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1. Introduction 

Indoor air quality pollution [1][2] represents one of the factors associated with the etiology 
of chronic obstructive pulmonary disease and also plays an important role in respiratory 
distress, the second most common symptom of adults that request emergency 
transportation to the hospital and is associated with a relatively high overall mortality 
before hospital discharge [3][4][5][6]. The prevention of acute respiratory distress or asthma 
attacks can be possible by monitoring the air quality conditions using distributed smart 
sensing systems characterized by accuracy, short time response, and robustness as well as 
by data processing, data logging and data communication capabilities.  
Considering the importance of indoor air quality monitoring, different distributed 
measuring system architectures and associated calibration methods and systems are 
presented in the literature [7][8][9]. The main elements of these kind of systems are not only 
temperature and relative humidity sensors, but also gas detectors and gas concentration 
sensors whose metrological characteristics, such as accuracy and linearity are very limited, 
which implies the design and implementation of signal processing algorithms namely for 
numerical linearization and common factors correction [10][11][12].  
Taking into account the indoor spatial distribution of the temperature and relative humidity 
values as well as the concentration values of pollutants (e.g CO, CO2 resulting of 
combustion), the development of distributed measuring systems [13][14] that can include 
personal computers (PCs) or mobile devices (e.g. PDAs [15] or smart phones [16]) based 
human-sensing system interface represents an important requirement for optimal indoor air 
quality monitoring.  
This chapter presents a practical approach concerning distributed smart sensing solutions 
for air quality monitoring, highlighting the original contributions of the authors in this area. 
The first part of the chapter deals with the relation between the subject’s health status, 
respiratory distress condition and air quality conditions. The second part contains a brief 
presentation of solid state sensors [17] that materialize the sensing component of air quality 
monitoring systems and the third part presents a distributed architecture based on an 
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embedded Web server for air quality monitoring including elements of data processing. In 
the fourth part, a Bluetooth wireless distributed system including smart sensing nodes and a 
smart phone programmed as assisted human - distributed air quality monitoring system 
interfacing device is presented. 
Referring to the distributed air quality monitoring system based on embedded Web server 
nodes, the sensing part of each node is expressed by a thick film metal oxide semi-conductor 
sensor array that includes general air contaminant, alcohol and organic solvent detection, 
and CO sensing. The measurement data and pollution alarms from the nodes, which are 
parts of a wired or wireless network, are obtained through the browser that accesses the 
nodes’ Web pages. A set of temperature and relative humidity sensors are included in the 
node’s hardware in order to increase the gas sensor accuracy through the correction of 
temperature and humidity influences. This chapter also includes a brief description of the 
multiple-input–single-output neural network design and implementation [18] that is used to 
obtain temperature and humidity compensated gas concentration values on the client 
software side. A Bluetooth enabled wireless sensing network designed and implemented for 
continuous monitoring of indoor humidity and temperature conditions as well as to detect 
general air contaminants is described in the chapter. Bluetooth compatible nodes, 
characterized by data acquisition capabilities, are connected to a mobile device expressed by 
a smart phone programmed using Java2ME to perform different tasks including data 
communication, data logging, data processing, alarm generation and graphical user 
interfacing with the indoor air quality monitoring system. Elements regarding the smart 
phone embedded software configuration and logged data transfer according to the network 
architecture and air quality monitoring tasks are discussed and an example of particular 
implementation is also presented. Using the distributed measurement system, an intelligent 
assessment of air conditions for risk factor reduction of asthma or chronic obstructive 
pulmonary disease is proposed.  

