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1. Introduction 

1.1 Fallon, Nevada 
Spatial patterns of airborne metals are described from leaf-surface chemistry of trees in 
Fallon, Nevada (Fig. 1a), where a cluster of childhood leukemia began in 1997.  Officially, 16 
cases of childhood leukemia were diagnosed from 1997 to 2002 inclusive (Expert Panel, 
2004), and one additional case was reported in December 2004 (Nevada State Health 
Division, 2004).  Although the cluster is thought to have abated (Reno Gazette-Journal, 11 
October 2008), at least one additional case of childhood leukemia has occurred in Fallon 
since 2004 (Lahontan Valley News, 15 October 2010).  Given Fallon’s pediatric population of 
about 2500 children up to 19 years in age (U.S. Census, 2000) and a national expected rate of 
childhood leukemia of 4.1 cases per 100,000 children up to 19 years in age per year (U.S. 
NCI, 2003), the expected rate of childhood leukemia for Fallon should be only one case 
every ten years. 
This cluster, deemed "one of the most unique ever reported" (Steinmaus et al., 2004; 
Steinmaus et al., 2005), prompted multiple investigations to determine if an environmental 
cause might have been responsible.  Research focused on drinking water (Moore et al. 2002; 
Shaw et al., 2005; Walker & Fosbury 2009; Walker et al., 2006), jet fuel (U.S. ATSDR, 2002), 
pesticides (Rubin et al., 2007; U.S. CDC, 2003), surface water (U.S. ATSDR, 2003a), outdoor 
air (U.S. ATSDR, 2003b), surface soil and indoor dust (U.S. ATSDR, 2003c), potential 
lingering effects of underground nuclear bomb testing in the area (Seiler, 2004), and 
groundwater (Seiler et al., 2005).  A non-environmental hypothesis–population mixing–was 
also considered (Kinlen & Doll, 2004; Wakeford, 2004].  Few definitive conclusions emerged 
from these studies, prompting an interpretation that Fallon had been given a “clean bill of 
health” by the US Agency for Toxic Substances and Disease Registry and the US Centers for 
Disease Control (Lahontan Valley News, 8 August 2007).  However, this interpretation is 
questionable (Pleil et al., in press), and the need to monitor the environment of Fallon 
continues to exist. 
To monitor the environment of Fallon, we have employed multiple techniques, all of which 
have shown notable patterns of airborne tungsten and cobalt.  Elevated tungsten and cobalt 
was identified in airborne particulates of Fallon relative to comparison towns (Sheppard et 
al., 2006a) and in lichens within Fallon compared to outlying desert areas (Sheppard et al., 
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2007b).  Tungsten and cobalt maxima were found in surface dust (fallout from air) near the 
center of Fallon, just north and west of the crossroads of the main highways (Sheppard et al., 
2007a).  Dendrochemistry showed that tungsten began increasing in Fallon tree rings by the 
mid-1990s, coinciding roughly with the onset of the cluster of childhood leukemia 
(Sheppard et al., 2007c).  From direct microscopy analysis of airborne tungsten particles in 
Fallon, they are anthropogenic in origin, not natural (Sheppard et al., 2007d).  
 

 

1.2 Leaf-surface chemistry to assess air quality 
An environmental monitoring technique that is applicable for assessing air quality is leaf-
surface chemistry, the measurement and interpretation of element concentrations in 
particulates that accumulate on surfaces of leaves of trees and other plants. Leaf-surface 
chemistry indicates atmospheric chemistry (Wittig, 1993), including airborne metals (Rautio 
et al., 1998).  Leaves are easy to collect (Aksoy et al., 1999), so spatial and temporal arrays of 
samples can be obtained quickly (Loppi et al., 1997).  Leaf-surface particulates reflect the 
chemical composition of recent accumulations, on the order of weeks to months or perhaps 
an entire growing season depending on the occurrence of precipitation (Alfani et al., 1996b).  
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Fig. 1. Maps of Nevada, showing Fallon (a) and of Fallon, showing trees from which leaves
were collected each year from 2008 through 2010 (b-d).  An industrial facility performing hard-
metal metalurgy is located just northwest of the main intersection of Highways 95 and 50. 
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By collecting leaves across a region, differing accumulations of airborne metals can be 
mapped, thereby pinpointing source areas (Aboal et al., 2004).  Paired studies of leaf-surface 
accumulations with ground-surface dust and/or airborne particulates can be particularly 
fruitful for confirming airborne chemistry and identifying spatial patterns of metals 
(Bargagli 1993; Čeburnis and Steinnes 2000).  Because of these advantages, many case 
studies exist worldwide using leaf-surface chemistry to quantify atmospheric loading of 
heavy metals and/or identify their spatial patterns (e.g., Aksoy and Öztürk, 1997; Aksoy et 
al., 1999; Alfani et al., 1996a; Dasch, 1987; Gupta et al., 2004; Rossini Oliva and Mingorance, 
2006; Salve et al., 2006; Ward, 1977;).  More specifically, leaf-surface chemistry was done in 
Fallon in 2007, and it showed elevated peaks of airborne tungsten and cobalt just northwest 
of the center of town (Sheppard et al., 2009a).  

