
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900

15

Variable Bit-Depth Processor for 8×8 Transform
and Quantization Coding in H.264/AVC

Gustavo A. Ruiz and Juan A. Michell
Department of Electronics and Computers, University of Cantabria

Spain

1. Introduction

The H.264/AVC (Advanced Video Codec) is the latest standard for video coding established

by the Joint Video Team ITU-T VCEG and ISO/IEC MPEG (Wiegand et al., 2003)

(Sühring, 2010) (Links, 2010). This standard has many innovations, such as hybrid

prediction/transform coding of intra frames and integer transforms (Richardson, 2004). Fig.

1 presents a simplified block diagram of the H.264/AVC encoder with the following main

blocks: motion estimation (ME), motion compensation (MC), intra prediction, forward

transform (FT), forward quantization (FQ), inverse quantization or re-scaling (IQ), inverse

transform (IT), entropy coding and de-blocking filter, among others. Initially, most of the

work done on H.264 was oriented toward its software implementation. However, in recent

years the contributions to the hardware implementation of H.264 have increased greatly,

enabling the implementation of fast architectures for real-time video applications (Lin et al.,

2008) (Finchelstein et al., 2009) (Liu et al., 2009).

Entropy
encoder

ME

Intra
prediction

NAL

Inter

Intra

Fn

(current)

Fn-1

(reference)

F’n

(reconstructed)
Deblocking

Filter

+

-

x X Y

Zz

MC

+

FT FQ

IT IQ
+

Fig. 1. Diagram of the H.264/AVC encoder.

The initial version of H.264/AVC used a transform hierarchy based on three transforms that
are computed in integer arithmetic, two of size 4×4 and one of 2x2. In July 2004, the first
amendment to the H.264 standard was presented, named Fidelity Range Extensions (FRExt)
(JVT, 2004), in which a new set of tools was specified to increase the high-fidelity video
encoding efficiency, focusing on professional applications and high-definition videos. One

www.intechopen.com

Recent Advances on Video Coding

310

of the most significant differences between the H.264 FRExt codification and the non-FRExt
one is the use of an 8×8 integer transform (Gordon, 2004), which is an integer approximation
of the 8×8 2-D Discrete Cosine Transform (DCT), as well as the original 4×4 and 2×2
transforms. The H.264 FRExt enables high quality video by supporting varied chroma sub-

sampling formats 4:2:0, 4:2:2 and 4:4:4 with greater color bit-depth ranging from 8-bit up
to 14-bit and resolution ranging from QCIF (176x144) to Full HD (1920x1080), both in
progressive and interlaced scanning. There are several AVC/H.264 profiles to encode pixels
with a bit depth greater than 8 bits: High 10 Profile (8 bits up to 10 bits), high 4:2:2 profile (8
bits up to 10 bits), high 4:4:4 predictive profile (8 bits up to 14 bits), high 10 intra profile (8
bits up to 10 bits), high 4:2:2 intra profile (8 bits up to 10 bits), high 4:4:4 intra profile (8 bits
up to 14 bits) and CAVLC 4:4:4 intra profile (8 bits up to 14 bits). Increasing bit depth
provides improved accuracy in the compression scheme as well as in motion compensation,
in intra prediction and in-loop filtering (Gish, 2002) (Gish, 2003) (Lavier, 2009). Indeed,
extensive experimentation proves that the coding efficiency with the largest bit-depth is
higher on videos that contain shallow textures and low noise, and perceivable gains exist in
the reduction of three kinds of artifacts: contouring, banding and mosquito noise. Currently,
bit-depth is especially focused on video quality (Sims et al., 2005). The coding efficiency can
be improved by increasing the internal bit depth in relation to the external bit depth used in
the video codec (Chujoh & Noda, 2007a, 2007b). Moreover, bit-depth scalability is
potentially useful considering that for the foreseeable future, conventional 8-bit and high-bit
digital imaging systems will exist simultaneously in the market, providing multiple
representations of different bit-depths for the same visual content (Chujoh & Noda, 2006)
(Gao & Wu, 2006) (Gao et al., 2010). Other applications of bit-depth are the bit-depth
transform of the characteristics for high bit-depth images to maximize the encoding
efficiency (Ito et al., 2010), the novel bit-depth expansion method used to remove the
contouring effects in smooth regions when mapping low-color bit-depth image to high-color
bit-depth (Chen et al., 2009) or the three bit-depth scalable coding architectures compatible
with H.264 (Chiang at al., 2009).
This chapter presents a variable bit-depth processor with pipeline architecture for real-time
implementation of the complete process for the 8×8 transform and quantization coding in
the H.264/AVC. The processor manages different bit-depths – 8 bits up to 14 bits – and
quantization parameters (QP) fulfilling the requirements of H.264/AVC. Hardware
solutions to reduce its complexity, combined with an efficient implementation, provide a
high-speed, high-throughput circuit at a low cost in area. A prototype of the processor,
which has been synthesized in a 130nm HCMOS technology, uses 26.5k gates and achieves a
maximum speed of 330 MHz with a throughput of 2640 Mpixels/s; this throughput is
enough to reach a processing capacity for 1080HD (1920×1088@30fps) real-time video
streams.
The remainder of this chapter is organized as follows. Sections 2 and 3 describe the 8×8
transform and quantization in H.264/AVC, providing the necessary mathematical
background with special emphasis on describing the effect of the bit-depth in quantization
and rescaling expressions. The 8×8 transform provides excellent compression performance
in high-resolution video streams with a level of complexity only slightly higher than the 4×4
transform. Its implementation can also be done in terms of additions and shifts and no
multiplications are necessary, despite the fact that the coefficients are not powers of 2 in all
cases. Quantization and rescaling enable the encoder to control the trade-off between bit-
rate and quality. H.264 assumes a bit-depth-dependent scalar quantizer without division

www.intechopen.com

Variable Bit-Depth Processor for 8x8 Transform and Quantization Coding in H.264/AVC

311

and/or floating arithmetic based on post and pre-scaling matrices. Section 4 describes the
proposed architecture for implementing the configurable process of transform and
quantization for an 8×8 luma block capable of operating with different bit-depths (8 bits up
to 14 bits). This section includes a description of the main modules: 1D configurable forward
and inverse transform, 8×8 transpose register and the optimized arithmetic circuit needed to
perform the computation of bit-depth-dependent quantization and rescaling in a unified
structure. A review of the state-of-the-art of the previous implementations and references is
also included. However, most hardware implementations only operate in 8 bits and further
bit-depths have not been taken into account. Section 5 shows the characteristics and the
performance of the proposed processor as well as comparisons with other published and
related implementations. These comparisons are made in terms of area, speed and power.

2. 8×8 Transform in the H.264/AVC

The FRExt amendment to H.264 proposes a scheme based on an 8×8 integer approximation
of DCT transform to be added to the existing 4×4 transform in order to improve high-
definition video compression (Gordon & Wiegand, 2004). This transform provides excellent
compression performance in high-resolution video streams with a level of complexity only
slightly higher than the 4×4 transform even though the coefficients are not powers of 2 in all
the cases. However, it’s implemented using additions and shifts and no multiplications are
necessary. Moreover it uses integer arithmetic which eliminates the mismatch issues
between the encoder and the decoder.
The forward 8×8 integer transform is applied to each block in the residual luminance
component (x) of the input video stream as follows

 t=X T x T  (1)

where T is a matrix of dimension 8×8 which represents the transform kernel defined as

8 8 8 8 8 8 8 8

12 10 6 3 -3 -6 -10 -12

8 4 -4 -8 -8 -4 4 8

10 -3 -12 -6 6 12 3 -101

8 -8 -8 8 8 -8 -8 88

6 -12 3 10 -10 -3 12 -6

4 -8 8 -4 -4 8 -8 4

3 -6 10 -12 12 -10 6 -3

T

 
 
 
 
 
    
 
 
 
 
  

 (2)

In the JM reference software (Sühring, 2010), the property of separability of this 8×8
transform is used to implement equation (1) in a separable way as a 1D horizontal (Eq. (3))
transform followed by a 1D vertical (Eq. (4)) transform according to the following equations

    t t t
1 2 3=p x T T T   (3)

    t t t t
1 2 3=tX p T T T   (4)

www.intechopen.com

Recent Advances on Video Coding

312

Equations (3) and (4) are obtained from the decomposition of T as a sparse matrix product

of matrices T1, T2 and T3 defined as

 1

1 0 0 0 0 0 0 1

0 1 0 0 0 0 1 0

0 0 1 0 0 1 0 0

0 0 0 1 1 0 0 0
=

1 0 0 0 0 0 0 -1

0 1 0 0 0 0 -1 0

0 0 1 0 0 -1 0 0

0 0 0 1 -1 0 0 0

T

 
 
 
 
 
 
 
 
 
 
 
  

 (5)

 2

1 0 0 1 0 0 0 0

0 1 1 0 0 0 0 0

1 0 0 -1 0 0 0 0

0 1 -1 0 0 0 0 0
=

0 0 0 0 3 / 2 1 1 0

0 0 0 0 1 0 -3 / 2 -1

0 0 0 0 1 -3 / 2 0 1

0 0 0 0 0 1 -1 3 / 2

T

 
 
 
 
 
 
 
 