2. Air quality and its impact on respiratory diseases 

Air conditions and respiratory assessment represent an important challenge taking into 
account that distress is the second most common symptom of adults transported by 
ambulance and is associated with a relatively high overall mortality before hospital 
discharge [3]. Among the most common causes of respiratory distress in this setting are 
congestive heart failure, pneumonia, chronic obstructive pulmonary disease and asthma [4]. 
It is projected that chronic obstructive pulmonary disease (COPD) will be the third leading 
cause of death worldwide by 2020, due to an increase in smoking rates and demographic 
changes in many countries [5]. Worldwide, some 300 million people currently suffer from 
asthma. It is the most common chronic disease among children [6].  The economic burden of 
COPD in the US in 2007 was 42.6 billion in health care costs and lost productivity [19]. The 
indoor air pollution is one of the factors associated with etiology of chronic obstructive 
pulmonary disease and asthma. There are evidences that the environmental factors acting 
during early life and interacting with specific “asthma genes” are crucial for the 
development of chronic, persistent form of disease [20][21]. The identification of the indoor 
air associated with pathophysiology of COPD and asthma disease will thus be crucial for the 
primary-prevention strategy. 
Poor indoor air quality is becoming an increasing problem around the world because, in 
general, people are spending more time indoors. This problem is greater in infants who now 
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spend less time playing outside. Reduction of indoor air quality - produced by mould 
growth, smoke exposure, cooking fire smoke (often using biomass fuels such as wood and 
animal dung), house dust mites in bedding, carpets and stuffed furniture, chemical irritants 
(i.e. perfumes), pet dander – may adversely affect the health of building occupants and 
exacerbate asthma and COPD attacks. Asthma attacks are mainly related to mould growth 
that is enabled by relative humidity high values for different temperature conditions. Mould 
spores, bacteria, and mildew thrive in dampened towels, washcloths, and moist or humid 
areas. Additionally, people with immune or respiratory system problems may more easily 
succumb to poor health caused by mould growth at home, which is mainly associated with 
humidity and temperature values. Improved heating systems and less ventilation from 
outside has also provided more suitable conditions for mould growth.  Using air conditions 
sensing components as parts of an air quality measuring system, high risk disease 
conditions for indoor occupants can be avoided. Several solutions have been presented in 
the literature [9][13][22]. In order to assure mobility and flexibility, a wireless network for 
air quality is an interesting solution considering that the measuring nodes can be distributed 
in different regions of the house according with different monitoring scenarios. As the 
interface between a user and the network (human machine interface, HMI), can be used a 
low cost smart phone (Bluetooth enabled), a PDA (personal digital assistant), or situated 
displays with interaction capabilities (touch screen enabled). 

3. Air quality sensing and data processing 

This section contains the description of the main components of a distributed smart sensing 
system that can be used for air quality assessment. Particular attention is dedicated to the 
implementation of the sensing nodes, to signal conditioning, and to signal processing of 
measurement data. 

A. Sensing nodes 

The sensing nodes are designed and implemented to perform the air quality (AirQ) 
monitoring using low cost gas sensors and, at the same time, to get additional information 
about the temperature (T) and relative humidity (RH). This information is used to increase 
gas concentration measurement accuracy, performing the error compensation caused by 
temperature and humidity influence. 
The gas sensors can be sintered SnO2 semiconductor heated sensors, as those provided by 

Figaro [23], that assure pollution event detection (TGS800 – general air contaminant sensor - 

AC), methane detection (TGS842-M), alcohol and organic solvent detection (TGS822-SV) and 

carbon monoxide detection (TGS203-CO).  Information about temperature and relative 

humidity are obtained using Smartec SMT160-30 [24] and Humirel HM1500 [25] 

temperature and relative humidity transducers, respectively. 

The gas sensors, connected to proper conditioning circuits, are devices that produce voltages 
whose values depend on the concentrations of gas expressed in ppm. The used conditioning 
circuit for the air pollution sensor TGS800, solvent vapors (TGS822) and methane sensor 
(TGS842) are presented in figure 1. 
Electrochemical cells can also be used to implement the sensing units. The NAP-505 [17] is a 
typical example of this kind of implementation. In this cased, the 3 terminals measuring cell 
consists of 3 porous noble metal electrodes separated by an acidic aqueous electrolyte, 
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housed within a plastic enclosure. The working principle of the sensing unit is based on 
chemical reactions between gas and other elements. From the electrical charges that are 
involved in those reactions it is possible to measure an electrical current that is proportional 
to gas concentration. Using multiple cells it is possible to measure the concentration of 
different gas types. 
 