1.3 Objective 
For years now, we have been collecting various biological samples in and around Fallon for 
the purpose of assessing air quality there. Total suspended (airborne) particulate samples were 
collected in March and November 2004. Lichens and surface dust were collected in March 
2005.  Tree leaves were first collected in October 2007.  Tree-ring samples have been collected 
multiple times since 2002. As time progresses, this time series of observations of air quality of 
Fallon becomes more and more precious by virtue of the ability to discern change in air quality 
through time.  Therefore, it is important that regular monitoring of air quality of Fallon be 
maintained. A relevant Nevada state agency charged with environmental monitoring and 
protection has stated no plans for doing investigations in Fallon (Lahontan Valley News, 3 
December 2005), but we are carrying on with environmental monitoring in Fallon. 
Weighing advantages and disadvantages of various environmental monitoring techniques 
(Sheppard et al., 2009b), we have chosen leaf surface chemistry as the technique with which to 
continue monitoring Fallon air quality.  Accordingly, leaves from trees of Fallon were collected 
in October of 2008, 2009, and 2010.  The objective of this chapter is to describe the surface 
chemistry of these leaves to update spatial patterns of airborne tungsten and cobalt in Fallon. 

2. Methods 

2.1 Site description 
Fallon is a small, rural, farming community (Greater Fallon Area Chamber of Commerce, 
2008) located in west-central Nevada (Fig. 1a). Its climate is cool to mild and dry, with a 
mean annual temperature and precipitation of 10.7° C and 127 mm, respectively, as typified 
from meteorological data from Fallon (monthly data from 1931 to 2010 obtained on-line 
from the National Climatic Data Center, NOAA 2010). Along with service industries and 
small businesses, Fallon has a facility that does hard-metal metallurgy, which includes 
tungsten carbide and cobalt (Harris and Humphreys, 1983). The hard-metal facility has been 
considered a candidate source of tungsten within Fallon generally (Reno Gazette-Journal, 5 
February 2003) and more specifically of elevated tungsten and cobalt in total suspended 
particulates and in surface dust of Fallon (Sheppard et al., 2006a, 2007a). 

2.2 Leaf collection 
Tree leaves were collected in mid- to late-October of the years 2008, 2009, and 2010.  All trees 
sampled were deciduous species, so results of this study reflect accumulations of airborne 
particulates onto leaf surfaces during just the growing season of each year.  During the leaf 

www.intechopen.com



   
Air Quality Monitoring, Assessment and Management 

 

332 

season (May–October) of all four years 2007–2010, measurable rainfall was recorded in 
varying amounts at the nearby Fallon Naval Air Station (Fig. 2; daily data obtained on-line 
from the National Climatic Data Center, NOAA 2010). 
All trees sampled were broadleaf species, in part because conifer species are not common in 
Fallon but also because broad leaves provide ample surface for accumulating airborne 
particulates.  Tree species was not held constant during collecting because no single species 
predominates throughout all parts of Fallon.  The urban forest of Fallon contains many 
kinds of trees, and elm (Ulmus), mulberry (Morus), cottonwood (Populus), and ash (Fraxinus) 
were the most common tree types sampled.  Accumulation of aerosols onto leaves can be 
affected by leaf characteristics such as roughness, pubescence, moisture, and stickiness 
(Wedding et al., 1977), but these characteristics of leaves do not vary appreciably across the 
tree species sampled in this study. 
 