 
 
 
  

 (6)

 3

1 1 0 0 0 0 0 0

0 0 0 0 1 0 0 1/4

0 0 1 1/2 0 0 0 0

0 0 0 0 0 1 1/4 0
=

1 -1 0 0 0 0 0 0

0 0 0 0 0 -1/4 1 0

0 0 1/2 -1 0 0 0 0

0 0 0 0 1/4 0 0 -1

T

 
 
 
 
 
 
 
 
 
 
 
  

 (7)

Table 1, which it is directly extracted from the JM reference software, shows the expressions

used to compute the 1D transforms involved in equations (3) and (4). In this Table, IF

denotes the vector of input values (IF represents either each row of x in equation (3) or each

column of p in (4)), OF denotes the transformed output vector (OF represents either each

row of p in equation (3) or each column of X in (4)), and a and b are internal variables. In a

3-stage butterfly, stage 1 implements the operations involved in T1, stage 2 implements T2

and stage 3 implements T3. The multiplications by the coefficients 1/2, 1/4 and 3/2=1+1/2

are implemented by means of shift-right (>>) operations which cause truncation errors

which are propagated through the datapath. To avoid mismatch between the encoder and

decoder, the implementation of 1D transform must fulfill the operations specified in the

standard. As a result, any implementation of this transform must be in compliance with the

arithmetic described in Table 1 and no other alternative is possible.

www.intechopen.com

Variable Bit-Depth Processor for 8x8 Transform and Quantization Coding in H.264/AVC

313

Stage 1 – T1 Stage 2– T2 Stage 3 – T3

a0=IF0+IF7
a1=IF1+IF6
a2=IF2+IF5
a3=IF3+IF4

a4=IF0IF7

a5=IF1IF6

a6=IF2IF5

a7=IF3IF4

b0=a0+a3
b1=a1+a2

b2=a0a3

b3=a1a2
b4=a5+a6+((a4>>1)+a4)

b5=a4a7 ((a6>>1)+a6)

b6=a4+a7 ((a5>>1)+a5)

b7=a5a6+((a7>>1)+a7)

OF0=b0+b1
OF1=b4+(b7>>2)
OF2=b2+(b3>>1)
OF3=b5+(b6>>2)

OF4=b0b1

OF5=b6 (b5>>2)

OF6=(b2>>1)b3

OF7=b7+(b4>>2)

Table 1. Forward 1D transform algorithm extracted from the JM software reference.

The inverse 8×8 integer transform of a block of coefficients of size 8×8 (Z) is defined through
the equation

 t=z T Z T  (8)

Likewise to the forward transform, the 8×8 inverse transform can be computed as the
concatenation of a 1D horizontal inverse transform (Eq. (9)) and a 1D vertical inverse
transform (Eq. (10)) through the decomposition of T as a sparse matrix product of matrices
G1, G2 and G3 giving

    1 2 3=q Z G G G   (9)

    t
1 2 3=tz q G G G   (10)

The G1, G2 and G3 matrices are defined as

1

1 0 0 0 1 0 0 0

0 0 0 1 0 -1 0 3/2

0 0 1 / 2 0 0 0 1 0

0 -1 0 -3/2 0 0 0 1
=

1 0 0 0 -1 0 0 0

0 1 0 0 0 3/2 0 1

0 0 -1 0 0 0 3/2 0

0 -3/2 0 1 0 1 0 0

G

 
 
 
 
 
 
 
 
 
 
 
  

 (11)

2

1 0 0 0 0 0 1 0

0 1 0 0 0 0 0 -1/4

0 0 1 0 -1 0 0 0

0 0 0 1 0 1/4 0 0
=

0 0 1 0 1 0 0 0

0 0 0 1/4 0 -1 0 0

1 0 0 0 0 0 -1 0

0 1/4 0 0 0 0 0 1

G

 
 
 
 
 
 
 
 
 
 
 
  

 (12)

www.intechopen.com

Recent Advances on Video Coding

314

 3

1 0 0 0 0 0 0 1

0 0 0 1 -1 0 0 0

0 1 0 0 0 0 1 0

0 0 1 0 0 -1 0 0
=

0 0 1 0 0 1 0 0

0 1 0 0 0 0 -1 0

0 0 0 1 1 0 0 0

1 0 0 0 0 0 0 -1

G

 
 
 
 
 
 
 
 
 
 
 
  

 (13)

Table 2 shows the expressions for computing these 1D transforms used in the JM reference
software. In a similar way to the forward 1D transform, a 3-stage butterfly structure is used
where stage 1 implements the operations specified in G1, stage 2 in G2 and stage 3 in G3.
Here, II denotes the vector of input values (II represents either each file of Z in equation (9)
or each column of q in (10)), OI denotes the transformed output vector (OI represents either
each file of q in equation (9) or each column z in (10)), and ia and ib are internal variables.

Stage 1 – G1 Stage 2– G2 Stage 3 – G3

ia0=II0+II4

ia1=II3+II5–II7–(II7>>1)
ia2=(II2>>1)–II6
ia3=II1+II7–II3–(II3>>1)
ia4=II0–II4
ia5=–II1+II7+II5+(II5>>1)
ia6=II2+(II6>>1)
ia7=II 3+II5+II1+(II1>>1)

ib0=ia0+ia6
ib1=ia1+(ia7>>2)
ib2=ia4+ia2
ib3=ia3+(ia5>>2)
ib4=ia4–ia2

ib5=(ia3>>2)ia5

ib6=ia0ia6
ib7=–(ia1>>2)+ia7

OI0=ib0+ib7
OI1=ib2+ib5
OI2=ib4+ib3
OI3=ib6+ib1

OI4=ib6ib1

OI5=ib4ib3

OI6=ib2ib5

OI7=ib0ib7

Table 2. Inverse 1D transform algorithm extracted from the JM software reference.

3. Quantization and rescaling in the H.264/AVC

The forward quantization process in H.264/AVC FRExt is performed for the transformed

coefficients (X) computed in equations (3) and (4) according to the following equations

 
   

i,j i,j i,j

i,j i,j

Y = QF X +lev_off >>qbits

sign Y =sign X


 (14)

where

 scqbits=QP /6+16 (15)

In this equation, QPsc is the scaled quantization parameter defined as

  scQP =QP+6 bd-8 (16)

QP takes an integer value (from 0 to 51) and determines the level of coarseness of the
quantization process enabling the encoder to control the trade-off between bit rate and

www.intechopen.com

Variable Bit-Depth Processor for 8x8 Transform and Quantization Coding in H.264/AVC

315

quality. The parameter bd represents the bit-depth video content, 8 ≤ bd ≤ 14. There are lots
of professional applications which require higher bit depth support such as studio
application and HD application. In H.264/AVC, 7 of 11 profiles support more than 8-bit bit

depth starting from High10 which supports 10-bit bit depth. High 444 Predictive and some
related profiles support up to 14 bits. As can be seen in equation (16), QPsc depends on the
quantization parameter QP as well as bd; note QPsc=QP for bd=8 bits. This means that QPsc
can have a value from 0 to 51 when bd=8 and from 36 to 87 for bd=14.

The approximation factor, lev_off, used in equation (14) is defined as

      lev_off= 682 intra+342 intra << qbits-11 , intra 0, 1   (17)

where intra=1 is used for intra coefficient quantization and intra=0 for inter coefficient

quantization.

The forward quantization matrix, QF, is

0 1 2 1 0 1 2 1

1 3 4 3 1 3 4 3

2 4 5 4 2 4 5 4

1 3 4 3 1 3 4 3

0 1 2 1 0 1 2 1

1 3 4 3 1 3 4 3

2 4 5 4 2 4 5 4

1 3 4 3 1 3 4 3

kf kf kf kf kf kf kf kf

kf kf kf kf kf kf kf kf

kf kf kf kf kf kf kf kf

kf kf kf kf kf kf kf kf
=

kf kf kf kf kf kf kf kf

kf kf kf kf kf kf kf kf

kf kf kf kf kf kf kf kf

kf kf kf kf kf kf kf kf

QF













 
 
 
 
 
 
 
 

 (18)

whose elements are obtained by evaluating the expression

    m sckf = mod(QP ,6), m , m 0, 1, 2,3,4,5MF   (19)

In this equation, MF is the multiplication factor matrix of dimension 6×6, and the term

mod(QPsc, 6) and m denote the row and column indices respectively. MF is specified as

13107 12222 11428 16777 15481 20972

11916 11058 14980 10826 14290 19174

10082 9675 12710 8943 11985 15978
=

9362 8931 11984 8228 11259 14913

8192 7740 10486 7346 9777 13159

7282 6830 9118 6428 8640 11570

MF

 
 
 
 
 
 
 
 
  

 (20)

The inverse quantization or rescaling “re-scales” the quantized transform coefficients (Y)

coefficients computed in (14). The rescaling process, which is different to that used in the