 

Fig. 1. Gas sensing unit based on semiconductor heated sensors (Vc – circuit voltage, VH – 
heater voltage, VGS – gas sensor output voltage, RL – load resistance) 

Figure 2 represents the main elements of a gas sensing unit based on an electrochemical cell. 
 

 

Fig. 2. Gas sensing unit based on an electrochemical cell (RE - reference electrode, CE - 
counting electrode, WE - working electrode, RL – load resistance) 

The measuring cell includes a working electrode (WE), a counter electrode (CE) and a 

reference electrode (RE) [26]. The conditioning circuit is basically a potentiostat unit that 

measures the gas dependent current amplitude (Icell) that flows between the CE and WE 

through cell’s electrolyte. The current amplitude is directly proportional to the gas 

concentration but its value is usually very low, about a few tens of nA. For this reason a 

careful design of the potentiostat is crucial to obtain an acceptable measurement. Figure 3 

represents the electrical diagram of a typical potentiostat conditioning circuit [27][28]. The 

negative feedback loop, provided by operational amplifiers (OA1 and OA2) and the 

electrical connection that exists between CE and RE electrodes through the sensing element, 
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assures that the operational amplifiers are working in their linear zones. Since the current 

between the working and the reference electrodes is very low, the differential voltage 

between working and counter electrodes is equal to VRE and the output voltage (VADC) 

from the current to voltage converter implemented by sub-circuit 2 is given by 

 [ ]ADC F sol. DAC BV R f (V ) I= − ⋅ −  (1) 

where RF represents the feedback resistor of the current to voltage converter, IB represents 
the polarization current of OA2, VDAC is the output voltage of the D/A converter and fsol 
is generally a non-linear function that depends on solution characteristics and applied 
voltage (VWE). 
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Fig. 3. Electrical circuit of a voltammetry measuring system (MS- measuring cell, RE- 
reference electrode, CE- counting electrode, WE- working electrode, SC&DAQ- signal 
conditioning and data acquisition, ADC- analogue to digital converter, DAC- digital to 
analog converter, OA- operational amplifier) 

Another attractive solution that can be used to implement the sensing nodes is based on 
surface acoustic wave (SAW) devices [29][30]. The sensor consists of an interdigitated 
transducer etched onto a piezoelectric substrate, covered with a thin film. The mass of the 
film increases as its material selectively adsorbs a chemical substance from the air. This 
causes a shift in resonance to a slightly lower frequency giving information about the 
amount of gas species in the air. 

B. Measurement data interpolation 

To perform the interpolation of the calibration data in order to obtain the inverse 
characteristic of the measurement data, two methods are usually considered, namely, 
polynomial interpolation and artificial neural networks (ANNs). 
Assuming, for simplicity, a single variable function (f) and a LMS polynomial interpolation 
function defined by [31] 

 ∑
=

⋅=
p

0k

k
kn xα(x)P  (2) 
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where p represents the degree of the polynomial curve fitting function and x represents the 
independent variable - measured quantity - it is possible to demonstrate that the LMS 
deviation between calibration and curve fitting data is obtained when the coefficients of the 
curve fitting polynomial function are given by 

 [ ] [ ] [ ]YXXXα T
C

1
C

T
C ⋅⋅⋅=

−
 (3) 

being vector Y and matrix XC defined, for a set or n calibration points, by 
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The concerns related with polynomial interpolation are mainly associated with the choice of 
the polynomial degree. If a low polynomial degree is used, the interpolation error is 
generally high because the polynomial function can not fit correctly a large number of 
calibration points. Conversely, if an excessive polynomial degree is used, the LMS deviation 
between calibration data and the values obtained from the polynomial interpolation 
function may be very low, but the interpolation errors of points between calibration data are 
usually very high. This problem is usually known as overfitting and the previous one as 
underfitting.  
Regarding ANN [18][32][33], the curve fitting function can be computed using the following 
expression: 

