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Knowledge Modelling in Two-Level Decision 
Making for Robot Navigation 

Rafael Guirado, Ramón González, Fernando Bienvenido and 
Francisco Rodríguez 

Dept. of Languages and Computer Science, University of Almería 
Spain 

1. Introduction 

In recent years, social robotics has become a popular research field. It aims to develop robots 

capable of communicating and interacting with humans in a personal and natural way. 

Social robots have the objective to provide assistance as a human would do it. Social robotics 

is a multidisciplinary field that brings together different areas of science and engineering, 

such as robotics, artificial intelligence, psychology and mechanics, among others (Breazeal, 

2004). In this sense, an interdisciplinary group of the University of Almería is developing a 

social robot based on the Peoplebot platform (ActivMedia Robotics, 2003). It has been 

specifically designed and equipped for human-robot interaction. For that purpose, it 

includes all the basic components of sensorization and navigation for real environments. 

The ultimate goal is that this robot acts as a guide for visitors at our university (Chella et al., 

2007). Since the robot can move on indoor/outdoor environments, we have designed and 

implemented a two-level decision making framework to decide the most appropriate 

localization strategy. 

Knowledge modelling is a process of creating a model of knowledge or standard 

specifications about a kind of process or product. The resulting knowledge model must be 

interpretable by the computer; therefore, it must be expressed in some knowledge 

representation language or data structure that enables the knowledge to be interpreted by 

software and to be stored in a database or data exchange file. CommonKADS is a 

comprehensive methodology that covers the complete route from corporate knowledge 

management to knowledge analysis and engineering, all the way to knowledge-intensive 

systems design and implementation, in an integrated fashion (Schreiber et al., 1999). 

There are several studies on the knowledge representation and modelling for robotic 
systems. In some cases, semantic maps are used to add knowledge to the physical maps. 
These semantic maps integrate hierarchical spatial information and semantic knowledge 
that is used for robot task planning. Task planning is improved in two ways: extending the 
capabilities of the planner by reasoning about semantic information, and improving the 
planning efficiency in large domains (Galindo et al., 2008). Other studies use the 
CommonKADS methodology, or any of its extensions, to model the knowledge; some of the 
CommonKADS extensions that have been used in robotics are CommonKADS-RT, for real 
time systems, and CoMoMAS (Conceptual Modelling of Multi-Agent Systems), for multi-
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agent systems. The first one is based on CommonKADS with the addition of necessary 
elements to model real time restrictions and it is applied to the control of autonomous 
mobile robots (Henao et al., 2001). The second one extends CommonKADS towards Multi-
Agent Systems development. A Nomad200 mobile robot is used to analyse two agent 
architectures, AIbot and CoNomad, by reverse engineering and to derive conceptual 
descriptions in terms of agent models (Glaser, 2002). Nowadays the knowledge engineering 
focuses mainly on domain knowledge, using reusable representations in the form of 
ontologies (Schreiber, 2008). 
One fundamental task to achieve our goal is robot navigation, which includes the subtasks 
of path planning, motion control, and localization. Generally, in the process of developing 
robots, robotics engineers select, at design time, a single method (algorithm) to solve each of 
these tasks. However, in the particular case of social robots (usually designed with a generic 
purpose, since its ultimate goal is to act as a human) it would be more interesting to provide 
several alternatives to solve a specific task and the criteria for selecting the best solution 
according to the current environment conditions. For instance, for the specific task of 
localization, the robot could decide to use a GPS-like solution, if it is moving on an open 
space, or dead-reckoning if it is in an indoor environment. 
The main contribution of this work is the development of an operational knowledge model 
for robot navigation. This model leads to a generic and flexible architecture, which can be 
used for any robot and any application, with a two-level decision mechanism. In the first 
level, the robotics engineer selects the methods to be implemented in the social robot. In the 
second level, robot applies dynamic selection to decide the proper method according to the 
environment conditions, taking into account a suitability criteria table. Dynamic selection of 
methods (DSM) lets to choose the best alternative to perform a task. It uses several 
suitability criteria, criterium weights, selection data and knowledge, and an aggregation 
function to make the decision (Bienvenido et al., 2001). 
The chapter is organized as follows. The second section presents the description of the robot 
system used in this work. In the third section, the methodology for the knowledge 
representation based on DSM is shown. Next, the fourth section shows the knowledge 
modelling for the localization subsystem needed to develop the generic multi-agent system 
for the social robot Peoplebot. The next section discusses the results of a physical experiment 
carried out to analyze the proposed methodology. The last section is devoted to conclusions 
and further works. 