 
Trees were selected for sampling at differing spatial densities from one year to the next.  In 
2008 and 2009, some trees were sampled within 0.25 km of the hard-metal facility, i.e., very 
near to it, while others were sampled farther away (Fig. 1b,c).  In 2010, trees were sampled 
along a more even continuum of distance from the hard-metal facility (Fig. 1d).  Sampling 
near the hard-metal facility does not represent biased sampling on our part, as has been 
suggested by others (Sueker, 2006).  Rather, this is an example of targeted sampling (e.g., 

Fig. 2. Daily rainfall in Fallon during May through October for each year of leaf collection,
2007 through 2010.  Short marks indicate days with only a trace of rainfall (<0.25 mm).  Data
from NCDC, NOAA.  Graph for 2007 is modfied from Sheppard et al. (2009a). 
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Seinfeld, 1972) to take advantage of prior knowledge that the area of the hard-metal facility 
is known to be where peak loadings of airborne tungsten and cobalt have occurred and 
where spatial variability in airborne tungsten and cobalt has been high (Sheppard et al., 
2006b).  In each year 2008–2010, leaves from just 10 trees were sampled, as opposed to the 95 
trees sampled in 2007 (Sheppard et al., 2009a).  It is no longer necessary to sample extremely 
intensively to discern patterns of airborne tungsten and cobalt in Fallon.  Geographic 
coordinates were recorded for each sampled tree to facilitate mapping. 
From each tree sampled, an outer branchlet of several leaves was clipped off with pruning 
cutters from a height of about 2 m above ground.  The aspect of each tree sampled was not 
held constant or patterned, so sampling was effectively random across trees.  None of the 
trees sampled was next to other trees, so there is no forest canopy effect in this study (Dasch, 
1987).  Branchlets were stored in clean paper bags during fieldwork.  Later, leaves were 
trimmed from their petioles using clean, ceramic (non-metal) scissors. 

2.3 Chemical measurement 
Leaf tissues themselves were not measured for metals content, but rather rinse water 
solutions of particulates from the leaf surfaces were measured.  Consequently, this study 
reflects airborne metals that accumulate on leaf surfaces, not soil-derived metals that move 
through the trees to leaf tissues (Wolterbeek and Bode, 1995).  Trimmed leaves were placed 
in clean, 50-ml polypropylene vials, and tepid, de-ionized water was added to completely 
submerge the leaves.  The vials were capped tightly and shaken lightly for two hours (Little, 
1973).  Rinse solutions were poured into new, clean polyurethane vials.  Rinsed leaves were 
then oven dried at 50° C for several days and weighed to ±0.0001 g. 
Rinse solutions were filtered with acid-washed GHP Acrodisc syringe filters (less than 0.2 
µm) and acidified to pH less than 2 with certified pure nitric acid.  Measurement was 
performed using inductively coupled plasma, mass spectroscopy ICP-MS (Elan DRC-II, 
Perkin Elmer, Shelton, CT).  Most analytes were measured in standard mode (e.g., 
vanadium, nickel, copper, zinc, arsenic, cadmium, cesium, tungsten, lead, and uranium), 
while chromium and cobalt were measured using the dynamic reaction cell (DRC) flushed 
with ammonia gas.  For all elements measured, detection limits were sub-ppb based on 
three standard deviations from the mean of 11 replicate measurements. 

2.4 Quantitative analysis 
Measured contents of metals in rinse solutions were standardized to oven dry mass of 
leaves measured.  Oven dry leaf masses were first transformed to the ¾ power before this 
standardization step.  This transformation incorporates a concept of diminishing returns 
whereby leaf area increases ever more slowly as leaf mass increases, i.e., at a power of ¾ of 
leaf mass (Niklas & Cobb, 2008).  This transformation was not done originally with the 2007 
leaf collection (Sheppard et al., 2009a), but it has since been done on that data set in addition 
to the data from 2008–2010. 
The 2008 and 2009 collections were analyzed by testing medians of element concentrations 
from trees near the hard-metal facility versus trees away from it.  The Mann-Whitney test of 
medians (Sokal & Rohlf, 1981) was used to assess significance between near trees versus far 
trees, with the alternative hypothesis being one-tailed, i.e., that element concentrations of 
trees near the hard-metal facility were higher than those of trees farther away.  The 2010 
collection was analyzed by plotting concentration values by distance from the hard-metal 
facility and assessing the strength of a power function model for each element. 
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3. Results 

3.1 Year 2008 
From leaves of 2008, tungsten and cobalt show the largest differences between trees near the 
hard-metal facility versus trees away from it. Tungsten and cobalt medians were 38 times 
and 16 times more concentrated on surfaces of leaves of trees near the facility than trees far 
away (Table 1). These differences are highly significant. 
 