 ( )( )( )( )ANN i N N N 1 2 2 1 1 i 1 2 N 1 NF (x ) F W * F ...F W *F (W *x B B ... B B− −= + + + +  (5) 

where N represents the number of neural network (NN) layers, Bi the bias vectors, Wi the 
weight vectors and Fi the activation transfer function of each layer.  
The most common ANN structure for measurement applications contains a hidden layer of 
neurons with sigmoidal activation functions whose input is the measured data, and an 
output layer of neurons with linear activation functions. This ANN structure calculates an 
output vector given by 

 ( )ANN i 2 1 i 1 2F (x ) purelin W *tansig(W *x B ) B= + +  (6) 

where purelin() and tansig() are linear and hyperbolic tangent sigmoidal activation transfer 
functions, respectively. 
This architecture has proved capable of approximating any function with a finite number of 
discontinuities and with arbitrary accuracy. Generally a more complex function, such as 
transducer characteristics that are strongly non-linear, requires more sigmoidal neurons in 
the hidden layer.  
To evaluate the capability of a given solution to generalize the learned function, a second 
more dense set of data points - testing set - is used and the correspondent interpolated 
errors are evaluated. The best values of [B] and [W] matrices, associated with the bias and 
weights of each neuron, can be computed by minimizing the mean square error 
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Several gradient methods [34][35], like back propagation (generalized Δ rule), can minimize 
the error function during the ANN training phase. During training, a set of input values 
corresponding to the calibration points is used to adjust the weights and biases of the 
neurons by minimizing the difference between the ANN output and the calibration values.  
Even if there is no general rule to choose polynomial or ANN based curve fitting methods 
for a given application, when a reduced number of calibration points are available, and 
especially when extrapolation capabilities are desired, ANN can usually give better results 
in terms of measurement accuracy. This is particularly true for non-linear and non-
deterministic sensors’ characteristics and, if the number of calibration points is small, there 
is not an excessive penalty in terms of the computational load caused by an higher number 
of mathematical operations, usually caused by the need to evaluate non-linear transfer 
functions (tanh()) [36][37][38][39]. 

C. Data processing: an application example 

In order to take advantage of the joint use of polynomial and artificial neural network 
(ANN) curve fitting techniques [12][40], this section describes a hybrid solution based on 
polynomial modelling (PM) and artificial neural networks modelling (ANN-M) that can be 
used to estimate the values of air quality parameters, such as, temperature, relative 
humidity, and polluting gases concentration. 
For the particular case of broadband gas sensors, different methods can be used to convert 
the measured data into concentration of possible gas contaminants, such as, methane, 
carbon monoxide, isobutane, hydrogen, ethanol or cigarette smoke. Considering the voltage 
generated by a gas sensing unit based on a semiconductor heated sensor (TGS800 from 
Figaro), an air quality index ζ, is defined using the following relation 
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where RS0 represents the sensor resistance for a clean air condition, RS represents the sensor 
resistance for the tested air, VC is the circuit power supply voltage, VRL is the load resistor 
voltage and VRL0 is the load resistor voltage for clean air.  
Sensor’s characteristic is non-linear and monotonic, decreasing sensor’s resistance ratio with 
contaminant gas concentration. Higher concentrations of contaminants originate lower 
values of resistance ratios. Moreover, since the sensor is designed for general contaminants 
detection, it is not possible to identify specific contaminants. So, according to the application 

requirements in terms of the maximum acceptable level of contamination, a coefficient (ζ) 
value equal to 0.3 is considered for air pollution alarm. Considering that the used sensor has 
not good selectivity for each potential air contaminant, a look-up table, a polynomial, and a 
multilayer perceptron single-input single output neural network were designed and 

implemented to convert the value of ζ into air contaminants’ concentrations expressed in 
parts per million (ppm). The measurement data processing scheme that was implemented is 
represented in figure 4. 
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Fig. 4. Block diagram of the hybrid data processing scheme that was used to evaluate 
contaminants’ air concentrations. 