2. System description 

In this work, the mobile robot called Peoplebot of ActivMedia Robotics Company has been used 
to test through physical experiments the proposed decision making approach. It is a mobile 
robot designed and equipped specifically for human-robot interaction research and 
applications. It includes all the basic components of sensorization and navigation in real 
environments, which are necessary for this interaction (see Fig. 1). It has two-wheel 
differential with a balancing caster and it feeds on three batteries that give an operational 
range of about ten hours. It also has installed a touch screen which displays a map of the 
University of Almería. Furthermore, for speech communication, it has two microphones to 
capture voice and two speakers. In this way, a user can interact with the robot either by 
manually selecting a target in the touch screen showing the environment map or by 
speaking directly to the robot. 
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Fig. 1. Peoplebot robot: components (ActivMedia Robotics, 2003) and picture in action 

 

 

Fig. 2. Navigation architecture 

For navigation purposes, a typical four-layer navigation architecture has been implemented 
(see Fig. 2). The top layer is devoted to path planning, that is, the generation of the reference 
trajectory between the current robot position and the target commanded by the user (touch 
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screen or speech recognition modules). Then, a motion controller based on pure-pursuit 
(Coulter, 1992) is used to generate the actual wheel velocities. In order to ensure that the 
wheels move at the desired setpoints two low-level PID controllers were tuned. Finally, a layer 
devoted to localization is implemented. This localization layer is detailed subsequently. 

3. Methodology 

The knowledge model, about the localization for social robots described in this work, is 
based on some extensions of knowledge representation methodologies (like CommonKADS) 
and the DSM. Here, we introduce those approaches and a short summary of the localization 
algorithms implemented in the system. 

3.1 Knowledge representation: the CommonKADS methodology 

The CommonKADS methodology was consolidated as a knowledge engineering technique 
to develop knowledge-based systems (KBS) in the early 90’s (Schreiber et al., 1994). This 
method provides two types of support for the production of KBS in an industrial approach: 
firstly, a lifecycle enabling a response to be made to technical and economic constraints 
(control of the production process, quality assurance of the system, ...), and secondly a set of 
models which structures the development of the system, especially the tasks of analysis and 
the transformation of expert knowledge into a form exploitable by the machine (Schreiber et 
al., 1999). Our proposal supposes to work in the expertise or knowledge model, one of the 
six models in CommonKADS. The rest are organizational (it supports the analysis of an 
organization, in order to discover problems and opportunities for knowledge systems), task 
(it analyzes the global task layout, its inputs and outputs, preconditions and performance 
criteria, as well as needed resources and competences), agent (it describes the characteristics 
of agents, in particular their competences, authority to act, and constraints in this respect), 
communication (it models the communicative transactions between the agents involved in the 
same task, in a conceptual and implementation-independent way) and design models (it gives 
the technical system specification in terms of architecture, implementation platform, software 
modules, representational constructs, and computational mechanisms needed to implement 
the functions laid down in the knowledge and communication models). Fig. 3 presents the 
kernel set of models used in the CommonKADS methodology (Schreiber et al., 1994). 
 

