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1. Introduction 

Activated sugar precursors are energy-rich forms of monosaccharides, mainly nucleoside 

diphosphate sugars, that contain the energy required for the assembly of their sugar moiety 

in carbohydrate sequences on appropriate carrier molecules (Fig. 1).  
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Fig. 1. Structures of the sugar nucleotides GDP-D-mannose and UDP-N-acetylglucosamine. 

In bacteria, these ubiquitous metabolites are required for the synthesis of all the 

carbohydrate-containing polymers. Sugar nucleotides are the donors of the sugar moieties 

found in oligo- and polysaccharides (e.g. exopolysaccharides - EPS, lipopolysaccharides - 

LPS). Sugar nucleotides are also required for the glycosylation of proteins and lipids, for the 

phase 2 metabolization of xenobiotics, and for the metabolism of secondary metabolites with 

antibiotic activities (Gronow and Brade, 2001; Nedal and Zotchev, 2004). LPS and EPS can 

form highly complex structures at the bacterial outer surface, and are often involved in the 

molecular recognition and virulence of pathogens. Therefore, the targeting of the 

biosynthesis of specific carbohydrates is considered of interest for the development of new 

therapeutic agents (Green, 2002; Foret et al., 2009). 
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2. Methods used in sugar nucleotide analysis 

Nucleotide sugars were identified for the first time almost 45 years ago (Leloir, 1971). 

Investigations of the metabolism of activated nucleotide sugars require rapid analytical 

assays that allow the separation, structural characterization and quantification of 

substrates, intermediates and end products. Since the late 1970s, several high-performance 

liquid chromatography (HPLC) methods for nucleotide analysis have been developed, 

including ion exchange chromatography, reversed-phase liquid chromatography and 

more recently the ion-pair chromatography (Ramm et al., 2004). All these HPLC 

applications enabled the separation of nucleotide sugars and their detection was based on 

absorption of light of wavelengths within the UV range. This is due to the fact that all the 

nucleotides exhibit an absorption maximum around 260 nm. However, these methods 

cannot differentiate sugar nucleotides according to the nature of the nucleotide 

diphosphate moiety (ADP, CDP, GDP, dTDP, UDP) that is linked to C-1 of the sugar 

residue. For this reason, to identify the HPLC peaks, co-chromatography with reference 

compounds is required, although no structural information can be obtained. Currently, 

the analysis of the nucleotide sugars is performed by HPLC methods coupled with other 

methods such as diode-array detection (DAD), electrospray ionization mass spectrometry 

(ESI-MS) or nuclear magnetic resonance (NMR) (Ramm et al., 2004). Capillary 

electrophoresis (CE) has also been used to resolve closely related sugar nucleotides, 

together with NMR spectroscopy to identify their chemical structures (Lehmann et al., 

2000; King et al., 2009). Recently, porous graphitic carbon (PGC) liquid chromatography-

electrospray ionization-mass spectrometry (LC-ESI-MS) was successfully applied to sugar 

nucleotide separation and analysis (Pabst et al., 2010). 

3. Enzymatic synthesis of nucleotide sugars 

Glucose-1P (G1P) and Fructose-6P (F6P) can be regarded as the starting materials in 

metabolic pathways leading to various sugar nucleotides. G1P is formed from the glycolysis 

intermediate G6P by the enzyme activity phosphoglucomutase (Pgm; EC 5.4.2.2) (Mehra-

Chaudhary et al., 2011). The glycolysis intermediate F6P is also of central importance in 

sugar nucleotides biosynthesis. The vast majority of sugar nucleotides can be synthesised by 

living organism using either G1P or F6P as starting materials. Among the few exceptions are 

galactose and mannose sugars. Although these two sugars can be synthesized from G1P or 

F6P, they can also result from the uptake of substrates like lactose found in milk, or 

mannose, a sugar that occurs in fruits such as cranberry. 

The majority of the nucleoside diphosphate sugars are synthesized by the condensation of a 

nucleoside triphosphate (XTP, where X can be any nucleoside, being uridine, guanosine, 

cytidine, thymidine, and adenosine the more common ones) with a sugar 1-phosphate 

(where the sugar can be D-glucose, D-galactose, D-mannose, 2-acetamido-2-deoxy-D-

glucose, L-fucose, D-glucuronic acid, or another sugar) by a specific pyrophosphorylase 

enzyme activity, as shown in the following reaction: 

XTP glycosyl phosphate                XDP glycose PPi+ ↔ − +

Pyrophosphorylase
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The resulting sugar nucleotide can also be inter-converted to different monosaccharides by 
several mechanisms. These include epimerisation/isomerisation, decarboxylation, 
dehydration, dehydrogenation, oxidation or reduction reactions (Field and Naismith, 2003). 
For example, a common strategy is the oxidation of a hydroxyl group to a ketone, being 
used to activate the  protons to the ketone group, for amination and for direct 
epimerization. Subsequently, the nucleotide sugar will be transferred to the appropriate 
acceptor by specific glycosyltransferases. 
In this work, we review the nucleotide sugars that are more commonly found in bacterial 
cells, and the enzyme activities required for their biosynthesis. 

4. Sugar nucleotides: occurrence and biosynthesis 

4.1 GDP-D-mannose 

GDP-D-mannose is the donor of D-mannose, a sugar residue found in many bacterial 
extracellular polysaccharides, as is the case of xanthan, cepacian, acetan, and some 
sphingans (Becker et al., 1998; Cescutti et al., 2000; Richau et al., 2000; Griffin et al., 1997; 
Fialho et al., 2008). The synthesis of GDP-D-mannose from F6P requires the enzyme 
activities phosphomannose isomerase (PMI; EC 5.3.1.8), phosphomannose mutase (PMM; 
EC 5.4.2.8) and GDP-D-mannose pyrophosphorylase (GMP; EC 2.7.7.13) (Fig. 2). In many 
bacteria, the PMI and GMP enzyme activities are carried out by a bifunctional protein that 
belongs to the type II PMIs family of proteins (Sousa et al., 2007; Griffin et al., 1997). These 
proteins have two separate conserved domains: the mannose-6-phosphate isomerase family 
2 domain in the C-terminus, and the nucleotidyl transferase domain in the N-terminus 
(Jensen and Reeves, 1998). These enzymes catalyse the reversible isomerization of fructose-
6-phosphate into mannose-6-phosphate and transfer mannose-1-phosphate to GTP forming 
GDP-D-mannose, respectively (Fig. 2; Wu et al., 2002). 
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Fig. 2. Metabolic pathway leading to GDP-D-mannose. PGI, phosphoglucose isomerase; 
PMI, phosphomannose isomerase; PMM, phosphomannose mutase; GMP, GDP-D-mannose 
pyrophosphorylase. 