To test the performance of the proposed modeling scheme, a set of coefficient values (ζ), 
contained in the interval between 0.15 and 1 (no pollution), and the correspondent values of 
air contaminants’ concentrations obtained from TGS800 sensitivity curves for methane, 
carbon monoxide, isobutane, hydrogen and ethanol, were considered. The calculation of 
polynomial coefficients, a1i, a2i, … api, is based on LS linear fit function (Givens method) that 
is implemented in LabVIEW. The calculated polynomial coefficients values that correspond 
to TGS800 sensitivity curves, such as the ones represented in figure 5, are stored in a 
memory and then used to perform the evaluation of air contaminants’ concentrations. 
The used neural processing blocks (NPBi) is related with the inverse modeling [41] of gas 
sensor multivariable nonlinear characteristics, which are strongly dependent on 
temperature and humidity but also influenced by the concentration of other gases of the 
analyzed gas mixture. Based on the designed NPBi, a digital read-out of the gases 
concentration with temperature and compensation [16] is obtained.  
Regarding the NPBi, two inputs one output multilayer perceptron neural networks were 
considered. Figure 6 represents the NPBi architecture including the normalization blocks 
and denormalization blocks used for ANN input and output data, respectively. 
The NPBi’s internal parameters (weights and biases) are off-line calculated using the 
MATLAB program. The neural network training data were obtained in the system 
calibration phase. They are voltage values (VGSi) acquired from the gas concentration 
measurement channel for different values of the gas concentration (CGi), and different 
temperature (Tp) and relative humidities (RHi) values.  
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Fig. 5. Polynomial approximation of air contaminants curves (CO and methane case) and 
polynomial approximation error (errCO, errCH4) 
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Fig. 6. NPBi architecture (N, N-1: normalization and denormalization blocks; RHj: humidity 
selector; CGi: temperature and humidity compensated values of Gi gas concentration; TP: 
temperature input value, VGSi: input voltage value on the GSi channel). 

The neural network algorithm developed in MATLAB software calculates different sets of 
weights and biases for each RHi experimental value (e.g. RH={45%, 55%, 65%}. The NPBi 
input is the normalized voltage associated with each gas sensor’s channel and normalized 
temperature, while the NPBi’s output is the temperature compensated gas concentration 
(CGi). The NPBi normalized inputs are defined by: 
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iGSN N
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S

V T
V = , T =

V1 max(T)
 

(9)

 

where V1S represents the gas sensor normalization factor (GSi voltage supply=+10V in the 
present case). 
Because GSi characteristics depend on humidity, an accurate measurement of the gas 
concentration is provided using different NPBi|RH whose weights and biases are calculated 
using the data obtained for predefined relative humidity conditions (RH=45%, 55% and 
65%) and by the interpolation method presented in [42]. 
The number of NPBi’s layers is three. The hidden layers have 2 to 5 tansignoid (tansig(x)) 
neurons, and the output layer has 1 linear (l(x)) neuron. The implemented tansig(x) 
calculates its output according to 

 

2
tansig(x)= -1

1+exp(-2x)  

(10)

 

which leads to a reduction of the computational load. 
Two criteria for NPBi design were considered, the type and the number of neurons on the 
hidden layer, both determining the capabilities of the NPBi to adapt to a given characteristic. 
Different neuron nonlinear activation functions require different memory space and 
processing capabilities from the hardware platform.  
To reduce the weights and biases in vector sizes, several simulation tests concerning the 

number of neurons for a required NPBi performance, expressed by a modeling error, were 

performed. ANNs with a higher number of neurons increase processing load and, 

moreover, require larger memories to store weights and biases matrices. The results of these 

simulations are particularly important when embedded systems are used to implement the 

neural processing architecture (e.g. 512k EEPROM in the IPμ8930 case). 

For the particular case of the CO measuring channel, the training set includes, as target, 

fifteen CO concentration values uniformly distributed in the 30 to 300ppm interval. The 

input values are the voltage values acquired from the TGS203 CO concentration measuring 

channel corresponding to the above-mentioned concentrations. The measured temperature 

in the testing chamber was Tp[°C]=10×p, p={1,2,3,4,5} and the relative humidity RH=35%. 