 Organizational 

Model 

Task 

Model 

Agent 

Model 

Communication 

Model 

Design 

Model 

Knowledge 

Model 

 

Fig. 3. CommonKADS kernel set of models 
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The purpose of the knowledge model is to detail the types and structures of the knowledge 
used in performing a task. It provides an implementation-independent description of the 
role that different knowledge components play in problem solving, in a way that is 
understandable for humans. This makes the knowledge model an important vehicle for 
communication with experts and users about the problem solving aspects of a knowledge 
system, during both development and system execution (Schreiber et al., 1999). So, its final 
goal is to analyze the tasks (objectives), methods (possible solution mechanisms), inferences 
(algorithms or agents) and domain knowledge elements (context and working data) for the 
KBS to be developed. These four elements permit to represent the knowledge involved in our 
mobile robot system. So, we have decided to use this knowledge engineering methodology. 
The Task-Method Diagrams (TMD) (Schreiber et al., 1999) to model the solution mechanism 
of the general problem represented by the highest-level task (main objective) are used. TMD 
presents the relation between one task to be performed and the methods that are suitable to 
perform that task, followed by the decomposition of these methods in subtasks, transfer 
functions and inferences (final implemented algorithms). Fig. 4 shows an example of TMD 
tree, where the root node represents the main task (Problem). It can be solved using two 
alternative methods (Met 1 and Met 2). First of them is implemented by the inference Inf 1, a 
routine executed by an agent. Second method requires the achievement of three tasks (really 
are two transfer functions Tran. Fun. 1 and Tran. Fun. 2 –special type of task, so it is 
represented by the same symbol- and one task Task 1). Transfer functions are tasks whose 
resolution is responsible for an external agent (for instance, it could be used for manual 
tasks). There are two methods to solve Task 1; they are Met 3 and Met 4. Second one is 
implemented by the inference Inf 2, while Met 3 requires the performance of four tasks: Task 
3, Task 4, Task 5 and Task 6; each one is solved by a correspondent method (Met 5, Met 6, Met 
7 and Met 8, respectively). These four methods are implemented by the inferences Inf 3, Inf 4, 
Inf 5 and Inf 6. 
CommonKADS proposes that the different elements (tasks, methods and inferences) of the 
TMD are modelled using schemas like CML or CML2 (Guirado et al., 2009). These schemas 
formalize all the knowledge associated to each one of these elements. 
 

  

Task 1 

Problem 

Inf 1 Tran. Fun. 1 

Met 1 Met 2 

Tran. Fun. 2 

Met 3 Met 4 

Task 3 Task 4 Task 5 

Inf 3 

Met 5 

Inf 4 

Met 6 

Inf 5 

Met 7 

Inf 2 Task 6 

Inf 6 

Met 8 

 

Fig. 4. Simple TMD 
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3.2 Dynamic selection of methods 

A given task, at any level, can be performed by several alternative methods, and these can 
be only applied at specific conditions. DSM is based on a general decision module that, 
taking into account the suitability criteria defined for each alternative method and actual 
data, would activate the most appropriate method. These suitability criteria have assigned 
weights whose values are calculated through functions that depend on the current 
knowledge of the problem and modify the suitability criteria values of the alternative 
methods to solve a given task (Bienvenido et al., 2001). For example, Table 1 shows the 
structure of the suitability criteria for a set of alternative methods. There are criteria that 
must be completely fulfilled, and others are conveniently weighted to offer a condition 
that increase or not the suitability of a given method. This technique was previously used 
in greenhouses design (Bienvenido et al., 2001), and robot navigation (Guirado et al., 
2009). 
 

Method Criterion 1 Criterion 2 Criterion 3 Criterion 4 Criterion 5 

Method 1 4 3 f1( ) 1 g1( ) 

Method 2 1 1 f2( ) 3 g2( ) 

Method 3 2 2 f3( ) 2 g3( ) 

Method 4 5 5 f4( ) 1 g4( ) 

Method 5 2 2 f5( ) 2 g5( ) 

Table 1. Example of structure of the suitability criteria table 

In this example, criteria 3 and 5 are hard constraints or critical (C). Notice that 
corresponding functions fM() and gM() can only take the values 0 or 1 (depending on 
environment conditions), where a value of 0 means that the method is not applicable if this 
criterion is not met, and a value of 1 means that it can be used. The other criteria (C1, C2 and 
C4) can take values between 1 and 5 according to the suitability of the method. These criteria 
are called soft constraints or non-critical (N). 
In this case, the global suitability value S for the method M (M = {1, 2, 3, 4, 5}) is given by the 
following equation: 