 Concentration (µg · g–(3/4))   

element 
Near 
(n=6) 

Far 
(n=4) 

Near: 
Far 

p value 

tungsten 0.793 0.021 37.76 0.007 
cobalt 2.052 0.131 15.66 0.007 
nickle 0.526 0.040 13.15 0.021 
cesium 0.045 0.004 11.25 0.021 
sodium 3934 406 9.69 0.035 

tantalum 0.0045 0.0005 9.00 0.007 
rubidium 7.53 0.94 8.01 0.021 

magnesium 2603 329 7.91 0.055 
zirconium 0.051 0.011 4.64 0.007 

lead 0.037 0.008 4.63 0.013 
silicon 331 87 3.80 0.035 

beryllium 0.0018 0.0005 3.60 0.143 
copper 0.596 0.187 3.19 0.055 

phosphorus 631 218 2.89 0.120 
titanium 2.18 0.78 2.79 0.083 

molybdenum 0.086 0.032 2.69 0.035 
vanadium 0.067 0.028 2.39 0.007 
strontium 18.0 7.7 2.34 0.169 

zinc 3.00 1.32 2.27 0.013 
potassium 17229 7715 2.23 0.083 
chromium 0.021 0.010 2.10 0.035 

gallium 0.036 0.018 2.00 0.228 
barium 1.26 0.76 1.66 0.228 
lithium 14.9 10.3 1.45 0.457 
calcium 5063 3554 1.42 0.169 
arsenic 0.188 0.157 1.20 0.375 

aluminum 8.7 10.6 0.82 Ø 
barium 264 410 0.64 Ø 

manganese 37 207 0.18 Ø 
selenium 0.001 0.027 0.04 Ø 

iron 18 563 0.03 Ø 

Table 1. Results for the 2008 collection, sorted by the ratio Near:Far, i.e., the ratio of the 
median value of trees near the hard-metal facility versus trees farther away from it. 
Concentration values are medians. P value is for Mann-Whitney testing of no difference 
between median values versus the one-tailed alternative that the near median is greater than 
the far median (Sokal & Rohlf, 1981). 

www.intechopen.com



 
Multi-Year Assessment of Airborne Metals in Fallon, Nevada, using Leaf-Surface Chemistry 

 

335 

Other elements measured show smaller differences between trees near the hard-metal 
facility versus trees away from it.  Most elements show near:far ratios of less than 10, and 
most of these differences are less significant statistically than the differences for tungsten 
and cobalt (Table 1).  Of these other elements, nickel and cesium show the highest near:far 
ratios, both above 10.  Cesium showed notable spatial variability in the 2007 collection 
(Sheppard et al., 2009a), and this replication of spatial variability in cesium makes that 
element potentially interesting environmentally in Fallon. 

3.2 Year 2009 
From leaves of 2009, tungsten and cobalt show the largest differences between trees near the 
hard-metal facility versus trees away from it. Tungsten and cobalt medians were 12 times 
and 7 times more concentrated on surfaces of leaves of trees near the facility than trees far 
away (Table 2). These differences are highly significant. 
Other elements measured show smaller differences between trees near the hard-metal 
facility versus trees away from it. Other elements show near:far ratios of 3.0 or less, and 
most of these differences are less significant statistically than the differences for tungsten 
and cobalt (Table 2).  No other element measured shows spatial variability that is especially 
notable or potentially interesting environmentally in Fallon. 

3.3 Year 2010 
From leaves of 2010, the negative power model of tungsten concentration as a function of 
distance from the hard-metal facility is very strong. The R2 value of the tungsten model is 
62% (Fig. 3a), much higher than other elements (Fig. 3b-i).  The negative power model of 
cobalt concentration as a function of distance from the hard-metal facility is weaker but still 
notable. The R2 value of the cobalt model is 12%, though that is without an obvious high 
outlying value from the tree that was nine km away from the facility (Fig. 3b). 
 

 Concentration (µg · g(–3/4))    

element 
Near 
(n=4) 

Far 
(n=6) 

Near: 
Far 

 p 
value 

tungsten 0.176 0.015 11.73  0.007 

cobalt 0.757 0.113 6.70  0.007 

selenium 0.015 0.005 3.00  0.055 

calcium 1329 507 2.62  0.120 

iron 1.760 0.924 1.90  0.120 

chromium 0.009 0.005 1.80  0.083 

potassium 2814 1945 1.45  0.297 

Table 2. Results for the 2009 collection, sorted by the ratio Near:Far, i.e., the ratio of the 
median value of trees near the hard-metal facility versus trees farther away from it. 
Concentration values are medians. P value is for Mann-Whitney testing of no difference 
between median values versus the one-tailed alternative that the near median is greater than 
the far median (Sokal & Rohlf, 1981). 
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The negative power models of other elements measured are weaker than that of tungsten. 
Chromium, vanadium, and phosphorus have R2 values about as strong as that of cobalt  
(Fig. 3c-e), while other elements have very weak R2 values (Fig. 3f-i). 