The Levenberg Marquardt algorithm [43] was used to calculate the weights and biases 

(WNPBi, BNPBi) of the neural network. Imposing a sum square error stop condition SSE=0.01, 

and for neural networks characterized by 4, 5 or 6 hidden neurons, different measuring 

channel modeling error characteristics (eCGsi) were obtained (figure 7). The modeling error is 

defined by: 

 100
FS

CC
e

NPB
CGsiCGsi

CGsi ×
−

=  (11) 

where FS represents the measurement range, CCGsi is the experimental used gas 

concentration (e.g. carbon monoxide concentration) expressed in ppm, and NPB
CGsiC  the 

concentration of gas calculated by the corresponding neural processing module. 
Since the used gas sensors characteristic depends on temperature, a study related with the 
CO channel modeling error (eCO) versus temperature was carried out (figure 8). 
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Fig. 7. The modeling error versus concentration for different NPBCO architectures (T=10°C) 
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Fig. 8. The maximum inverse modeling error for different NPBCO architectures (nhidden={4, 5, 

6}) and different temperatures Tp=10⋅p ºC 

Being humidity an influence quantity, different values of the relative humidity lead to 
different primary gas selectivity characteristics and hence to different gas concentration 
measurement accuracies. Thus, experimental data obtained for three different values of 
relative humidity, RH1=35%, RH2=65% and RH3=95%, and five values of temperatures 

included in the IT=[10;50]°C were considered. The imposed gas concentrations for 
measurement system testing were: 10 values of methane concentration distributed in the 
ICM=[500;5000] ppm interval, 15 values of carbon monoxide concentration 
ICCO=[30;300] ppm, and 15 values of solvent vapors (Ethanol vapors) concentration, 
CSV=[50;5000] ppm. 
Based on the GSi voltages for the considered gases concentrations, and taking into account 
temperature and humidity, three sets of weights and biases (35%, 65% and 95% relative 
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humidity) were calculated for carbon monoxide, methane and solvent vapor measurement 
channels. 

4. Smart sensing networks for air quality assessment 

Gas sensors networks provide a promising mechanism for mining information from the 
monitored areas. Point-to-point and multipoint wireless network architectures, including 
sensing nodes, materialize the implementations in the air quality monitoring for indoor and 
outdoor conditions. 

A. Point-to-point network architecture 

Different architectures were developed by the authors, one of them based on a Bluetooth 
PDA [15]. In this case, the air quality measuring system is a virtual one (AIR-Q VMS) that 
joins hardware and software components to assure higher flexibility, mobility, data 
processing and data transmission. The block diagram of the mobile indoor air quality 
monitor system is presented in figure 9. 
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Fig. 9. Mobile Air Quality system based on a PDA with a compact flash (CF) multifunction 
I/O board  

The sensing node includes sensors (temperature, relative humidity, and air quality), 
conditioning circuits, a compact flash data acquisition device DAQ (NI CF-6004) and a PDA 
with wireless communication capabilities (Wi-Fi or Bluetooth). A point-to-point connection 
between the measurement node and an advanced processing and communication unit (a 
PC) permits to deliver the air quality data from the sensing node to the PC and to receive 
information, such as alarm thresholds, that is used to implement alarm mechanisms in the 
PDA. The acquired data is processed by the PDA and the results are displayed by the PDA 
GUI. 
Considering the cost of the implementation of the air quality sensing node based on a DAQ 
board plugged to a PDA, and also taking into account the evolution of the area of pervasive 
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computing,, the authors decided to develop air quality monitoring systems based on smart 
phones and Bluetooth enabled smart sensors. The implemented architecture is presented in 
figure 10.   
 

 

Fig. 10. Air quality virtual measuring system’s architecture based on a smart sensing node 
(SN) with Bluetooth communication capabilities, and on a smart phone 

The smart sensors indicated in figure 10 are specialized for temperature, air quality and air 
quality index measurement [16]. When monitoring large spaces, the number of sensing 
nodes increases, which means that point-to-multipoint architectures must be considered. 