For example, GDP-D-mannose is one of the sugar nucleotides necessary for the synthesis of 

the exopolysaccharide Cepacian (Richau et al., 2000). This EPS is composed of a branched 
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acetylated heptasaccharide repeating unit with D-glucose, D-rhamnose, D-mannose, D-

galactose, and D-glucuronic acid, in the ratio 1:1:1:3:1 (Cescutti et al., 2000). Cepacian is 

produced by environmental, and human, animal and plant pathogenic isolates belonging to 

several Burkholderia species (Ferreira et al., 2010). In B. cepacia IST408, a clinical isolate from a 

cystic fibrosis patient, the lack of the type II PMI BceA significantly affected the ability of the 

mutant strain to form biofilms (Sousa et al., 2007).  

4.2 GDP-D-Rhamnose 

D-Rhamnose is a relatively rare deoxyhexose. This sugar is mainly found in the LPS of 

pathogenic bacteria, where it is involved in host-bacterium interactions and in the 

establishment of infection (Webb et al., 2004). For example, it is a constituent of the 

opportunistic pathogen Pseudomonas aeruginosa A-band of the O polysaccharide of LPS 

(Rocchetta et al., 1999). This glycan is also present in the S-layer of the Gram positive 

thermophile Aneurinibacillus thermoaerophilus (Kneidinger et al., 2001). Due to the D-

rhamnose association with bacterial structures related to virulence, enzymes leading to its 

biosynthesis have been studied as promising targets for the development of novel 

antibacterial agents. 

Biosynthesis of GDP-D-rhamnose, the precursor for D-rhamnose, starts with the 

dehydration of GDP-D-mannose to GDP-4-keto-6-deoxy-D-mannose, in a reaction catalyzed 

by the GDP-D-mannose-4,6 dehydratase (GMD; EC 4.2.1.47) (Fig. 3). The mechanism of this 

reaction has been proposed to involve a protein-bound pyridine dinucleotide (NAD+ or 

NADP+) as responsible for the transfer of a hydrogen from the C-4 to the C-6 position of the 

deoxy-monosaccharide (Sturla et al., 1997). The 4-keto moiety of the intermediate is then 

reduced to GDP-D-rhamnose by the enzyme activity GDP-4-keto-6-deoxy-D-mannose 

reductase (RMD; EC 1.1.1.281) (Fig. 3). The joint GMD and RMD enzyme activities are also 

known as GDP-rhamnose synthase (GRS). 
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GDP-D-mannose GDP-D-Rhamnose

GMD RMD

H2O NAD(P)NAD(P)H

GDP-4-keto-6-

deoxy-D-mannose
GDP-D-mannose GDP-D-Rhamnose

GMD RMD

H2O NAD(P)NAD(P)H
 

 

Fig. 3. Metabolic pathway leading to GDP-D-rhamnose. GMD, GDP-D-mannose-4,6 

dehydratase; RMD, GDP-4-keto-6-deoxy-D-mannose reductase. 

The two proteins involved in this pathway are members of the nucleotide diphosphate 

(NPD)-sugar modifying subfamily of the short-chain dehydrogenase/reductase (SDR) 

superfamily (Kavanagh et al., 2008). This family share low sequence identity, but their three-

dimensional structures are quite conserved (Fig. 4). The most conserved feature of these 

proteins is the Rossman-fold motif, involved in dinucleotide binding (Webb et al., 2004). The 

Rossman fold is composed of a ┙/┚ folding pattern, with 7 ┚-strands flanked by 6-7 ┙-

helices on each side (Fig. 4). The glycine-rich Wierenga motif, GXXGXXG, is also present in 

the N-terminus region. The Wierenga motif is the specific region for the binding of the 

cofactor NADP(H) (Fig. 4). These proteins also share the conserved triad Tyr-XXX-Lys and 

Ser/Thr in their catalytic centers (Fig. 4). 
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GMD_E.coli        ---MSKVALITGVTGQDGSYLAEFLLEKGYEVHGIKRRASSFNTERVDHIYQDPHTCNPK 57 
GMD_P.aeruginosa  ---MTRSALVTGITGQDGAYLAKLLLEKGYRVHGLVARRSSDTRWRLRELGIEG-----D 52 
RMD_E.coli        MTDAGKHALITGINGFTGRYVAAELSAAGYRVFGLGAGSVPYDGP--------------- 45 
RMD_P.aeruginosa  ---MTQRLFVTGLSGFVGKHLQAYLAAAHTPWALLPVP---------------------- 35 

GalE_E.coli       -----MRVLVTGGSGYIGSHTCVQLLQNGHDVIILDNLCNSKRSVLPVIERLGG----KH 51 
GalE_P.aeruginosa -----MRVLVTGGAGFIGSHVLVELLGQGAKVVVLDNLVNGSSESLKRVERITG----HP 51 

GMER_E.coli       --MSKQRVFIAGHRGMVGSAIRRQLEQRGDVELVLRTR---------------------- 36 
                          :::*  *  *      *         :                          

 

GMD_E.coli        FHLHYGDLSDTSNLTRILREVQPDEVYNLGAMS-HVAVSFESPEYTADVDAMGTLRLLEA 116 

GMD_P.aeruginosa  IQYEDGDMADACSVQRAVIKAQPQEVYNLAAQS-FVGASWNQPVTTGVVDGLGVTHLLEA 111 
RMD_E.coli        -DYYQVDLMDVTALTNVVTSIKPNVVVHLAAIA-FVGHG--DADAFYNINLLGTRNLLQA 101 