 SM = fM() * gM() * (1 + W1 * C1M + W2 * C2M + W4 * C4M) (1) 

Where CiM is the value of the criterion i for the method M, and Wi is the weight for the 
criterion i. These weights depend on the environment conditions and their sum must be 
equal to 1. For instance, assuming that W1 = 0.5, W2 = W4 = 0.25 and that the suitability 
criteria table is as shown in the table above (with f1() = f5() = 0, f2() = f3() = f4() = 1, g1() = g2() 
= g3() =1, and g4() = g5() = 0), then the selected method would be the number 3 (S1 = 0, S2 = 
2.5, S3 = 3, S4 = 0, and S5 = 0). Notice that if there are two or more methods with the highest 
suitability value, the current method remains as selected, and if not, the method is selected 
randomly. 

3.3 Localization algorithms 

Robot localization is defined as the process in which a mobile robot determines its current 
position and orientation relative to an inertial reference frame. Localization techniques have 
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to deal with the particular features of environment conditions, such as a noisy environment 
(vibrations when the robot moves, disturbance sources, etc.), changing lighting conditions, 
high degrees of slip, and other inconveniences and disturbances. 
 

Method 
Indoor/
Outdoor

Computing 
Time 

Light 
Conditions

Precision Cost Sensors 
Fault-

tolerant 

Odometry 

Both, not 
advisable 

for slip 
conditions

Fast 
There is no 

inconve-
nience 

Error grows 
with 

distance 
Cheap Encoders 

It only 
depends 

on 
encoders 
readings 

Dead-
reckoning 

Both Fast 
There is no 

inconve-
nience 

Error grows 
with 

distance, 
although it 
is reduced 

taking IMU 
data 

More 
expensive 

than 
odometry 

Encoders 
and IMU 

It depends 
on 

encoders 
and IMU 

Beacons 
Mainly 
indoor 

Middle 

Beacons 
must be 

observable 
from robot

Absolute 
position (no 

error 
growth) 

Expensive 
(installation 
of markers)

Beacons,  
landmarks, 

etc. 

It uses 
many 

beacons 

GPS-based 
Only 

outdoor 
Middle 

There is no 
inconve-
nience 

Absolute 
position (no 

error 
growth) 

High cost of 
accurate 

GPS 

GPS, 
DGPS, 

RTK-GPS 

It depends 
on the 

number of 
available 
satellites 

Visual 
odometry 

Both, 
advisable 

for slip 
conditions

Usually high
It depends 

on light 
conditions

Error grows 
with 

distance, 
although it 
is reduced 

taking 
visual data

Cheap Camera(s) 
It depends 

on 
camera(s) 

Kalman-
filter-
based 

Both Usually high
There is no 

inconve-
nience 

Small error 
(redundant 

sources) 

Expensive 
(redundant 

sensors) 