B. Point-to-multipoint Bluetooth architecture and embedded smart phone 
software  

An implementation of a point-to-multipoint network architecture that uses Bluetooth 
compatible smart sensing nodes is presented in figure 11. The sensing nodes provide 
information about the level of relative humidity, temperature, and air contaminants (e.g. 
undesired odours that can trigger respiratory disorders). As computation units and human 
machine interface are included a laptop PC that works as the system server, a touch panel 
computer (TPC) and a smart phone (SP). 
The implemented Bluetooth scatter net architecture assures the remote monitoring of the 
sensing nodes and data communication between the mobile device and smart sensor nodes. 
The hardware component of the system includes: sensors and conditioning circuits, a data 
acquisition device Bluetooth enabled (e.g. BlueSentry from Grid Connect), a smart phone 
with Bluetooth interface (e.g. N70 from Nokia), a situated display (NI TPC2106) Bluetooth 
compatible through a RS232-to-Bluetooth bridge, and a data communication, data 
processing and data storage unit (laptop PC). 

www.intechopen.com



 
Chemistry, Emission Control, Radioactive Pollution and Indoor Air Quality 

 

324 

 

 

HT X

 

S1 
S2 

 

 

RHT X

TPC 

SP 

laptopPC 

 

Fig. 11. Distributed air quality measurement architecture associated with respiratory distress 
triggering factors monitoring based on  Bluetooth  networking protocol (S1 and S2 are the 
sensing nodes characterized by T-temperature, H – relative humidity and X- air quality 
index measurement channel, TPC- touch panel computer, SP- smart phone) 

The software technologies used to develop the applications for the smart phone running 
Symbian OS and for the TPC running Windows CE OS, were Java2Me and LabVIEW. The 
application embedded in the smart phone was named SmartSense Mobile. AirQUbicomp is 
the application developed using LabVIEW 8.6 Touch Panel Module for the TPC. This 
application provides the information about indoor air quality. 
The SmartSense application has the ability to identify the active smart sensing nodes, to 
establish a connection via Bluetooth with the nodes, to control the on/off state of the air 
quality index sensor (XairQ-sensor), and to collect voltage samples from relative humidity, 
temperature and air quality measuring channels of each node in single-shot mode or in 
continuous mode. 
SmartSense also assures the transfer of the indoor air quality values calculated and stored in 
the smart phone memory extension to the laptop PC through Bluetooth synchronization.  
After node(s) selection, the operator can choose between the “one sample” acquisition and 
continuous acquisition. The sample acquisition is triggered by the user in order to test the 
normal functioning of the sensing node or to verify the measurement accuracy of the 
considered air parameters (humidity, temperature or broadband pollution) during the 
system setup.  
Working in continuous acquisition mode, the smart phone application permits to prevent 

the asthma or COPD attacks through warnings issued when imposed thresholds previously 

stored in the SmartSense Mobile configuration file are exceeded. The sampling rate of the 

continuous acquisition mode is set using the text files received through Bluetooth from the 

PC that runs a SmartAdmin application [16]. Values of time intervals between two 

successive acquisitions in the 0.5 min to 60 min interval were considered. These values are 

adapted to the smart phone’s available memory and also to the time constants of the system 

associated with temperature, humidity and XairQ index measurement. During continuous 

monitoring of the indoor air quality, the voltages received from the sensing nodes are 
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converted into physical values by the SmartSense Mobile application and stored in this 

format. The acquired data are saved in a file or can be sent as an SMS to the phone whose 

number was written in the SmartSense configuration file.  

The continuous acquisition and data conversion software modules work together with an 
implemented alarm module that permits to generate acoustic alarms to inform that indoor 
air conditions are critical. The used threshold values (th) are included in table 1. 
 

Th 
Measured factors 

RH[%] T[°C] XairQ[%] 

thmin 30 15 50 

thmax 50 30 - 

Table 1. Threshold values for relative humidity, temperature and air quality index that was 
used to signalize a likelihood of asthma attack. 