RMD_P.aeruginosa  ---HRYDLLEPDSLGDLWP-ELPDAVIHLAGQT-YVPEAFRDPARTLQINLLGTLNLLQA 90 
GalE_E.coli       PTFVEGDIRNEALMTEILHDHAIDTVIHFAGLK-AVGESVQKPLEYYDNNVNGTLRLISA 110 
GalE_P.aeruginosa VGFVLGDVRDSLLVERLLIDEKVDAVIHLAGLK-AVGESVDDPLEYYESNVQGTISLLRA 110 

GMER_E.coli       ---DELNLLDSRAVHDFFASERIDQVYLAAAKVGGIVANNTYPADFIYQNMMIESNIIHA 93 
                     :: :   :         : *   ..    :      .      :      :: *

GMD_E.coli        IRFLGLEKKTRFYQASTSELYG--LVQEIPQKETTPF-----YPRSPYAVAKLYAYWITV 169 

GMD_P.aeruginosa  IR--QFSPETRFYQASTSEMFG--LIQAERQDENTPF-----YPRSPYGVAKLYGHWITV 162 
RMD_E.coli        LSHCDNSLDAVLLASSA-NVYG--NGTAGKLSETTAP-----NPANDYAVSKLAMEYMAR 153 

RMD_P.aeruginosa  LKARG-FSGTFLYISSG-DVYGQVAEAALPIHEELIP-----HPRNPYAVSKLAAESLCL 143 

GalE_E.coli       MRAAN---VKNFIFSSSATVYG--DQPKIPYVESFPTG----TPQSPYGKSKLMVEQILT 161 
GalE_P.aeruginosa MQRVG---VFKIVFSSSATIYQ--MPGTLPISESSKVG----GVASPYGRTKLTAEHMLD 161 

GMER_E.coli       AHQND---VNKLLFLGSSCIYP--KLAKQPMAESELLQGTLEPTNEPYAIAKIAGIKLCE 148 
                          :   .   ::           *            . *. :*:    :  

GMD_E.coli        NYR-ESYGMYACNGILFNHESPR------RGETFVTRKITRAIAN-IAQGLESCLYLG-- 219 

GMD_P.aeruginosa  NYR-ESFGLHASSGILFNHESPL------RGIEFVTRKVTDAVAR-IKLGKQQELRLG-- 212 
RMD_E.coli        LW---MDKLPVFITRPFNYTGVG------QADNFLLPKIVKHFK-----AKAPVIELG-- 197 

RMD_P.aeruginosa  QWG-ITEGWRVLVARPFNHIGPG------QKDSFVIASAARQIARMKQGLQANRLEVG-- 194 
GalE_E.coli       DLQKAQPDWSIALLRYFNPVGAHPSGDMGEDPQGIPNNLMPYIAQVAVGRRDSLAIFGND 221 
GalE_P.aeruginosa DLARSDTRWSIAVLRYFNPIGAHESGLIGEDPCGTPNNLLPYIAQVAVGRLSRLTVHGGD 221 

GMER_E.coli       SYN-RQYGRDYRSVMPTNLYGPHDN--FHPSNSHVIPALLRRFHEATAQNAPDVVVWG-- 203 
                                   *  .                     .              *   
 

GMD_E.coli        ----NMDSLRDWGHAKDYVKMQWMMLQ---------QEQP-EDFVIATGVQYSVRQFVEM 265 

GMD_P.aeruginosa  ----NVDAKRDWGFAGDYVEAMWLMLQ---------QDKA-DDYVVATGVTTTVRDMCQI 258 
RMD_E.coli        ----NIDVWRDFTDVRALSQAYVKLLQ---------AKPTGEVINICSGRTYSLRKIIEL 244 

RMD_P.aeruginosa  ----DIDVSRDFLDVQDVLSAYLRLLS---------HGEAGAVYNVCSGQEQKIRELIEL 241 
GalE_E.coli       YPTEDGTGVRDYIHVMDLADGHVVAMEKL------ANKPGVHIYNLGAGVGNSVLDVVNA 275 
GalE_P.aeruginosa YPTIDGTGVRDYIHVCDLAAGHTRALEYL------GQGHGYHVWNLGTGTGYSVLQVIEA 275 

GMER_E.coli       ----SGTPMREFLHVDDMAAASIHVMELAHEVWLENTQPMLSHINVGTGVDCTIRDVAQT 259 
                   .    *::  .          :.                 : :*   .: .. : 

GMD_E.coli        AAAQLGIKLRFEGTGVEEKGIVVSVTGHDAPGVKPGDVIIAVDPRYFRPAEVETLLGDPT 325 

GMD_P.aeruginosa  AFEHVGLDYR---------------------------DFLKIDPAFFRPAEVDVLLGNPA 291 
RMD_E.coli        CEKITGHHLE-----------------------------IQVNQAFVRANEVKTLSGDTT 275 

RMD_P.aeruginosa  LADIAQVELE-----------------------------IVQDPARMRRAEQRRVRGSHA 272 
GalE_E.coli       FSKACGKPVN-------------------------------YHFAPRREGDLPAYWADAS 304 
GalE_P.aeruginosa FERVSGRRIP-------------------------------FTVSGRRPGDVAECWADVS 304 

GMER_E.coli       IAKVVGYKGR-------------------------------VVFDASKPDGTPRKLLDVT 288 
                                                             :         . :

GMD_E.coli        KAHEKLGWKPEITLREMVSEMVANDLEAAKKHSLLKSHGYDVAIALES 373 

GMD_P.aeruginosa  KAQRVLGWKPRTSLDELIRMMVEADLRRVSRE---------------- 323 
RMD_E.coli        KLQSFIPEWDVPPLEDTLRWMLESD----------------------- 300 

RMD_P.aeruginosa  RLHDTTGWKPEITIKQSLRAILSDWESRVREE---------------- 304 

GalE_E.coli       KADRELNWRVTRTLDEMAQDTWHWQSRHPQGYPD-------------- 338 
GalE_P.aeruginosa KAERELGWKAGLGLECMIADAWRWQVSNPSGYS--------------- 337 