4×4 transform (Malvar et al., 2006), is defined by the following equation directly extracted

from the JM reference software as

      i,j i,j i,j scZ = QI <<4 Y << QP /6 +1<<5 >>6 (21)

www.intechopen.com

Recent Advances on Video Coding

316

where QI is the rescaling matrix defined as

0 1 2 1 0 1 2 1

1 3 4 3 1 3 4 3

2 4 5 4 2 4 5 4

1 3 4 3 1 3 4 3

0 1 2 1 0 1 2 1

1 3 4 3 1 3 4 3

2 4 5 4 2 4 5 4

1 3 4 3 1 3 4 3

ki ki ki ki ki ki ki ki

ki ki ki ki ki ki ki ki

ki ki ki ki ki ki ki ki

ki ki ki ki ki ki ki ki
=

ki ki ki ki ki ki ki ki

ki ki ki ki ki ki ki ki

ki ki ki ki ki ki ki ki

ki ki ki ki ki ki ki ki

QI













 
 
 
 
 
 
 
 

 (22)

whose elements are obtained by evaluating the expression

    m scki = mod(QP ,6), m , m 0, 1, 2, 3, 4, 5MI   (23)

Here, MI is the rescaling factor matrix specified as

20 19 25 18 24 32

22 21 28 19 26 35

26 24 33 23 31 42
=

28 26 35 25 33 45

32 30 40 28 38 51

36 34 46 32 43 58

MI

 
 
 
 
 
 
 
 
  

 (24)

4. Variable bit-depth processor for the 8×8 transform and quantization

Fig. 2 shows the block diagram of the proposed variable bit-depth processor for real-time
implementation of the complete process for the 8×8 transform and quantization coding in
the H.264/AVC. This processor includes the following main modules: configurable forward
and inverse 1D integer transform, bit-depth dependent quantization and rescaling module,
and transpose register memory. This architecture, which fulfils the requirements of
H.264/AVC FRExt, has been conceived to operate with different bit-depth (bd) – 8 bits up to
14 bits with the aim of achieving a high performance with a reduced hardware complexity
implementation. In order to provide an efficient processor, hardware solutions have been
developed for the different circuit modules. The 8×8 forward and inverse transforms are
calculated using the separability property simplifying its architecture to a single
configurable 1D forward (FT)/inverse (IT) transform processor and a transpose register
array. Forward quantization (FQ) and rescaling (IQ) operations are computed in the same
circuit for the different bit-depth requirements. Here, new expressions are proposed
allowing efficient hardware implementation by avoiding the sign conversion and
minimizing the arithmetic operations involved. Furthermore, an exhaustive analysis in the
dynamic range of the datapath was performed to fix the optimum bus widths with the aim
of reducing the size of the circuit while avoiding overflow. Finally, the critical paths of the
various computing units have been carefully analyzed and balanced using a pipeline scheme
in order to maximize the operation frequency without introducing an excessive latency.

www.intechopen.com

Variable Bit-Depth Processor for 8x8 Transform and Quantization Coding in H.264/AVC

317

M
U
X

Reconstruction

Entropy coding

R
E

G
R

E
G

M
U
X

Residual luma

M
U
X

8 pixels

R
E

G
R

E
G CONFIGURABLE

FORWARD
&

INVERSE
1D TRANSFORM

bd QP

QUANTIZATION
&

RESCALING

FT/IT

(x)

(z)

(Y)

FQ/IQ

BUSA

BUSB

IN

8×8
Transpose
Register

(TR)

OUT

Fig. 2. Block diagram of the variable bit-depth processor.

This circuit processes 8 input data in parallel, starting by reading the residual luminance

component (x) row by row until the entire 8×8 input block is read. The forward 1D

transform module generates the intermediate coefficients p to be stored in the transpose

register row-wise. After 8 clock cycles, these coefficients are read column-wise and

processed again in the 1D transform module. Then, the resulting X coefficients are

quantized column by column in parallel in the quantization and rescaling module and

stored in the transpose register column-wise. On finishing this operation, the quantized

coefficients (Y) are rescaled row by row and the results (Z) are sent to inverse 1D transform

whose output data (q) are stored in the transpose register row-wise. Finally, the coefficients

q are fetched to the transpose register column-wise to be processed in the inverse 1D

transform to obtain the recovered residual luminance (z).

4.1 Forward and Inverse 8×8 transform

The 8×8 transform proposed in FRExt for addition to the JVT specification in the

H.264/AVC is based on the fact that at SD resolutions and above, the use of block sizes

smaller than 8×8 is limited. One of the first papers (Amer et al., 2005) related to this matter

was the FPGA pipelined implementation of a simplified 8×8 transform and quantization.

Another FPGA implementation of an algebraic integer quantization approach to computing

the 8×8 TRANSFROM was presented in (Wahid et al., 2006). (Silva et al., 2007) proposed

high-throughput architecture of the forward 8×8 transform to encode high-definition videos

in real time with a latency of 5 clock cycles to process 1D transform. This architecture was

synthesized in FPGA with a minimum period of 8.13ns and in a TSMC 0.35µm CMOS

standard cell technology leading to a period of 8.05ns. Recently, (Park & Ogunfunmi, 2009)

presented a reduced and parallel FPGA implementation of an 8×8 integer transform,

quantization and scaling for H.264. Here, each pixel is processed one by one on a simplified

pipelined architecture without multiplication.

In the adaptive block-size transform of the FRExt, different kinds of transforms are required:

8×8 forward/inverse transform, 4×4 forward/inverse transform, 4×4 forward/inverse

Hadamard transform and 2×2 forward/inverse Hadamard transform. In order to reduce

hardware, diverse configurable data-path architectures to support all of these transforms in

www.intechopen.com

Recent Advances on Video Coding

318

a unified scheme have been proposed. Other examples of this kind of architectures include;

the multi-transform processor where the quantization is performed at the pace demanded

by the entropy coder in (Bruguera & Osorio, 2006), the low hardware cost suitable for VLSI

implementations in (Fan, 2006), the reduced hardware and high latency in (Chao et al.,

2007), the high-performance architecture for high-definition applications in (Ma & et. al,

2007), the IP design to be implemented on an ASIP-controlled SoC platform in (Ngo et al.,

2008), the high-performance, low-power unified transform architecture in (Choi et al., 2008),

the highly parallel joint circuit architecture in (Li et al., 2008), and the fast, high-throughput

and cost-effective implementation in (Hwangbo & Kyung, 2010).

INVERSE TRANSFORM (IT)

IF0 IF0 /ib0

IF1 /ib2

IF2 /ib4

IF3 /ib6

IF4 /ib1

IF5 /ib3

IF6 /ib5

IF7 /ib6

IF1

IF2

IF3

IF4

IF5

IF6

IF7

a0 /OI0

a1 /OI1

a2 /OI2

a3 /OI3

a4 /OI4

a5 /OI5

a6 /OI6

a7 /OI7

a0 /II0

a1 /II2

a2 /II6

a3 /II4

OF0 /ib0

OF2 /ib2

OF4 /ib6

OF6 /ib4

II0

II2

II4

II6

a4 /II1

a5 /II3

a6 /II5

a7 /II7

OF1 /ib3

OF3 /ib1

OF5 /ib7

OF7 /ib5

II1

II3

II5

II7

OF0 /OI0

OF1 /OI1

OF2 /OI2

OF3 /OI3

OF4 /OI4

OF5 /OI5

OF6 /OI6

OF7 /OI7

FT/IT

I/O
Processor

Config.

Even
Processor

Config.
Odd

Processor

FORWARD TRANSFORM (FT)

IF0

IF1

IF2

IF3

IF4

IF5

IF6

IF7

a0

a1

a2

a3

a4

a5

a6

a7

OF0

OF2

OF4

OF6I/O
Processor

Forward

Even
Processor

Forward

Odd
Processor

OF1

OF3

OF5

OF7

II0

II2

II6

II4

II1

II3

II5

II7

ib0

ib2

ib6

ib4

ib3

ib1

ib7

ib5

IO0

IO1

IO2

IO3

IO4

IO5

IO6

IO7

I/O
Processor

Inverse

Even
Processor

Inverse

Odd
Processor

CONFIGURABLE FORWARD & INVERSE 1D TRANSFORM

Fig. 3. Block diagram of the forward/inverse transform. The equivalent scheme is also
shown for the forward transform (bottom-left) and inverse transform (bottom-right).

www.intechopen.com

Variable Bit-Depth Processor for 8x8 Transform and Quantization Coding in H.264/AVC

319

Initially, the specifications of H.264 adopted an integer approximation of 4×4, but when

transforms are larger, significant compression performance gains have been reported for

High-Definition (HD) resolutions. Thus, a new integer transform of 8×8 was proposed in the

Fidelity Range Extensions (FRExt) to be added to the previously existing specifications,

which were verified in SD resolutions. In fact, the use of block sizes 8x8 and bigger is

dominant. Following this assumption, we proposed architecture for computing the 8×8

forward/inverse transform based on a configurable high-throughput 1D processor which

has been conceived to implement the arithmetic operations described in Table 1 and Table 2

aiming to fulfill two objectives. First, to avoid mismatches between the encoder and decoder

there is no possible alternative in the implementation of the operations other than those

specified in these tables, which are directly extracted from the JM reference software.