3.4 Years 2007–2010 
A temporal pattern in absolute maximum values emerged for elements that have been 
measured all four years. Maximum concentrations of tungsten, cobalt, and chromium have 
declined fairly steadily from 2007 through 2010 (Table 3). A possible explanation of this 
trend is that total summer rainfall for Fallon has steadily increased from 2007 through 2010 
(Table 3). Maximum concentrations of these three elements show clear negative 

Fig. 3. Leaf surface concentration (mass of element per oven dry mass of leaf raised to the ¾
power) of elements as a function of distance from the hard-metal facility (km) for the 2010
collection.  The R2 value for cobalt is without the outlying value included. 
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relationships with total summer rainfall, each with strong R2 values (Fig. 4).  Rainfall has the 
obvious potential effect of cleaning leaf surfaces of dust that leaves catch throughout the 
growing season. 

4. Discussion 

This work confirms various advantages of leaf-surface chemistry as a technique for 
assessing air quality.  As a relatively easy and inexpensive method, many leaf samples can 
be collected and analyzed, either for fine-turning spatial variability of air quality at one 
point in time (Sheppard et al., 2009a) or for assessing temporal variability of air-quality for 
one area (this study). 
 

  Maximum Concentration (µg · g–(3/4)) Summer 
Rainfall (mm) Year  Tungsten Cobalt Chromium 

2007  16.40 6.70 0.089 8.64 

2008  4.78 8.47 0.052 43.43 

2009  0.39 1.29 0.021 47.50 

2010  0.04 0.64 0.012 64.01 

Table 3. Maximum concentration of tungsten, colbalt, and chromium for each year of 
collecting leaves in Fallon, and total summer (May through October) rainfall recorded at the 
Fallon Naval Air Station. 

Notable findings emerged from this work. One, maximum values of airborne tungsten and 
cobalt in Fallon have been varying through time at the annual scale. Absolute values from 
leaf-surface chemistry are standardized for multiple procedural sources of variation (e.g., 
differing solution volumes and leaf sizes), so the interannual variability in airborne tungsten 
and cobalt shown here is probably environmental in nature. A logical explanation for this 
variability is differing summer rainfall totals from year to year. 
Two, even during a summer leaf season with high rainfall (i.e., 64 mm in 2010), which 
logically should reduce absolute values of airborne metals on leaf surfaces, spatial patterns 
of airborne elements are still discernible with leaf-surface chemistry.  This illustrates the 
robustness of this technique for assessing air quality, at least in environments that are 
relatively arid to begin with. 
In general, long-term environmental monitoring is extremely valuable. Multi-year 
assessment research allows for discovering slow changes in environmental quality 
(Johnston, 1991), some of which could have implications for public health. Given the 
temporal variability of air quality in Fallon, it seems imperative that environmental 
monitoring and assessment of Fallon, especially for air quality, be continued. Even without 
considering linkage between exposure to airborne tungsten and cobalt and human illness, 
merely knowing that airborne tungsten and cobalt are elevated in Fallon and that their 
airborne loadings are changing through time logically suggests that continuing monitoring 
and assessment is prudent. Leaf-surface chemistry is a suitable technique for such long-term 
assessment. 
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5. Conclusion 

Leaf-surface chemistry is an effective technique for assessing air quality, including for 
loadings of airborne metals and especially in urban settings. From leaf-surface chemistry, 
the center area of Fallon is shown to continue having elevated airborne tungsten and cobalt 
relative to outlying areas around Fallon. Interannual variability in absolute maximum 
values is notable. 
It cannot be concluded from only environmental data that elevated airborne tungsten 
and/or cobalt cause childhood leukemia. Such a connection requires direct biomedical 
testing. Nonetheless, given that childhood leukemia in Fallon is the "most unique cluster 
ever reported" (Steinmaus et al. 2004) and that Fallon is distinctive environmentally by its 
elevated airborne tungsten and cobalt particulates, it stands to reason that additional 
biomedical research is warranted to assess the leukogenicity of airborne tungsten and cobalt 
(e.g., Fastje et al., 2009; Kalinich et al. 2005; Miller et al., 2001; Radcliffe et al., 2010; Steinberg 
et al. 2007; Sun et al. 2003). 
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