GMER_E.coli       RLH-QLGWYHEISLEAGLASTYQWFLENQDRFRG-------------- 321 
                : .          :                                  
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Fig. 4. Amino acid sequence alignment of E. coli GMD (AAC77842), P. aeruginosa GMD 
(AAG08838), E. coli RMD (ACV53840), P. aeruginosa RMD (AAG08839), E. coli GalE 
(AAC73846), P. aeruginosa GalE (AAG04773), and E. coli GMER (AAC77843). The Wierenga 
motif and the catalytic triad typical of the SDR family of proteins are highlighted. Asterisks 
indicate the amino acid residues that are identical in all proteins. One or two dots indicate 
semi-conserved or conserved substitutions, respectively. The conserved secondary structure 
elements are shown above the alignment segments, where cylinders represent ┙-helices and 
arrows represent ┚-sheets. Alignments and the secondary structure predictions were 
performed with ClustalW2 and the PSIPRED software, respectively. 
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The GMD enzyme activity is widespread in nature, and also catalyzes the first step in the 

biosynthesis of other sugars, including L-fucose, D-talose and D-perosamine (King et al., 

2009). Bioinformatic analysis suggests that the closest paralog of RMD is GMD (Fig. 4). This 

conclusion is also supported by the existence of GMD proteins with bifunctional activity, 

which catalyzes the dehydration of GDP-D-mannose and the reduction of the 4-keto sugar 

nucleotide to a 6-deoxysugar nucleotide (King et al., 2009). 

4.3 GDP-L-Fucose 

L-Fucose is a 6-deoxy-sugar widely distributed in nature, occurring in glycoconjugate 

compounds in microorganisms, plants and animals. This sugar nucleotide is commonly 

found in complex carbohydrates that are constituents of the cell wall and of LPS of some 

Gram-negative bacteria. The presence of L-fucose in these polysaccharides has been shown 

to play an important role on the interaction between bacteria and the host tissues. For 

example, Helicobacter pylori fucosylated glycoconjugates are involved in adhesion 

mechanisms and in evasion of bacteria from the host immune system (Moran, 2008). This H. 

pylori fucosylated glycoconjugate is closely related to antigens of the Lewis system that are 

commonly present on the surface of human cells (Rosano et al., 2000). In 1960, Ginsburg 

identified the highly conserved metabolic pathway leading to the synthesis of GDP-L-fucose 

via GDP-D-mannose (Ginsburg, 1960; Fig. 5). 
  

GDP-4-keto-6-

deoxy-D-mannose
GDP-D-mannose GDP-L-Fucose

GMD GMER

H2O NAD(P)NAD(P)H

GDP-4-keto-6-

deoxy-L-galactose

GMERGDP-4-keto-6-

deoxy-D-mannose
GDP-D-mannose GDP-L-Fucose

GMD GMER

H2O NAD(P)NAD(P)H

GDP-4-keto-6-

deoxy-L-galactose

GMER

 

Fig. 5. Metabolic pathway leading to GDP-L-fucose. GMD, GDP-D-mannose-4,6 
dehydratase; GMER, GDP-4-keto-6-deoxy-D-mannose epimerase/reductase. 

The first step of this pathway is the dehydration of GDP-D-mannose by GMD, leading to the 

formation of the unstable intermediate GDP-4-keto-6-deoxy-D-mannose. This intermediate 

undergoes subsequent epimerization at C-3 and C-5 hexose ring centers that changes the D- 

to L-configuration of the monosaccharide. This results in the production of GDP-4-keto-6-

deoxy-L-galactose. A NADPH-dependent reduction of the keto group at C-4 occurs 

subsequently, leading to the formation of GDP-L-fucose. The enzyme responsible for these 

two last steps is the bifunctional enzyme with both GDP-4-keto-6-deoxy-D-mannose 

epimerase/reductase activities (GMER; EC 1.1.1.271) (Rosano et al., 2000). Amino acid 

sequence analysis indicated that the protein also belongs to the SDR family. The GDP-L-

fucose formed is the substrate for various fucosyltransferases that are responsible for the 

incorporation of L-fucose in glycoproteins, glycolipids and oligosaccharides (Ma et al., 

2006). 

4.4 GDP-D-mannuronic acid 

GDP-D-mannuronic acid is the precursor of the acidic sugars mannuronic acid and 

guluronic acid, mainly found in bacterial alginates. GDP-D-mannuronic acid is synthesized 

from GDP-D-mannose, in a redox reaction catalyzed by GDP-mannose dehydrogenase 

(GMdh; EC 1.1.1.132). The reaction involves the irreversible oxidation of GDP-D-mannose 

via a 4-electron transfer using NAD+ as the cofactor (Fig. 6).  
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L-guluronic acidGDP-D-mannose GDP-D-mannuronic acid
GMdh

2 NADH2 NAD+

L-guluronic acidGDP-D-mannose GDP-D-mannuronic acid
GMdh

2 NADH2 NAD+

 

Fig. 6. Metabolic pathway leading to GDP-D-mannuronic acid and L-guluronic acid. GMdh, 
GDP-mannose dehydrogenase. 

GMdh is a member of the NAD-dependent 4-electron transfer dehydrogenases. This protein 

family also includes UDP-glucose dehydrogenases (UGD) (Snook et al., 2003). Both the 

GMdh and UGD enzyme activities are mechanistically similar, using a unique active site to 

catalyze the two-step conversion of an alcohol group to the corresponding acid, via a 

thiohemiacetal intermediate.  

GDP-D-mannuronic acid is the activated sugar precursor for alginate polymerization in P. 

aeruginosa, which is a partially O-acetylated linear polymer of D-mannuronic acid and L-

guluronic acid, linked via ┚-1,4 glycosidic bonds (Shankar et al., 1995). In the case of the P. 

aeruginosa alginate, after polymerization, some D-mannuronic acid residues can be further 

converted to L-guluronic acid by the extracellular enzyme activity polymannuronic acid C-

5-epimerase (Jerga et al., 2006). P. aeruginosa is able to cause severe and life-threatening 

infections in immunosuppressed patients, such as burn and cancer chemotherapy patients 

(Wagner and Iglewski, 2008), as well as in patients suffering from cystic fibrosis (CF). 