Second, these equations share compatible arithmetic which leads to hardware reduction if a

configurable data-path is used. To comply with these prerequisites, arithmetic operations

presented in Tables I and II can be implemented in terms of a three-processor architecture

that fulfils the requirements of H.264. These processors, as is shown in Fig. 3, are named

I/O, even and odd. The operation mode, forward (FT) and inverse (IT), is arranged by

multiplexers which select the inputs and modify the inner arithmetic operations of each

processor. The schematic at the bottom left in Fig. 3 represents the equivalent scheme for

computing the forward 1D transform. In this configuration, the eight elements of IF are

input to the I/O processor and their outputs run in parallel into the even and odd

processors to generate the output OF. In the first 1D transform, the input IF takes each row

of x and generates each row of p at the output OF according to equation (3), and in the

second one, each column of p is processed to generate each column of X according to

equation (4). In contrast, the schematic at the bottom left shows the equivalent scheme for

the inverse 1D transform. The input data II are connected to the even and odd processors

while the output data OI are generated in the I/O processor. In this configuration, the first

inverse 1D transform processes each row of Z, generating each column of q at the output OI

according to equation (9), and the second one q is read column by column generating each

row of z according to equation (10).

Fig. 4 shows the data-path of the processors I/O, even and odd. The I/O processor

implements the arithmetic operations involved in T1 (Stage 1 in Table 1) and in G3 (Stage 3

in Table 2). It is exclusively made up of adders and subtractors where the inputs are

properly arranged depending on the operation mode: forward or inverse. Nonetheless, the

operations of T2, G2, T3 and G1 are split up into two processors (even and odd) aiming for

the maximum compatibility. As a result, the arithmetic of the even processor varies

depending on the operation mode as

 

 

 
 
 

0 0 3 1 2 0 0 4 2 6

2 0 3 1 2 2 0 4 2 6

4 0 3 1 2 4 0 4 2 6

6 0 3 1 2 6

1

() 1 1

() 1
Pr Pr

() 1 ()

OF a a a a ib II II II II
Forward Inverse

OF a a a a ib II II II II
Even Even

OF a a a a ib II II II II
ocessor ocessor

OF a a a a ib II

        
          
         
        0 4 2 6 1II II II






    

 (25)

This means that this processor is configurable by means of multiplexers used to modify the

data path according to the operation mode. In a similar way, the odd processor implements

the following equations

www.intechopen.com

Recent Advances on Video Coding

320

    
    
    
    

4 5 6 4 4 1 4 7

5 4 7 6 6 3 5 6

6 4 7 5 5 5 6 5

7 5 6 7 7 7 7 4

1 ; 2

1 ; 2

1 ; 2
Pr

1 ; 2

b a a a a OF b b
Forward

b a a a a OF b b
Odd

b a a a a OF b b
ocessor

b a a a a OF b b

        


       


       
         

 (26)

    
    
    
    

1 5 3 7 7 1 1 7

3 1 7 3 3 3 3 5

5 7 1 5 5 5 5 3

7 3 5 1 1 7 7 1

1 ; 2

1 ; 2

1 ; 2
Pr

1 ; 2

ia II II II II ib ia ia
Inverse

ia II II II II ib ia ia
Odd

ia II II II II ib ia ia
ocessor

ia II II II II ib ia ia

        


       


        
        

 (27)

IF0 /ib0

IF7 /ib7

a0 /OI0

a4 /OI7

IF1 /ib2

IF6 /ib5

a1 /OI1

a5 /OI6

IF2 /ib4

IF5 /ib3

a2 /OI2

a6 /OI5

IF3 /ib6

IF4 /ib1

a3 /OI3

a7 /OI4

b0 /ia0

b2 /ia4

b1 /ia6

b3 /ia2

>>1

R
E

G
R

E
G

R
E

G
R

E
G

a0 /II0

a3 /II4

R
E

G
R

E
G

R
E

G
R

E
G

a1 /II2

a2 /II6

OF0 /ib0

OF4 /ib6

OF2 /ib2

OF6 /ib4

>>1

>>1

>>1

FT/IT

>>1

b4 /ia7

R
E

Ga4 /II1

a5 /II3

a6 /II5

b5 /ia1

R
E

Ga4 /II5

a3 /II7
>>1

a7 /II3

b6 /ia3

R
E

Ga4 /II1

a5 /II3
>>1

a7 /II7

>>1

b7 /ia5

R
E

Ga7 /II5

a5 /II7

a6 /II1

a4 /II1

a5 /II3

a6 /II5

a7 /II7

R
E

G
R

E
G

R
E

G
R

E
G

>>2

>>2

>>2

>>2

b4 /ia3

b7 /ia5

b5 /ia1

b6 /ia7

OF1 /ib3

OF7 /ib5

OF3 /ib1

OF5 /ib7

FT/IT

EVEN PROCESSOR

ODD PROCESSOR

I/O
PROCESSOR

Fig. 4. Schematic of the processors shown in Fig. 3.

The entire circuit to work out the 1D transform takes a total of 32 additions/subtractions
and 10 right-shifts that are built by means of data-bus wiring (no additional hardware is
necessary). To prevent overflow in the computing of the transform, we consider the biggest

www.intechopen.com

Variable Bit-Depth Processor for 8x8 Transform and Quantization Coding in H.264/AVC

321

bit-depth of 14 bits for each luminance sample; this means an unsigned integer number from
0 to 16383. However, this processor operates with the residual luminance whose value is
±16383, 15 bits being necessary for its representation. If k represents the input bus width,
then k=15 bits for the first forward 1D transform and k=18 for the second one. The
intermediate data a0 to 7 must be of k+1 bits, b0 to 3 of k+2, b4 to 7 of k+3, and, finally, the output
data of k+3. The range of the coefficients is ±16383·8=±131064 (18 bit) for the first 1D
transform, and ±131064·8=±1048512 (21 bit) for the second one. However, the quantization
and scaling process increases the data-path by 1 bit, giving input data of 22 bits before
calculating the inverse 8×8 transform, this bit width being what limits the data-path of the
whole transform module to prevent overflow. This means that all arithmetic in the forward
and inverse 1D transform module is performed in 22 bits and the latency is 2 clock cycles.

4.2 Transpose register array
The transpose memory stores 8×8 data and allows simultaneous read and write operations
while doing matrix transposition. To achieve this, the 8 input data are read out of the buffer
column-wise if the previous intermediate data were written into the buffer row-wise, and
vice versa. The transpose buffer based on D-type flip-flops (DFF) (Zhang & Meng, 2009) has
been chosen as it is more suitable for pipeline architectures, unlike other proposed
architectures based on RAM memories. Indeed, solutions based on a single RAM (Do & Le,
2010) lead to high latency, while those based on duplication of the RAMs (one for processing
columns and the other for rows) have a high area cost (Ruiz & Michell, 1998), and those
based on bank of SRAMs have a high cost in area (Bojnordi et al., 2006) or in alignment
modules (Li et al., 2008).

out0

out1

out2

out3

out4

out5

out6

out7

inp0

inp1

inp2

inp3

inp4

inp5

inp6

inp7

Fig. 5. 8×8 transpose register array.

Fig. 5 shows the schematic of an 8×8 transpose register array of 22 bits each element whose
basic cell is a FFD and a multiplexer. Each FFD of the array is interconnected via 2:1
multiplexers forming 8 shift-registers of length 8 either in the horizontal direction (columns)
or in the vertical direction (rows). A selection signal controls the direction of shift in the

www.intechopen.com

Recent Advances on Video Coding

322

registers. The loading and shifting mode in the buffer alternates each time a new block of
input data is processed: the even (odd) 8×8 block is stored by columns (rows) in the buffer.
As a result, the transpose buffer has a parallel input/output structure and the data are
transposed on the fly supporting a continuous data flow with the smallest possible size and
minimal latency (8 clock cycles).

4.3 Quantization and rescaling
H.264 assumes a scalar quantizer avoiding division and/or floating point arithmetic. Most
of the proposed quantization and rescaling hardware solutions attempt to directly
implement the expressions defined in the standard, but only a few facilitate its
implementation. Moreover, all of them work in 8-bit bit-depth and further bits are not
considered. (Amer et al., 2005) presented a simple forward quantizer FPGA design to be run
on a Digital Signal Processor. (Wahid et al., 2006) proposed an Algebraic Integer
Quantization to reduce the complexity of the quantization and rescaling parameters
required for the H.264. The architecture described by (Bruguera and Osorio, 2006) is based
on a prediction scheme that allows parallel quantization by detecting zero coefficients to
facilitate the entropy encoding. In (Chunganet al., 2007), the multiplier and RAM/ROM
were removed by using a 16 parallel shift-adder scheme. An inverse quantizer based on 6-
stage pipelined dual issue VLIW-SIMD architecture was proposed in (Lee, J.J. et al., 2008).
(Pastuszak, 2008) presented an architecture in a FPGA capable of processing up to 32
coefficients per clock cycle. (Lee & Cho, 2008) proposed a scheme to be applied in several
video compression standards such as JPEG, MPEG-1/2/4, H.264 and VC-1 where only one
multiplier is used to minimize circuit size. A simplification of the quantization process to
reduce overhead logic by removing absolute values leads to a decrease of around 20% in
power consumption (Owaida et al., 2009). Another simplification consists of replacing the
multiplier with adders and shifters to reduce hardware (Park & Ogunfunmi, 2009). An
inverse quantization that adopts three kinds of inverse quantizers based on prediction
modes and coefficients used in a H.264/AVC decoder was presented in (Chao et al., 2009).
(Husemann et al., 2010) proposed a four forward parallel quantizer architecture
implemented in a commercial FPGA board.

