. 540-548 

Suzuki, Y. & Kasagi, N. (1999). Turbulent air-flow measurement with the aid of 3-D particle 

tracking velocimetry in a curved square bend. Flow, Turbulence and Combustion, Vol. 

3, pp. 415-442 

Suzuki, Y.; Ikenoya, M. & Kasagi, N. (2000) Simultaneous measurement of fluid and 

dispersed phases in a particle-laden turbulent channel flow with the aid of 3-D 

PTV. Experiments in Fluids, Vol.29, pp. 185-193 

Teh, Ch. & Chin, R. (1988). On image analysis by the method of moments. IEEE Pattern 

Analysis and Machine Intelligence, Vol.10, No.6, pp. 496-513 

Wang, A.; Zhang, Y.; Sun, Y. & Wang, X. (2005). Experimental study of ventilation 

effectiveness and air velocity distribution in an aircraft cabin mock up. Building and 

Environment, Vol. 43, n° 3, pp. 337-343 

Wierzimok, D. & Hering, F. (1993). Quantitative Imaging of Transport in Fluids with Digital 

Image Processing, In Imaging in Transport Processes, Begell House, pp 297-308 

Willneff, J. & Gruen, A. (2002). A new spatio-temporal matching algorithm for 3D-

ParticleTracking Velocimetry, Proceeding of The 9th International Symposium on 

Transport Phenomena and Dynamics of Rotating Machinery, Honolulu, Hawaii, USA, 

Feb 10-14, 2002 

Virant, M. (1996). Anwendung der dreidimensionalen "Particle Tracking Velocimetry" auf die 

Untersuchung von Dispersionsvorgšngen in Kanalstršmungen, ETH Zürich - 

Dissertation Nr. 11678 

Virant, M & Dracos, T. (1997). 3D PTV and its application on Lagrangian motion. 

Measurement Science and Technology, Vol. 8, 1539-52 

Zhao, L.; Zhang, Y.; Wang, X.; Riskowski, G.L. & Christianson, L.L. (1999). Measurement of 

airflow pattern in ventilated spaces using particle image velocimetry, Proceedings of 

ASAE/CSAE Annual International Meeting, paper #994156, Toronto, Ontario, 

Canada, 1999 

www.intechopen.com



 
Chemistry, Emission Control, Radioactive Pollution and Indoor Air Quality 

 

538 

Zhang, Zhengyou. (1999). Flexible camera calibration by viewing a plane from unknown 

orientations, Proceedings of the International Conference on Computer Vision (ICCV’99), 

pp. 666-673, IEEE 0-7695-0164-8/99, Kerkyra, Greece, September 20-27, 1999 

www.intechopen.com



Chemistry, Emission Control, Radioactive Pollution and Indoor Air

Quality

Edited by Dr. Nicolas Mazzeo

ISBN 978-953-307-316-3

Hard cover, 680 pages

Publisher InTech

Published online 27, July, 2011

Published in print edition July, 2011

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

The atmosphere may be our most precious resource. Accordingly, the balance between its use and protection

is a high priority for our civilization. While many of us would consider air pollution to be an issue that the

modern world has resolved to a greater extent, it still appears to have considerable influence on the global

environment. In many countries with ambitious economic growth targets the acceptable levels of air pollution

have been transgressed. Serious respiratory disease related problems have been identified with both indoor

and outdoor pollution throughout the world. The 25 chapters of this book deal with several air pollution issues

grouped into the following sections: a) air pollution chemistry; b) air pollutant emission control; c) radioactive

pollution and d) indoor air quality.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Pascal Henry Biwole, Wei Yan, Eric Favier, Yuanhui Zhang and Jean-Jacques Roux (2011). Volumetric

Monitoring and Modeling of Indoor Air Pollutant Dispersion by the Use of 3D Particle Tracking Velocimetry,

Chemistry, Emission Control, Radioactive Pollution and Indoor Air Quality, Dr. Nicolas Mazzeo (Ed.), ISBN:

978-953-307-316-3, InTech, Available from: http://www.intechopen.com/books/chemistry-emission-control-

radioactive-pollution-and-indoor-air-quality/volumetric-monitoring-and-modeling-of-indoor-air-pollutant-

dispersion-by-the-use-of-3d-particle-trac



© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.