Alginate allows the bacterium to resist to antipseudomonal antibiotics and to the host 

immune system (Wagner and Iglewski, 2008). In addition, long-term infection with P. 

aeruginosa leads to lung tissue damage of CF patients, to which contribute, among others, 

extracellular proteases and lipases produced by the bacterium. Tavares et al. (1999) 

demonstrated that the step catalyzed by GMdh is critical for the control of the alginate 

pathway in P. aeruginosa, channelling GDP-D-mannose into the alginate pathway instead of 

A-band LPS biosynthesis. Therefore, inhibition of GMdh activity may lead to the prevention 

of alginate biosynthesis by P. aeruginosa. Recently, Li and colleagues (2008) demonstrated 

that ambroxol (2-amino-3,5-dibromo-N-[trans-4-hydroxycyclohexyl] benzylamine) was able 

to partially inhibit the production of alginate by P. aeruginosa strains via the reduction of the 

activity of the GMdh enzyme. 

4.5 dTDP-L-rhamnose 

L-rhamnose is a fundamental constituent of the O-antigen of LPS in several gram-negative 

bacteria. For example, in Shigella and Salmonella species, the O-antigen repeating unit is 

mainly constituted by L-rhamnose (Van den Bosch et al., 1997). The L-rhamnosyl residue 

has also an essential structural role in the cell wall of Mycobacterium tuberculosis (Ma et al., 

2001). The donor of the L-rhamnose moiety found in bacterial structures is deoxythymidine-

diphosphate (dTDP)-L-rhamnose. dTDP-L-rhamnose is synthesized from glucose-1-

phosphate and deoxythymidine triphosphate (dTTP) in a four-step pathway (Fig. 7). The 

first-step is catalysed by glucose-1-P deoxythymidilyl transferase (RmlA; EC 2.7.7.24) that 

leads to dTDP-D-glucose from glucose-1-P and dTTP. In bacteria, dTDP-D-glucose is a key 

metabolite for the production of several monosaccharides that are components of the cell 

wall polysaccharides, or that are components of some antibiotics, such as the macrolide 

erythromycin A (Vara and Hutchinson, 1988). The second-step is the dehydration of dTDP-

D-glucose to dTDP-4-keto-6-deoxy-D-glucose, a reaction catalysed by dTDP-D-glucose 4,6 
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dehydratase (TGD or RmlB; EC 4.2.1.46). The unstable intermediate dTDP-4-keto-6-deoxy-

D-glucose is the precursor for the synthesis of dideoxyhexoses and aminohexoses that are 

common components of antibiotic glycosides, like novobiocin and streptomycin (Nedal and 

Zotchev, 2004). Alternatively, this intermediate can undergo two additional conversion 

steps to originate dTDP-L-rhamnose. First, dTDP-4-keto-6-deoxy-D-glucose-3,5 epimerase 

(RmlC; EC 5.1.3.13) catalyses the C-3 and C-5 epimerization. A NADPH-dependent 

reduction of C-4 is followed, catalysed by dTDP-6-deoxy-L-lyxo-4-hexulose reductase 

(RmlD; EC 1.1.1.133). 
 

Glucose-6-P Glucose-1-P

dTDP-glucose

dTDP-4-keto-6-deoxy-D-glucose

dTDP-L-rhamnose

RmlA

RmlC

dTDP-L-lyxo-6-deoxy-4-hexulose

RmlB

PGM

RmlD

Glucose-6-P Glucose-1-P

dTDP-glucose

dTDP-4-keto-6-deoxy-D-glucose

dTDP-L-rhamnose

RmlA

RmlC

dTDP-L-lyxo-6-deoxy-4-hexulose

RmlB

PGM

RmlD

 

Fig. 7. Metabolic pathway leading to dTDP-L-rhamnose. PGM, phosphoglucose mutase; 
RmlA, glucose-1-P deoxythymidilyl transferase; RmlB, dTDP-D-glucose 4,6 dehydratase; 
RmlC, dTDP-4-keto-6-deoxy-D-glucose-3,5 epimerase; RmlD, dTDP-6-deoxy-L-lyxo-4-
hexulose reductase. 

The described multi-step pathway does not exist in humans, being these four enzyme 

activities potential targets for the design of new therapeutic agents, as is the case of the 

development of new antimycobacterial agents, an area of intensive research (Ma et al., 2001). 

4.6 UDP-D-glucose 

UDP-D-glucose is the sugar precursor for the synthesis of several sugar-containing bacterial 

structures that are recognized virulence factors or determinants, such as the peptidoglycan, 

LPS and EPS. In gram-positive bacteria, UDP-D-glucose is the substrate for the glycosylation 

of teichoic acids and for biosynthesis of the glycolipid diglucosyldialcylglycerol (Glc2-

DAG), the membrane anchor of lipoteichoic acids (Chassaing and Auvray, 2007). UDP-D-

glucose is also an important sugar precursor for the biosynthesis of hyaluronic acid (HA) by 

streptococci, being the encapsulation of these bacteria by HA considered an important 

virulence factor (Stollerman and Dale, 2008). HA is a linear polymer of the repeating 

disaccharide composed of glucuronic acid (GlcA) and N-acetyl-glucosamine (GlcNAc) 

(Stollerman and Dale, 2008). UDP-D-glucose is the precursor for the synthesis of GlcA. UDP-

glucose is the product of the enzyme activity UDP-glucose pyrophosphorylase (UGP; EC 

2.7.7.9). This enzyme catalyses the reversible formation of UDP-glucose from UTP and 

glucose-1-phosphate (Fig. 8; Kim et al., 2010).  
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Glucose-1-PGlucose-6-P UDP-D-Glucose
PGM UGP

PPiUTP

Glucose-1-PGlucose-6-P UDP-D-Glucose
PGM UGP

PPiUTP
 

Fig. 8. Metabolic pathway leading to UDP-D-glucose. PGM, phosphoglucose mutase; UGP, 
UDP-glucose pyrophosphorylase; UTP, uridine triphosphate; PPi, pyrophosphate. 