We propose a single circuit to compute the forward quantization and rescaling for different
bit-depth requirements. In both procedures, multiplication, addition and shifting operations
are involved and a configurable architecture enables the same module to perform all the
specific operations in order to save hardware. The forward quantization (FQ) operates, cycle
by cycle, on the coefficients of each column of the forward 8×8 transform (X) and the
quantized coefficients (Y) are generated according to what is established in equation (14). In
this equation, the modulus operation is necessary because the arithmetic operation
“>>qbits” performs an integer division with truncation of the result toward zero which
causes errors for Xi,j<0. For example, the integer 3 in a 4-bit two’s-complement
representation is 1101. The operation 3>>2 should be 0, but 1101>>2 gives 1. To resolve
this error, 1<<n1 must be added to the negative number, where n is the number of right
shifts. Thus, (1101+1<<21)>>2 is 0. Applying this procedure, the absolute value of

i, j
X can

be eliminated from equation (14) by assigning lev_off the same sign as Xi,j. To do this, a term
1<<qbits1 must be added when Xi,j <0. Then, equation (14) can be directly implemented as
follows

  i,j i,j i,jY = QF X +lev >>qbits (28)

www.intechopen.com

Variable Bit-Depth Processor for 8x8 Transform and Quantization Coding in H.264/AVC

323

where

,

,

_ () _ , 0

_ () 1 1 _ , 0

i j

i j

lev off lev off for X
lev

lev off qbits lev off for X

         
 (29)

Therefore,
i, j

X and a subsequent sign conversion should not be necessary in equation (28)
which leads to a more efficient hardware implementation than that directly proposed from
equation (14). The design to implement equation (28) must be able to manage up to 14-bit
depth, that is bd=14. In this case, equation (16) shows that QPsc varies from 36 to 87 as QP
does from 0 to 51, and qbits from 22 to 30 according to equation (15). From equations (17)
and (29), lev_off(+) for intra mode varies from 1396736 to 357564416, lev_off() for intra
mode from 2797567 to 716177407, lev_off(+) for inter mode from 700416 to 179306496 and
lev_off() for inter mode from 3493887 to 894435327. These bounds fix the lev’s bit width to
30 bits. Table 3 depicts the definition of lev according to the sign of Xi,j and whether intra is 0
or 1, which can be easily implemented by using basic logic and shift operations.

Binary representation

682<<(5+QPSC/6)

-682<<(5+QPSC/6)+(1<<qbits)-1in
tr

a=
1

342<<(5+QPSC/6)

-342<<(5+QPSC/6)+(1<<qbits)-1in
tr

a
=

0

lev

6+QPSC/6

30

Sign
extension

X i,j≥0

X i,j<0

X i,j<0

10

X i,j≥0

0 . . . 0 . . . 0 0 1 0 1 0 1 0 1 0 10 . . . 0 . . . 0

0 . . . 0 . . . 0 1 1 0 1 0 1 0 1 0 01 . . . 1 . . . 1

0 . . . 0 . . . 0 0 0 1 0 1 0 1 0 1 10 . . . 0 . . . 0

0 . . . 0 . . . 0 1 0 1 0 1 0 1 0 1 01 . . . 1 . . . 1

Table 3. Definition of lev.

The inverse quantization (IQ) or rescaling specified in (21) can be simplified if this equation
is rewritten as follows

     i,j i,j i,j scZ = QI Y << QP /6 +2 >>2 (30)

Equations (28) and (30) are hardware compatible as they share the same basic arithmetic
operations. Fig. 6.a shows the block diagram of the quantizer and rescaling module that is
capable of processing 8 coefficients in parallel. It is composed of a control circuit and an 8-
way data-path based on a configurable arithmetic unit. The control circuit generates the
intermediate parameters needed for the forward quantization or rescaling mode, all of these
are obtained from the scaled compression factor (QPsc), the intra value (intra), the operation
mode (FQ/IQ) and the operation synchronization (init). These parameters are: lev(+) and

lev(), {kn, ko, kp}, qbits and qpper defined as

 scqpper=QP /6 (31)

The three coefficients {kn, ko, kp} represent either the quantization multiplication factors
kfmQFi,j specified in equations (18), (19) and (20) or the rescaling multiplication factors
kimQIi,j defined in equations (22), (23) and (24). The indexes {n,o,p} take some of these
possible values {0, 1, 2}, {1, 3, 4} or {2, 4, 5}. Only three coefficients need to be generated for
the 8 arithmetic units because each row or column of the matrix QF in (18) or the matrix QI

www.intechopen.com

Recent Advances on Video Coding

324

in (22) is composed of three different coefficients. All coefficients are read in a look-up table
depending on the operation mode and the value of QPsc.

22X0,j /Yi,0

QPSC

intra

kn
init

lev(-)

lev(+)

qpper

qbits5

30

30

4

15

14

15

7

1

1

FQ/IQ 1

CONTROL

kp

kq

22 Y0,j /Zi,0
ARITHMETIC UNIT

22X1,j /Yi,1 22 Y1,j /Zi,1
ARITHMETIC UNIT

22X2,j /Yi,2 22 Y2,j /Zi,2
ARITHMETIC UNIT

22X3,j /Yi,3 22 Y3,j /Zi,3
ARITHMETIC UNIT

22X4,j /Yi,4 22 Y4,j /Zi,4
ARITHMETIC UNIT

22X5,j /Yi,5 22 Y5,j /Zi,5
ARITHMETIC UNIT

22X6,j /Yi,6 22 Y6,j /Zi,6
ARITHMETIC UNIT

22X7,j /Yi,7 22 Y7,j /Zi,7
ARITHMETIC UNIT

a)

lev(−)

lev(+)

Xi,j / Yi,j

QFi,j /QIi,j 4-stage pipeline
multiplier

delay 4

1

0

<<qpper

FQ/IQ

sig(Xi,j)

1

0

FQ/IQ

1

0

2

1 0

>>

2 q
b

its

Yi,j / Zi,j

FQ/IQ

b)

Fig. 6. Configurable forward quantizer and scaling module: a) Block diagram, and b)
Schematic of the arithmetic unit.

Fig. 6.b shows a more detailed description of the configurable arithmetic unit. The main
arithmetic elements are a multiplier and a adder, and multiplexers and additional logic are
used to configure the implementation of equations (28) and (30). The multiplier has a high
area cost and delay, so some papers (Michael & Hsu, 2008) (Zhang and et al., 2009) have
proposed replacing it with a reduced number of shifts and additions by modifying the QF
factors to be more suitable for hardware optimization. However, they introduce an error
between the quantization and the inverse quantization which leads to a reduction of the

www.intechopen.com

Variable Bit-Depth Processor for 8x8 Transform and Quantization Coding in H.264/AVC

325

rate-distortion performance. In order to avoid mismatching between encoder and decoder,
in our approach an implementation of the whole multiplier is selected, with a pipeline
strategy to increase its speed. After an exhaustive analysis, a Wallace-tree 4-stage pipeline
multiplier was demonstrated to be the optimal solution to balance the critical path of the
multiplier with the critical path of the rest of circuit. In the FQ mode, first the inputs Xi,j and
QFi,j are multiplied. A multiplexer selects the factor lev(+) or lev() to be added to the
output of the multiplier depending on the sign of Xi,j. Here, a delay of 4 clock cycles in the
signal of sign(Xi,j) is introduced to compensate for the delay in the multiplier. At the output
of the adder, a qbit shift-right (>>) operation is performed to obtain the quantized coefficient
Yi,j. In the IQ mode, the inputs Yi,j and QIi,j are multiplied. A constant 2 is added to the result
and the last >>2 operation generates the scaled coefficients Zi,j.

5. ASIC implementation and comparisons

A prototype of the proposed bit-depth processor has been designed and verified using
different abstraction levels. Fig. 7 presents the simulation environment used to verify the
functional behavior of the proposed architecture by comparing the data processed with
those provided by the JM reference software (Sühring, 2010) for different data blocks of
input residual luminance. The results of the diverse comparisons performed between the
simulation and the reference software indicate that there are no differences between them.
Initially, the processor was designed using the CoWare® Signal Processing Worksystem
(SPW), editing the block diagram with the elements of the Hardware Design System (HDS)
library. The first test bench was made by simulating the design with Simulation Program
Builder-Interpreted (SPB-I). The code description in Verilog-RTL was automatically
generated by the Verilog RTL Link from the HDS library. A new comparison was performed
at this abstraction level to guarantee the correct description of the generated code. Finally,
this Verilog description was synthesized using the Synopsys design compiler under
HCMOS9 STMicroelectronics 130nm standard cell technology. The resulting circuit contains
26.5k cells with an area of 625700m2 and the estimated maximum operating frequency is
330 MHz. After the logic synthesis, the PrimePowerTM tool was applied to estimate the
power consumption, giving 120mW@330MHz (VDD=1.2V). The data throughput is 2640
Mpixels per second. This characteristic enables enough processing capacity for 1080HD
(1920x1088@30fps) real-time video streams.
With the proposed architecture, each 8×8 block input data is processed with a latency of 44
clock cycles according to the time scheduling described in Fig. 8. BUSA indicates the output
of the transform module, BUSB the output of quantization and scaling module, and IN and
OUT are the input and output of the transpose register (TR); all these signals are depicted in
Fig. 2. On inputting luma (x), it takes 3 clock cycles to generate the coefficients (p) and the
output coefficients (X) are obtained from the 13th clock. These coefficients go to the
quantization module and the “quantized” coefficients (Y), which are generated from the 18th
clock cycle, are stored in the transpose register. In the rescaling process, the data Y are read
in transpose order to compute the “rescaled” coefficients Z from the 31st clock cycle. On
processing these coefficients in the 1D transform module, the intermediate data q are
obtained in the 34st clock cycle. Finally, the recovered residual luminance (z) is ready to be
processed from the 44th clock cycle and the next luma block can be input in the 49th clock
cycle.
For comparison purposes, Table 4 shows the characteristics and the performances of
previously published ASIC implementations, although some of them only implement parts

www.intechopen.com

Recent Advances on Video Coding

326

Test bench

JM software

Data flow design of the
Bit-depth processor

Data
comparison

COWARE (SPW)

Synthesis

Verilog RTL

Standard cells

Test Stimuli

Data
processed

Fig. 7. Block diagram for functional verification of the proposed bit-depth processor.