During visual or acoustic signalling, a set of useful recommendations related to indoor air 
factors values and the actions necessary to change the indoor air conditions from critical to 
normal are available through the smart phone GUI. 
The AirQUbicomp application is designed to continuously monitor the air quality, 
generating visual and acoustic alarms according to the imposed thresholds. Active 
interaction with the touch panel computer is permitted after identification of the user 
through a numeric password. After identification, the user can modify the thresholds 
related to asthma or can define data logging elements such as the time between readings 
and the monitoring period (DLog  TAB in Fig. 12). The values of temperature, air quality 
and air quality index as well as the alarms LEDs (AirQ Alarm) are part of the T-RH-XAirQ 
software TAB.  In figure 12 the GUI associated with AirQUbicomp is presented.  
 

 

Fig. 12. AirQUbicomp GUI 

Using the developed SmartSense Mobile application different tests associated with indoor 
air quality monitoring were carried out. The data stored in the Nokia N70, is wireless 
transferred to the database implemented in the laptop PC. Some data related with 
continuous measurement of the asthma or COPD attack triggering factors are presented in 
figure 13.  
In figure 13 (a) the relative humidity is in the limit of automatic alarm generation (RH>50%) 
while temperature and air quality are inside the interval values associated with “no asthma 
or COPD attack conditions”.  
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In figure 13 (b) can be observed low levels of the XairQ index when the measurement 
session started. Based on the information displayed, the user acted to improve the air 
quality (e.g. by opening the window). The air quality started to improve and, at the same 
time, room’s temperature and humidity change significantly.  
 

 

a) b) 

Fig. 13. S1 node monitoring of respiratory distress triggering factors 

In order to find correlations between the air quality and the values of physiological 
parameters, such as oxygen saturation (SpO2) and heart rate (HR), a digital pulse oxymeter 
and electrocardiograph apparatus ECG Medlab P-OX 100 was used for testing purposes. 
Table 2 presents the results of SpO2 and HR for two volunteers, with and without 
respiratory distress history (RD-N, RD-Y). The physiological values were measured in the 
same room and for the volunteers seated on a chair.  
Analyzing the data from table 2, one can notice that in case of the healthy individual (RD-
N), values of XairQ lower than 80% and of RH near 50% do not induce changes in HR and 
SpO2, while a significant increase in the HR of RD-Y is felt. 
 

Sensor 
node 

T 

(°C) 

RH 
(%) 

XairQ
(%) 

RD-N RD-Y 

HR SpO2 HR SpO2 

S1 17.2 47.4 62.7 
72 98 96 92 

S2 17.8 44.2 69.6 

Table 2. S1 node: air quality and physiological parameter values for two volunteers, with 
and without respiratory distress history 

Nowadays, smart phones are provided with operating systems, such as Android OS and 
iOS, which make the implementation of complex software modules easier and faster. The 
authors have been working to develop an AirQ Android OS application for a multichannel 
sensing node. The graphical interface of the implemented application is presented in  
figure 14. 
The AirQ dashboard includes elements related with respiration activity (respiration rate). 
The data logging procedure is done using a smart phone embedded database that can 
synchronize with Web-based information system database through Wi-Fi or 3G/UMTS 
communication protocol. 
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Fig. 14. AirQ graphical interface implemented in the AndroidOS smart phone 

5. Conclusion 

The quality of life of pulmonary patients greatly depends on the quality of the air they 
breathe. The identification of the indoor air associated with pathophysiology of COPD and 
asthma disease is crucial for the primary-prevention strategy. In the preceding paragraphs 
the authors summarize the main elements of a distributed smart sensing network for indoor 
air quality assessment. Regarding sensing nodes and signal conditioning, two possible 
solutions were presented. One based on semiconductor heated sensors and another based 
on three electrodes’ cells. For data processing purposes, a hybrid solution based on 
polynomial and artificial neural networks modelling is presented. The last part of the 
chapter includes possible solutions for indoor air quality smart sensing networks.  
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