These enzymes have two typical domains, the N-terminal motif GXGTRXLPXTK for the 
activator binding site, and the VEKP motif that is essential for substrate binding (Marques et 
al., 2003). UGPases are present in animals, plants and microorganims. However, prokaryotic 
and eukaryotic proteins are quite distinct, being the former regarded as appropriate targets 
for the development of novel antibacterial agents.  

4.7 UDP-D-glucuronic acid 

UDP-D-glucuronic acid is synthesized from UDP-D-glucose, in a NAD+-dependent 
oxidation, catalyzed by the enzyme activity UDP-glucose dehydrogenase (UGD; EC 1.1.1.22) 
(Fig. 9; Ge et al., 2004; Field and Naismith, 2003).  
 

UDP-D-Glucose UDP-D-Glucuronic Acid
UGD

2 NADH2 NAD+

UDP-D-Glucose UDP-D-Glucuronic Acid
UGD

2 NADH2 NAD+

 

Fig. 9. Metabolic pathway leading to UDP-D-glucuronic acid. UGD, UDP-glucose 
dehydrogenase. 

The first step in the reaction is the transfer of the pro-R hydride from C-6 to NAD+ and 
deprotonation of O-6, generating an aldehyde. This first intermediate is converted into a 
covalent thioester by the transfer of a second hydride to a new NAD+ molecule. The 
thioester is then hydrolyzed to liberate the free carboxylic acid, thus regenerating the 
protein thiol. These proteins have the three typical conserved domains of the UGD protein 
family, namely the NAD+-binding domain, the central domain, and the UDP-binding 
domain (Kereszt et al., 1998). In B. cepacia complex (Bcc) bacteria, Ara4N is present in the 
lipid A and in the core of LPS. Synthesis of UDP-Ara4N is essential for Bcc bacteria viability 
and to their high resistance to antimicrobial peptides (Ortega et al., 2007). The first step in 
the synthesis of UDP-Ara4N is the conversion of UDP-D-glucose to UDP-D-glucuronic acid 
by UGD. Recently, it was shown that the UGDBCAL2946 and UGDBCAM0855 of B. cenocepacia are 
essential for survival, being the UGDBCAL2946 protein also required for polymyxin B 
resistance (Loutet et al., 2009). Bcc is a group of 17 phenotypically similar bacterial species 
that are opportunistic pathogens in cystic fibrosis (CF) patients, causing chronic and 
sometimes fatal pulmonary infections in these patients (Leitão et al., 2010). Treatment of 
these infections is difficult since Bcc bacteria are intrinsically resistant to most of the 
clinically relevant antimicrobial agents (Leitão et al., 2008).  

4.8 UDP-D-galactose 

UDP-D-galactose is essential for the biosynthesis of the galactosyl residues found in 
complex polysaccharides and glycoproteins. This sugar nucleotide can be synthesized by the 
Leloir pathway of the galactose metabolism when bacteria grow in lactose or galactose as 
energy and carbon sources (Holden et al., 2003; Fig. 10). This pathway includes three 
enzyme activities, galactokinase (GalK, EC. 2.7.1.6), galactose-1-P uridylyltransferase (GalT, 
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EC 2.7.7.10) and UDP-galactose 4-epimerase (UGE or GalE; EC 5.1.3.2). First, galactose is 
phosphorylated by GalK forming galactose-1-P. Then, galactose-1-P is epimerized to 
glucose-1-P by GalT. This reaction requires the transfer of UDP from UDP-glucose, also 
generating UDP-galactose. UDP-galactose can be epimerized to UDP-glucose by GalE and 
glucose-1-P can be converted to glucose-6-P by phosphoglucose mutase (PGM). 
 

D-Galactose

Galactose-1-P
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UDP-D-Galactose

GalK

PGM

GalT

Glucose-6-P
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D-Galactose

Galactose-1-P

Glucose-1-P

UDP-D-Galactose

GalK

PGM

GalT

Glucose-6-P

ATP

ADP

UDP-D-Glucose

GalE

Glucose

 

Fig. 10. Metabolic pathways leading to UDP-D-galactose. GalK, galactokinase; GalT, 
galactose-1-P uridylyltransferase; Gal E, UDP-galactose 4-epimerase; PGM, phosphoglucose 
mutase. 

UDP-D-galactose can also be synthesized from UDP-D-glucose by GalE, when bacteria grow 
in glucose or fructose containing medium. GalE oxidizes C-4 (hydride abstraction) and then 
reduces the resulting ketone from the opposite face of the UDP-D-glucose, resulting in UDP-
D-galactose by a free conversion between a gluco- to a galacto-configured pyranose ring (Fig. 
10, Holden et al., 2003). GalE is also a member of the SDR superfamily, with the typical Tyr-
X-X-X-Lys motif involved in catalysis, and the N-terminal NAD+-binding motif GXXGXXG 
(Fig. 4, Kavanagh et al., 2008). 

4.9 UDP-N-acetylglucosamine 

In bacteria, uridine 5’-diphospho-N-acetyl-D-glucosamine (UDP-GlcNAc) is the activated 
form of N-acetylglucosamine, an essential precursor for the biosynthesis of various 
important carbohydrate-containing structures, as is the case of the cell wall peptidoglycan, 
LPS and teichoic acids (Milewski, 2002). Enzymes leading to the synthesis of UDP-GlcNAc 
are essential for the cell wall formation, being regarded as attractive targets for the 
development of antibacterial compounds (Kotnik et al., 2007). Glucosamine-6-phosphate 
synthase (GlcN-6-P synthase or GlmS in bacteria, EC 2.6.1.16) catalyses the first step in the 
pathway that leads to the formation of UDP-GlcNAc (Milewski, 2002) (Fig. 11). The 
irreversible reaction catalyzed by this enzyme involves the transfer of an amino group from 
L-glutamine to D-fructose-6-phosphate (F6P), followed by an isomerisation of the sugar 
moiety, yielding D-glucosamine-6-phosphate. GlmS is a large ubiquitous protein present in 
a large number of organisms and tissues. GlmS proteins contain two typical domains, the 
glutamine-binding domain in the N-terminus region, and the F-6-P binding domain in the 
C-terminus region. However, sequence alignments revealed large differences between 
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prokaryotic and eukaryotic GlcN-6-P synthases, being the latter 70-90 amino acid residues 
longer (Milewski, 2002). This enzyme activity is also an important point of metabolic control 
in the biosynthesis of amino sugar - containing molecules. Several inhibitors targeting this 
enzyme activity have been developed, like anticapsin, tetaine, and chlorotetaine (Milewski, 
2002). 
 