FQ IQ

Xt

clk

Y

Z

0 10
data in

20 30 40 50

p

5 15 25 35 45 55

x

ztBUSA

Luma in

BUSB

Forward 8�8 transform

q

Inverse 8�8 transform

TR

Next

IN

OUT

p

pt

Yt

q

qt

Yt

Fig. 8. Time scheduling.

of the H.264/AVC transform coding process. In (Fan, 2006), a cost effective architecture for
fast (1-D) 4×4 and 8×8 forward/inverse transform was derived through the Kronecker and
direct sum operations. The configurable architecture presented in (Li et al., 2008) supports
the six kinds of 4×4 transforms required in the adaptive block-size transform of H.264 in
order to more efficiently reuse the data-path; in this architecture, one 8×8 transform can be
finished within 16 clock cycles. Based on this reusability property, another unified 4×4 and
8×8 transform architecture is proposed in (Choi at al., 2008). To increase its throughput, 4
units operate in parallel and only 5 clock cycles are needed to perform an 8×8 transform.
The low power consumption is because the circuit works at quite low speed (27MHz). A
pipeline 8×8 2D forward transform architecture is proposed which is capable of consuming
and producing one sample per clock cycle in (Silva et al., 2007). It uses two 1-D transform
processors and transpose RAM with a latency of 144 clock cycles. The high-throughput and
cost-effective implementation of six different integer transforms is proposed in (Hwangbo &
Kyung, 2010). This implementation maximizes the shared hardware and it is able to process
64 input pixels in a two-stage pipelined architecture to compute the direct 8×8 transform or
two 4×4 transforms in parallel. Another flexible architecture is presented in (Chao at al.,
2007), which is suitable for a H.264 high profile decoder capable of processing a macroblock
in 95 clock cycles with the 8×8 inverse transform or only 54 clock cycles without it. The
architecture described in (Lee & Cho, 2008) performs the forward 4×4 and 8×8 transform

www.intechopen.com

Variable Bit-Depth Processor for 8x8 Transform and Quantization Coding in H.264/AVC

327

Ref.
Transform FQ

IQ
bd

Techn.
(µm)

Area
(gates)

Speed
(MHz)

Throughput
(Mpixel/s)

Power
Type Size

(Fan, 2006)
FWD
INV

(1-D)
4, 8

no
no

8
TSMC

0.18
6.5k 125 1000

2.5mW
@62.5MHz

(Li et al.,
2008)

FWD
INV

4×4
8×8

no
no

8
UMC
0.18

13.6k+
RAM

200 800 N/A

(Choi at al.,
2008)

FWD
4×4
8×8

no
no

8
AMS
0.35

27k 27 346
9.78mW
@27MHz

(Silva et al.,
2007)

FWD 8×8
no
no

8
TSMC

0.35
33.9k 125 124 N/A

(Chao at al.,
2007)

INV
4×4
8×8

no
no

8
TSMC

0.18
18.5k 125 860 N/A

(Huang et al.,
2008)

FWD
INV

4×4
8×8

no
no

8
UMC
0.18

39.8k
(NAND2)

200 400
38.7mW
@50MHz

(Hwangbo &
Kyung, 2010)

FWD
INV

4×4 no
no

8
UMC
0.18

63.6k 200
3200 86.9mW

@200MHz 8×8 6400
(Lee & Cho,

2008)
FWD

4×4
8×8

yes
no

8 0.18
36.6k+
RAM

103 412 N/A

Pastuszak,
2008)

FWD
INV

4×4
8×8

yes
yes

8
0.35 229k 79 2528

N/A
0.18 320k 76 2432

(Bruguera et
al., 2006)

FWD
INV

4×4
8×8

yes
yes

8
AMS
0.35

23.8k 67 266 N/A

(Michell et
al., 2011)

FWD
INV

8×8 yes 8
STM
0.13

29.3k 330 2640
147mW

@330MHz

Ours
FWD
INV

8×8
yes
yes

8 to
14

STM
0.13

26.5k 330 2640
120mW

@330MHz

Table 4. Comparison with other architectures for ASIC implementation.

and quantization for unified standard video CODEC (JPEG, MPEG-1/2/4, H.264 and VC-1).
A high-throughput architecture which integrates forward transform, quantization, scaling,
inverse transform and the sample reconstruction is presented in (Pastuszak, 2008). It uses
reconfigurable 4×4 and 8×8 transform architecture and is able to process 32
samples/coefficients per clock cycle. The 8×8 transform is performed in only 2 clock cycles
by processing a whole block of 64 input samples through a scheme based on eight 1-D
transforms operating in parallel. The quantization and rescaling operate on 32 coefficients in
each clock cycle. Although this architecture has low latency, the cost in area is 10 times more
than in other proposed designs. In a similar way to (Li et al., 2008), a single data-path for
implementing 4×4 and 8×8 forward and inverse transform as well as Hadamard transform
is presented in (Bruguera et al., 2006). However, the quantization and rescaling are
computed using only one multiplier each and they are performed at the pace demanded by
the entropy coder.
In a previous work (Michell et al., 2011), we described a parallel architecture capable of
processing 8×8 blocks without interruption with a bit-depth fixed to 8 bit. The latency of 38
clock cycles is achieved by implementing in a pipeline scheme each module used in the
transform coding. Indeed, the procesor presented here uses a configurable architecture
based on the reusing of different variable bit-depth modules to reduce hardware and power,
all of this with a latency of 44 clock clycles. It has been designed attempting to achieve the

www.intechopen.com

Recent Advances on Video Coding

328

maximum throughput at the highest possible speed. To achieve these goals, the pipeline
stages have been balanced during the synthesis to maintain the critical path equivalent to 2
adders as a limit, independently of the technology used. Other challenges were the
hardware-efficient modifications in the quantization and rescaling module to reduce the
arithmetic complexity combined with balanced pipelined multipliers, as it is the more
complex arithmetic component, to attain the high performance parameters. According to the
results shown in Table 4, our design is the fastest. Its high throughput it is only surpassed
by that in (Hwangbo & Kyung, 2010), which processes 16 and 32 input samples in
comparison with 8 in our design, but that scheme has a large area cost despite the fact that it
only implements the direct transform without quantization and rescaling. The design
proposed in (Bruguera et al., 2006) has fewer gates than ours but the quite low speed
(67MHz) reduces the throughput to 266Mpixels/s. By observing the differences in the speed
and throughput achieved by our processor, we can conclude that these differences cannot
only be attributed to the technology used, but are a consequence of the hardware
modifications introduced in our design.

6. Conclusions

In July 2004, a new amendment called Fidelity Range Extensions (FRExt) was added to the
H.264/AVC as a standardization initiative motivated by the rapidly growing demands
focusing on professional applications and high-definition videos. Improvements present in
FRExt include a new 8x8 integer transform, the variety of chroma sub-sampling formats and
a greater colour bit-depth ranging from 8-bit up to 14-bit. Increasing bit depth provides
improved accuracy in the coding efficiency with a reduction of noise and artifacts. Indeed,
bit-depth scalability is potentially useful as, in a foreseeable future where different bit-
depths will simultaneously coexist in the market, it provides multiple representations of
different bit-depths for the same visual content.
This chapter presents a variable bit-depth processor with pipeline architecture for real-time
implementation of the complete process for the 8×8 transform and quantization coding in
the H.264/AVC. This architecture has been conceived with the aim of achieving a high
operation frequency and high throughput without increasing the hardware complexity.
Initially, the mathematical expressions of the 8×8 transform and quantization used in the
standard H.264/AVC are presented to facilitate the readers’ understanding of this matter. A
review of the state-of-the-art of the previous implementations and references is also included;
here, special emphasis is given to describing the effect of the bit-depth in quantization and
rescaling formulas. However, most hardware implementations only operate in 8 bits and
further bit-depths have not been taken into account. In order to achieve an efficient
implementation of the processor, hardware solutions have been developed for the different
circuit modules. A configurable forward and inverse 1D processor and a transpose register
array enable an efficient hardware computation of the 8x8 transform. Forward quantization
and rescaling operations are computed in the same circuit for different bit-depth
requirements and new expressions are included enabling efficient hardware implementation
by minimizing the arithmetic operations involved. Finally, the critical paths of the distinct
computing units have been carefully analyzed and balanced using a pipeline scheme in
order to maximize the operation frequency without introducing an excessive latency. A
prototype with the proposed architecture has been synthesized in a 130nm HCMOS
technology process which achieves a maximum speed of 330 MHz. The throughput of 2640
Mpixels/s allows real-time video streams of 1080HD (1920×1088@30fps) to be processed.

www.intechopen.com

Variable Bit-Depth Processor for 8x8 Transform and Quantization Coding in H.264/AVC

329

7. Acknowledgment

We wish to acknowledge the financial help of the Spanish Ministry of Education and Science
through TEC2006-12438/TCM received to support this work.