Glucosamine-6-P

Glucosamine-1-P

Fructose-6-P

UDP-N-Acetylglucosamine

GmlS

PGI

Glucose-6-P

L-Glutamine

L-Glutamate

GmlM

Acetyl CoA

CoA

GmlU

N-acetylglucosamine-1-P

UTP

PPi

GmlU

UDP-N-Acetylmannosamine

UDP-N-Acetylgalactosamine

Glucosamine-6-P

Glucosamine-1-P

Fructose-6-P

UDP-N-Acetylglucosamine

GmlS

PGI

Glucose-6-P

L-Glutamine

L-Glutamate

GmlM

Acetyl CoA

CoA

GmlU

N-acetylglucosamine-1-P

UTP

PPi

GmlU

UDP-N-Acetylmannosamine

UDP-N-Acetylgalactosamine

 

Fig. 11. Metabolic pathway leading to UDP-N-acetylglucosamine. PGI, phosphoglucose 
isomerase; GmlS, Glucosamine-6-phosphate synthase; GmlM, phosphoglucosamine mutase; 
GmlU, glucosamine-1-P acetyltransferase and N-acetylglucosamine-1-P uridyltransferase. 

After its formation by GlmS, the resulting D-glucosamine-6-phosphate is further isomerised 
into D-glucosamine 1-phosphate by the phosphoglucosamine mutase enzyme activity 
(GlmM in bacteria; EC 5.4.2.10) (Fig. 11). In bacteria, the last two reactions necessary for the 
formation of UDP-GlcNAc are carried by the bifunctional protein with both activities of 
glucosamine-1-P acetyltransferase and N-acetylglucosamine-1-P uridyltransferase (GlmU in 
bacteria; EC 2.7.7.23 and EC 2.3.1.157) (Fig. 11). These enzyme activities first transfer an 
acetyl group from acetyl-CoA to form N-acetyl-glucosamine 1-phosphate, and then transfers 
the uridyl group to finally form UDP-GlcNAc. UDP-GlcNAc is the precursor of other sugar 
nucleotides, such as UDP-N-acetylgalactosamine (UDP-GalNAc) and UDP-N-acetyl-D-
mannosamine (UDP-ManNAc). UDP-ManNAc is the precursor of N-acetylneuraminic acid 
(Sialic acid). Sialic acid is rarely found in prokaryotes, being present in certain pathogenic 
bacteria as a component of capsular polysaccharides (e.g. Neisseria meningitidis, Escherichia 
coli K1) or lipooligosaccharides (e.g. Campylobacter jejuni). In C. jejuni it is involved in evasion 
of the immune system by molecular mimicry of the host cells (Severi et al., 2007). In gram 
positive bacteria, ManNAc residues act as a bridge between the peptidoglycan and teichoic 
acids (D’Elia et al., 2009). 
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5. Biotechnological potential of nucleotide sugar metabolic pathways 

The biosynthesis of the sugar moieties of the various sugar-containing cell structures starts 
by the synthesis of the repeating units of sugar nucleotides. The supply of the activated 
sugars for the biosynthesis of these polymers is dependent on the intracellular sugar 
nucleotide levels that are influenced by the activities of the intracellular enzymes involved 
in their biosynthesis. Therefore these key enzymes are potential targets for the development 
of new antimicrobials.  
The L-rhamnose residues play an essential structural role in the cell wall of Mycobacterium 
tuberculosis. The mycobacterial cell wall core consists of three interconnected 
macromolecules, the mycolic acids, arabinogalactan (AG) and peptidoglycan. The outermost 
part is composed of mycolic acids that are esterified to the middle component, the AG. This 

component is connected, via the linker disaccharide ┙-L-rhamnosyl-(1→3)-┙-D-N-acetyl-
glucosaminosyl-1-phosphate, to the 6 position of a muramic acid residue of the inner 
component peptidoglycan. Presently, it is known that M. tuberculosis strains have increased 
resistance to the antimicrobials agents in use, and therefore new antituberculosis drugs are 
necessary (Ma et al., 2001). In this context, the four enzyme activities (RmlA to RmlD) 
involved in the dTDP-L-rhamnose biosynthetic pathway have been studied as attractive 
targets for the development of new antimicrobials. 
Helicobacter pylori is the causative agent of active chronic gastritis, being associated with 
peptic ulcer disease and increased risk for the development of gastric adenocarcinoma and 
primary gastric lymphoma (Edwards et al., 2000). The pathogen expresses the Lewis (Le) 
antigen in the O-chain of LPS (Moran, 2008). Serological and chemical structural studies 
have shown that H. pylori Le antigens mimic the human Lewis blood group determinants, 
having a role in gastric colonization and bacterial adhesion (Moran, 2008). Le antigen 
expression also affects the inflammatory response and T-cell polarization after infection. 
One of the factors that affect this antigen expression is the availability of activated sugar 
intermediates. H. pylori lacks galactokinase enzyme activity and is not able to use exogenous 
galactose. This points out that the UGE activity is an absolute requirement for the 
biosynthesis of UDP-galactose. In fact, H. pylori knockout mutants in galE produce truncated 
LPS and no Lewis antigen expression, causing a decreased ability of the mutant strain to 
colonize mice (Moran et al., 2000). Inactivation of rfbM, encoding a GMP activity that is 
required for GDP-L-fucose synthesis, resulted in a mutant strain with a fucose-lacking O-
antigen and not able to express the Lex antigen (Edwards et al., 2000). This mutant exhibited 
a reduced ability to colonize a mouse model of infection and was not able to interact with 
the human gastric mucosa of biopsy specimens in situ.  
Some sugar polymers have applications in the food and pharmaceutical industries, like 
alginate, xanthan, gelan and polysaccharides from lactic acid bacteria (LAB) (Sabra et al., 
2001; Becker et al., 1998; Fialho et al., 2008; Boels et al., 2001). These applications led to an 
increased interest in the study of the metabolic pathways leading to the formation of these 
polymers and their regulation, with the objective to optimize the microbial production 
process. 
Alginate is a polymer composed of D-mannuronic acid and L-guluronic acid residues 