8. References

Amer, W.; Badawy, G. & Jullien, G. (2005). A high-performance hardware implementation
of the H.264 simplified 8×8 transformation and quantization. IEEE International
Conference on Acoustics, Speech, and Signal Processing, Vol.2, pp. II-1137 - II-1140,
(March 2005), doi: 10.1109/ICASSP.2005.1415610, ISBN: 0-7803-8874-7

Bojnordi, M.N.; Sedaghati-Mokhtari, N.; Fatemi, O. & Hashemi, M.R. (2006). An efficient
self-transposing memory structure for 32-bit video processors. IEEE Asia Pacific
Conference on Circuits and Systems (APCCAS), pp. 1438–1441, doi:
10.1109/APCCAS.2006.342472, ISBN: 1-4244-0387-1

Bruguera, J.D. & Osorio, R.R. (2006). A unified architecture for H.264 multiple block-size
DCT with fast and low cost quantization. Proceedings of the 9th EUROMICRO
Conference on Digital System Design, pp. 407-414, (October 2006), doi:
10.1109/DSD.2006.18, ISBN: 0-7695-2609-8

Chao, T.C.; Tsai, H.H.; Lin, Y.H., Yang, J.F. & Liu, B.D. (2007). A novel design for computing
of all transforms in H.264/AVC decoders. IEEE International Conference on
Multimedia and Expo, pp. 1914-1917, (July 2007), doi: 10.1109/ICME.2007.4285050,
ISBN: 1-4244-1016-9

Chao, Y.C.; Wei, S.T.; Liu, B.D. & J.F. Yang, J.F. (2009). Combined CAVLC decoder, inverse
quantizer, and transform kernel in compact H.264/AVC decoder. IEEE
Transactions on Circuits and Systems for Video Technology, Vol.19, No.1, pp. 53-
62, (January 2009), doi: 10.1109/TCSVT.2008.2009251, ISSN: 1051-8215

Cheng, C.H.; Au, O.C.; Liu, C.H. & Yip, K.Y. (2009). IEEE International Symposium on Circuits
and Systems (ISCAS 2009), pp. 944-947, doi: 10.1109/ISCAS.2009.5117913, ISBN: 978-
1-4244-3827-3

Chiang, J.C. & Kuo, W. T. (2009). Bit-depth scalable video coding using inter-layer
prediction from high bit-depth layer. IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP 2009), pp. 649-652, doi:
10.1109/ICASSP.2009.4959667, ISBN: 978-1-4244-2353-8

Choi, W.; Park, J. & Lee, S. (2008). A high-performance & low-power unified 4×4 / 8×8
transform architecture for the H.264/AVC Codec. 23rd International Conference
Image and Vision Computing, pp. 1-6, (November 2008), doi:
10.1109/IVCNZ.2008.4762099, ISBN: 9781424437801

Chujoh, T. & Noda, R. (2007a). Internal bit depth increase for coding efficiency. Joint Video
Team, Doc. VCEG-AE13.doc. Available from

 http://wftp3.itu.int/av-arch/video-site/0701_Mar/VCEG-AE13.zip
Chujoh, T. & Noda, R. (2007b). Internal bit depth increase except frame memory. Joint Video

Team, Doc. VCEG-AF07.doc. Available from
 http://wftp3.itu.int/av-arch/video-site/0704_San/VCEG-AF07.zip
Chungan, P.; Dunshan, Y.; Xixin, C. & Shimin, S. (2007). A new high throughput VLSI

architecture for H.264 transform and quantization. 7th International Conference on
ASIC (ASICON ’07), pp.950-953, (October 2007), doi: 10.1109/ICASIC.2007.4415789,
ISBN: 978-1-4244-1132-0

www.intechopen.com

Recent Advances on Video Coding

330

Do, T.T.T. & Le, T.M. (2010). High throughput area-efficient SoC-based forward/inverse
integer transforms for H.264/AVC. IEEE International Symposium on Circuits and
Systems (ISCAS), pp. 4113–4116, doi: 10.1109/ISCAS.2010.5537614, ISBN: 978-1-
4244-5308-5

Fan, C.P. (2006). Cost-effective hardware sharing architectures of fast 8×8 and 4×4 integer
transforms for H.264/AVC. IEEE Asia Pacific Conference on Circuits and Systems
(APCCAS), pp. 776–779, (December 2006), doi: 10.1109/APCCAS.2006.342136,
ISBN: 1-4244-0387-1

Finchelstein, D.F.; Sze, V. & Chandrakasan, A.P. (2009). Multicore Processing and Efficient
On-Chip Caching for H.264 and Future Video Decoders. IEEE Transactions on
Circuits and Systems for Video Technology, Vol.19, No. 11, pp. 1704-1713, doi:
10.1109/TCSVT.2009.2031459, ISSN: 1051-8215

Gao, Y. & Wu, Y. (2006). Applications and requirements for color bit depth scalability. Joint
Video Team, Doc. JVT-U049.doc. Available from

 http://wftp3.itu.int/av-arch/jvt-site/2006_10_Hangzhou/JVT-U049.zip
Gao, Y.; Wu, Y. & Chen, Y. (2009). H.264/Advanced Video Coding (AVC) backward-

compatible bit-depth scalable coding. IEEE Transactions on Circuits and Systems for
Video Technology, Vol.19, No.4, (April 2009), pp. 500-510, doi:
10.1109/TCSVT.2009.2014018, ISSN: 1051-8215

Gish, W. (2002). 10-bit and 12-bit sample depth. Joint Video Team, Doc. JVT-E048r2.doc.
Available from

 http://wftp3.itu.int/av-arch/jvt-site/2002_10_Geneva/JVT-E048r2.doc
Gish, W. (2003). Extended sample depth: Implementation and characterization. Joint Video

Team, Doc. JVT-H0.16.doc. Available from
 http://wftp3.itu.int/av-arch/jvt-site/2003_05_Geneva/JVT-H016.doc
Gordon, S.; Marpe, D. & Wiegand, T. (2004). Simplified use of 8×8 transforms. Joint Video

Team, Doc. JVT-K028.doc. Available from
 http://wftp3.itu.int/av-arch/jvt-site/2004_03_Munich/JVT-K028.doc
JVT Joint Video Team of ITU-T and ISO/IEC (2004). Draft text of H.264/AVC fidelity range

extensions amendment. Joint Video Team, Doc. JVT-L047d9wcm.doc. Available from
 http://wftp3.itu.int/av-arch/jvt-site/2004_07_Redmond/JVT-L047d9wcm.zip
Huang, C.Y.; Chen, L.F. & Lai, Y.K. (2008). A high-speed 2-D transform architecture with

unique kernel for multi-standard video applications. IEEE International Symposium
on Circuits and Systems, pp. 21-24, (May 2008), doi: 10.1109/ISCAS.2008.4541344,
ISBN: 978-2-84813-1

Husemann, R.; Majolo, M.; Guimaraes, V.; Susin, A.; Roesler, V. & Lima, J.V. (2010).
Hardware integrated quantization solution for improvement of computational
H.264 encoder module. IEEE/IFIP VLSI System on Chip Conference (VLSI-SoC), pp.
316-321, doi: 10.1109/VLSISOC.2010.5642680, ISBN: 978-1-4244-6469-2

Hwangbo, W. & Kyung, C.M. (2010). A multitransform architecture for H.264/AVC high-
profile coders. IEEE Transactions on Multimedia, Vol.12, No.3, pp. 157-167, (April
2010), doi: 10.1109/TMM.2010.2041099, ISSN: 1520-9210

Ito, T.; Bandoh, Y.; Seishi, T. & Jozawa, H. (2010). A coding method for high bit-depth
images based on optimized bit-depth transform. IEEE International Conference on
Image Processing (ICIP), pp. 3141-3144, doi: 10.1109/ICIP.2010.5653459, ISBN: 978-1-
4244-7994-8

www.intechopen.com

Variable Bit-Depth Processor for 8x8 Transform and Quantization Coding in H.264/AVC

331

Lee, J.J.; Park, S. & Eum, N.W. (2008). Design of application specific processor for H.264
inverse transform and quantization. International SoC Design Conference (ISOCC '08),
pp. II-57 - II-60, (November 2008), doi: 10.1109/SOCDC.2008.4815683, ISBN: 978-1-
4244-2598-3