arranged in an irregular sequence (Sabra et al., 2001). It is produced by bacterial species of 

the Pseudomonas and Azotobacter genera, as well as by brown algae (Sabra et al., 2001). The 

viscosity and gel-forming properties of this polymer have important commercial 

applications in the pharmaceutical industry. For example, high-quality alginates have been 
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studied for the reversal of type I diabetes by immobilising insulin-producing cells within 

alginate capsules that could be transplanted to the body of the patient (Dufrane et al., 2010). 

The D-mannuronic acid blocks of alginate seems to stimulate the immune cells to secrete 

cytokines (e.g. tumour necrosis factor, interleukin-1 and interleukin-6) (Otterlei et al., 1991). 

The polymer has also several applications in the food industry. For example, alginate is used 

to enhance foam in beer production and to help in the suspension of fruit pulp in fruit 

drinks (Sabra et al., 2001). The textile and paper industries also use alginates to improve the 

surface properties of cloth and paper, and to improve the adherence of dyes and inks (Sabra 

et al., 2001). Alginate-immobilised cell systems are used as biocatalysts in several industrial 

processes, like in ethanol production by yeast cells, and in the production of monoclonal 

antibodies from hybridoma cells (Sabra et al., 2001; Selimoglu and Elibol, 2010). Currently, 

the vast majority of the alginates commercially in use are produced from brown algae. 

However, environmental concerns raised due to intensive algae harvesting and processing 

turned the attention to bacterial alginates, which are now considered as potential 

commercial products.  

Lactic acid bacteria (LAB) produce a wide variety of structurally different EPSs that are 

responsible for the rheological characteristics and texture properties of specific fermented 

dairy and food products (Boels et al., 2001). In addition, LAB as food additives may confer 

health benefits to the consumer, having immunostimulatory, antitumoral and cholesterol-

lowering activities (Boels et al., 2001). LAB EPSs are preferable over presently used 

stabilizers, like xanthan, since they are produced by food-grade microorganisms. 

However, these EPSs are produced in low amounts (40 to 800 mg per liter), compared 

with the commercially produced EPS xanthan (10 to 25 g per liter) (Boels et al., 2003). LAB 

EPSs are produced from intracellular sugar nucleotides, including glucose, galactose, 

rhamnose, glucuronic acid, fucose, N-acetylglucosamine (GlcNAc), and N-

acetylgalactosamine (GalNAc). A study of the enzymes involved in the biosynthetic 

pathways of these sugar nucleotides revealed some key enzyme activities, like the UDP-

galactose epimerase (GalE). In a Lactococcus lactis galE mutant, undetectable levels of UDP-

D-galactose and null EPS production were described when the organisms were cultured 

on glucose as the sole carbon source (Boels et al., 2001). The availability of dTDP-

rhamnose that is incorporated on the side chain of EPS is also a bottleneck in EPS 

production by LAB (Boels et al., 2001).  

Several molecules with antibacterial, antifungal, antiparasitic or anticancer activity 

contain sugar moieties. These are of crucial importance for the biological activity and 

pharmacological properties of the compound (Nedal and Zotchev, 2004). Some 

microorganisms, like the actinomycetes, are able to produce deoxyaminosugars. The 

amino group of these metabolites can be ionized under physiological pH, being involved 

in both electrostatic interactions with other ionisable groups or in the formation of 

hydrogen bonds with specific chemical groups on the target molecule (Nedal and 

Zotchev, 2004). For example, some macrolide antibiotics containing these metabolites bind 

to the peptidyl transferase ring on the ribosome and block the tunnel that channels the 

nascent peptide into the center of the ribosome (Schlunzen et al., 2001). Macrolide 

antibiotics (e.g. erythromycin and streptomycin) can be divided in two classes, being the 

major difference between the two classes the structure of the sugar precursors (Nedal and 

Zotchev, 2004) (Table 1).  
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Deoxyaminosugar Antibiotic 

D-Desosamine Erythromycin 
Oleandomycin 
Pikromycin 

D-Mycaminose Tylosin 
D-Mycosamine Polyene Macrolides 
D-Perosamine Polyene Macrolides 
N-methyl-L-glucosamine Streptomycin 
Dimethylforosamine Spinosyns 
-Methylthio lincosaminide Lincomycin 
L-Daunosamine Daunorubicin 

Table 1. Deoxyaminosugars present in antibiotics (Nedal and Zotchev, 2004). 

The 12- to 16- macrolide aminosugar moieties (e.g. D-desosamine and D-mycaminose) 

originate from TDP-D-glucose. The polyene macrolides (e.g. mycosamine and 

perosamine) derive from GDP-D-mannose. The study of the synthesis of the 

deoxyaminosugars moities and the mechanisms of attachment to their targets is of critical 

importance for the elaboration of new macrolide derivatives with potential antimicrobial 

activity.  

6. Concluding remarks 

Sugar nucleotides are essential precursors for the biosynthesis of various sugar-containing 

bacterial cell structures. In pathogenic bacteria, some of these structures are important 

virulence factors involved, in the majority of the cases, in the evasion of the bacteria from 

the host immune system. Other sugar-containing structures, like peptidoglycan, have 

important roles in bacterial viability. In addition, some of these structures and their 

biosynthetic pathways are being regarded as attractive targets for the development of new 

antimicrobial drugs. Some sugar polymers also have applications in the food, 

pharmaceutical, textile and paper industries, having important economical significance. 

Therefore, the study of these metabolic pathways and their regulation is of critical 

importance for the optimization of the microbial production processes of carbohydrate-

containing polymers. In the present work, some examples of these studies were presented 

and discussed. 
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