Lavier, P. (2009). Using 10-bit AVC/H.264 encoding with 4:2:2 for broadcast contribution.
Ateme company. Confidential report. Available from

 http://extranet.ateme.com/download.php?file=1114
Lee, S. & Cho, K. (2008). Design of high-performance transform and quantization circuit for

unified video CODEC. IEEE Asia Pacific Conference on Circuits and Systems, pp. 1450-
1453, (November 2008), doi: 10.1109/APCCAS.2008.4746304, ISBN: 0230019544

Lee, Y.; Hong, K. & Kim, S. (2010). An adaptive image bit-depth scaling method for image
displays. IEEE Transactions on Consumer Electronics, Vol.56, No.1, (March 2010), pp.
141-146, doi: 10.1109/ICCE.2010.5418895, ISSN: 0098-3063

Li, Y.; He, Y. & Mei, S. (2008). A highly parallel joint VLSI architecture for transforms in
H.264/AVC. Journal of Signal Processing Systems, Vol.50, No.1, (January 2008), pp.
19–32, doi: 10.1007/s11265-007-0111-4, ISSN: 1939-8115

Lin, Y.K.; Li, D.W.; Lin, C.C.; Kuo, T.Y.; Wu, S.J.; Tai, W.C.; Chang, W.C. and Chang, T.S.
(2008). A 242mW 10mm2 1080p H.264/AVC High-Profile Encoder Chip. IEEE
International Solid-State Circuits Conference (ISSCC 2008), pp. 314-316, doi:
10.1109/ISSCC.2008.4523183, ISBN: 978-1-4244-2010-0

(Links, 2010). Interesting webpage including links to further resources on H.264 and video
compression. Available from http://www.vcodex.com/links.html

Liu, Z.; Song, Y.; Shao, M.; Li, S.; Li, L.; Ishiwata, S.; Nakagawa, M.; Goto, S. & Ikenaga, T.
(2009). HDTV 1080p H.264/AVC encoder chip design and performance analysis.
IEEE Journal of Solid-State Circuits, Vol.44, No.2, pp. 594-608, (February 2009), doi:
10.1109/JSSC.2008.2010797, ISSN: 0018-9200

Ma, Y.; Song, Y.; Ikenaga, T. & Goto, S. (2007). A high throughput multiple transform
architecture for H.264/AVC fidelity range extensions. Journal of Semiconductor
Technology and Science, Vol.7, No.4, pp. 247-253, (December 2007), ISSN: 1598-1657

Malvar, H.S.; Hallapuro, A.; Karczewicz, M. & Kerofsky, L. (2003). Low-complexity
transform and quantization in H.264/AVC. IEEE Transactions on Circuits and
Systems for Video Technology, Vol.13, No.7, (July 2003), pp. 598-603, doi:
10.1109/TCSVT.2003.814964, ISSN: 1051-8215

Marpe, D.; Wiegand, T. & Gordon, S. (2005). H.264/MPEG4-AVC fidelity range extensions:
Tools, profiles, performance, and application areas. IEEE Int. Conf. Image Processing,
pp. 593-596, (Sept. 2005), doi: 10.1109/ICIP.2005.1529820, ISBN: 0-7803-9134-9

Michael, M.N. & Hsu, K.W. (2008). A low-power design of quantization for H.264 video
coding standard. IEEE International SOC Conference, pp. 201-204, (September
2008), doi: 10.1109/SOCC.2008.4641511, ISBN: 978-1-4244-2596-9

Michell, J.M.; J.M. Solana, J.M. & Ruiz, G.A. (2011). A high-throughput ASIC processor for
8×8 transform coding in H.264/AVC. Signal Processing: Image Communication, (in
press), doi: 10.1016/j.image.2011.01.001, ISSN: 0923-5965

Ngo, N.T., Do. T.T.T., Le, T.M., Kadam, Y.S. & Bermak, A. (2008). ASIP-controlled inverse
integer transform for H.264/AVC compression. IEEE/IFIP International Symposium
on Rapid System Prototyping, pp. 158-164, (June 2008), doi: 10.1109/RSP.2008.34,
ISBN: 978-0-7695-3180-9

www.intechopen.com

Recent Advances on Video Coding

332

Owaida, M.; Koziri, M.; Katsavounidis, I. & Stamoulis, G. (2009) A high performance and
low power hardware architecture for the transform & quantization stages in H.264.
IEEE International Conference on Multimedia and Expo (ICME 2009), pp. 1102-1105,
doi: 10.1109/ICME.2009.5202691, ISBN 978-1-4244-4291-1

Park, J.S. & Ogunfunmi, T. (2009). A new hardware implementation of the H.264 8×8
transform and quantization. IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 585-588, doi: 10.1109/ICASSP.2009.4959651, ISBN:
978-1-4244-2354-5, ISSN: 1520-6149

Pastuszak, G. (2008). Transforms and quantization in the high-throughput H.264/AVC
encoder based on advanced mode selection. IEEE Computer Society Annual
Symposium on VLSI, pp. 203-208, (April 2008), doi: 10.1109/ISVLSI.2008.13, ISBN 0-
7695-2533-4

Richardson, I.E.G. (2004). H.264 and MPEG-4 Video Compression. John Wiley & Sons (Ed),
ISBN: 0-470-84837-5

Ruiz, G.A. & Michell, J.A. (1998). Memory Efficient Programmable Processor Chip for
Inverse Haar Transform. IEEE Transactions on Signal Processing, Vol.46, No.1,
(January 1998), pp 263–268, doi: 10.1109/78.651233, ISSN: 1053-587X

Silva, T.L.; Diniz, C.M.; Vortmann, J.A.; Agostini, L.V.; Susin, A.A. & Bampi, S. (2007). A
pipelined 8×8 2-D forward DCT hardware architecture for H.264/AVC high profile
encoder. Proceedings of the 2nd Pacific Conference on Advances in Image and Video
Technology, pp. 5-15, doi: 10.1007/978-3-540-77129-6_5, ISBN: 3-540-77128-X 978-3-
540-77128-9

Sims, S.R.F; Mills, J.A. & Topiwala, P.N. (2005). Evaluation of video compression for 8-bit
and 12-bit IR data with H.264 fidelity range extensions. Proc. SPIE the International
Society for Optical Engineering, Vol.5807, pp. 329-340, doi: 10.1117/12.603853, ISBN:
9780819457929

Sühring, K. (2010). H.264/AVC Software Coordination. Fraunhofer Institute for
Telecommunications, Heinrich Hertz Institute, Image Processing Research
Department, Berlin, Germany. Available from http://iphome.hhi.de/suehring/tml

Wahid, K.; Dimitrov, V. & Jullien, G. (2006). New Encoding of 8×8 DCT to make H.264
lossless. IEEE Asia Pacific Conference on Circuits and Systems (APCCAS), pp. 780-783,
doi: 10.1109/APCCAS.2006.342137, ISBN: 0470847549

Wiegand, T.; Sullivan, G.J.; Bjontegaard, G. & Luthra, A. (2003). Overview of the
H.264/AVC video coding standard. IEEE Transactions on Circuits and Systems for
Video Technology, Vol.13, No.7, (July 2003), pp. 560-576, doi:
10.1109/ICIP.2005.1529820, ISSN: 1051-8215

Zhang, Q. & Meng, N. (2009). A low area pipelined 2-D DCT architecture for JPEG encoder.
IEEE International Midwest Symposium on Circuits and Systems (MWSCAS), (August
2009), pp. 747-750, doi: 10.1109/MWSCAS.2009.5235989, ISSN: 1548-3746

Zhang, Y.; Jiang, G. & Yu, M. (2009). Low-complexity quantization for H.264/AVC. Journal
of Real-Time Image Processing, Vol.4, No.1, pp. 3-12, doi: 10.1007/s11554-008-0098-5,
doi: 10.1007/s11554-008-0098-5, ISSN: 1861-8200

www.intechopen.com

Recent Advances on Video Coding

Edited by Dr. Javier Del Ser Lorente

ISBN 978-953-307-181-7

Hard cover, 398 pages

Publisher InTech

Published online 24, June, 2011

Published in print edition June, 2011

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

This book is intended to attract the attention of practitioners and researchers from industry and academia

interested in challenging paradigms of multimedia video coding, with an emphasis on recent technical

developments, cross-disciplinary tools and implementations. Given its instructional purpose, the book also

overviews recently published video coding standards such as H.264/AVC and SVC from a simulational

standpoint. Novel rate control schemes and cross-disciplinary tools for the optimization of diverse aspects

related to video coding are also addressed in detail, along with implementation architectures specially tailored

for video processing and encoding. The book concludes by exposing new advances in semantic video coding.

In summary: this book serves as a technically sounding start point for early-stage researchers and developers

willing to join leading-edge research on video coding, processing and multimedia transmission.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Gustavo A. Ruiz and Juan A. Michell (2011). Variable Bit-Depth Processor for 8×8 Transform and Quantization

Coding in H.264/AVC, Recent Advances on Video Coding, Dr. Javier Del Ser Lorente (Ed.), ISBN: 978-953-

307-181-7, InTech, Available from: http://www.intechopen.com/books/recent-advances-on-video-

coding/variable-bit-depth-processor-for-8-8-transform-and-quantization-coding-in-h-264-avc

© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