It depends 
on fused 
sensors 

Yes, since 
it generally 

uses 
several 

redundant 
sources 

Table 2. Main characteristics of the localization techniques 

In this work, we have analyzed different localization methods, in order to evaluate the most 
appropriate ones according to the activity of the robot. In order to achieve this objective, we 
have firstly studied the typical localization methods for the mobile robotics community and 
we discuss the advantages and disadvantages of these methods to our specific case. 
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The most popular solutions are wheel-based odometry and dead-reckoning (Borenstein & 
Feng, 1996). These techniques can be considered as relative or local localization. They are 
based on determining incrementally the position and orientation of a robot from an initial 
point. In order to provide this information, it uses various on-board sensors, such as encoders, 
gyroscopes, accelerometers, etc. The main advantage of wheel-based odometry is that it is a 
really straightforward method. The main drawback is, above all, an unbounded growth of the 
error along time and distance, particularly in off-road slip conditions (González, 2011). 
We have also analyzed global or absolute localization techniques, which determine the 
position of the robot with respect to a global reference frame (Durrant-Whyte & Leonard, 
1991), for instance using beacons or landmarks. The most popular technique is GPS-like 
solutions such as Differential GPS (DGPS) and Real-Time Kinematics GPS (RTK-GPS). In 
this case, the error growth is mitigated and the robot position does not depend on time and 
initial position. The main problems in relation to GPS are a small accuracy of data 
(improved using DGPS and RTK-GPS) and the signal is lost in closed spaces (Lenain et al., 
2004). Other solutions such as artificial landmarks or beacons require a costly installation of 
the markers on the area where the robot operates. 
On the other hand, there are some localization techniques based on visual information 
(images). One of the most extended approaches is visual odometry or Ego-motion 
estimation, which is defined as the incremental on-line estimation of robot motion from an 
image sequence (Nistér et al., 2006). It constitutes a straightforward-cheap method where a 
single camera can replace a typical expensive sensor suite, and it is especially useful for off-
road applications, since visual information estimates the actual velocity of the robot, 
minimizing slip phenomena (Angelova et al., 2007). 
Finally, probabilistic techniques based on estimating the localization of the mobile robot 
combining measurements from different data sources are becoming popular. The most 
extended technique is the Kalman filter (Thrun et al., 2005). The main advantage of these 
techniques is that each data source is weighted taken into account statistical information 
about reliability of the measuring devices and prior knowledge about the system. In this 
way, the deviation or error is statistically minimized. 
Summing up, in Table 2 the considered localization methods for our social robot are 
presented. We also detail some key parameters to decide the most appropriate solution, 
depending on the task to be performed. 

4. Modelling the localization system 

In order to model the knowledge that the social robot needs to take decisions, we have 
analyzed the characteristics of the localization methods to decide the necessary parameters 
for the best selection in different environment conditions. Firstly, all available alternatives 
have been evaluated. Since it would be inefficient to implement all the methods in the robot, 
it is applied a first decision level in which the human experts select the methods that the 
social robot may need taking into account the scenarios to be found at the University. In this 
sense, we are considering a social mobile robot working at indoor and outdoor scenarios. 
The main purpose of this mobile robot is to guide to the people at our University, that 
means, the robot could guide a person inside a building (for instance, the library) or it could 
work outdoors between buildings. 
We propose a two-level multi-agent architecture for knowledge modelling of the 
localization strategy. Fig. 5 shows a schema for this architecture. Firstly, the expert selected 
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the most proper methods for the kind of activities that the robot has to make (move at the 
campus of the University of Almería). These localization methods were: wheel-based 
odometry since it is a straightforward method to estimate the robot position. This approach 
is especially used for indoor environments (like inside the library). On the other hand, for 
outdoor motions, the visual odometry approach and a DGPS-like solution are used. Finally, 
it is also considered to use a Kalman filter fusing data from visual odometry and DGPS. 
 

 

 

SCHEDULER 

 

Odometry 

 

Visual 

odometry 

 

Kalman-filter-

based 

Call Return 

 

Suitability 

Criteria 

Table 

Decision 

making 

 

ROBOT   SYSTEM 

Context 
Information 

Behavior 
Information 

 

Dead-

reckoning 

 

Odometry 
 

Beacons 
 

DGPS-based 

 

Visual 

odometry 

 

Kalman-filter-

based 
. . . 

1ST DECISION LEVEL 

(HUMAN EXPERT) 

2ND DECISION LEVEL 

(SOCIAL ROBOT) 

ALL  AVAILABLE  METHODS  TO  SOLVE  THE  LOCALIZATION  TASK 

Call Return Call Return 

 

DGPS-based 

Call Return 

 

Fig. 5. Schema for the proposed two-level multi-agent architecture 

The first selection process (filter applied by the engineer) lets that the robot chooses only 
between useful and independent methods, according to the kind of activities to be 
accomplished by the mobile robot. In this way, redundant and useless localization methods 
will be avoided. 
The second decision level of this architecture considers a general scheduler module 
implemented in the social robot. This planner is permanently running. When the robot has 
to take a decision (selecting an alternative among several options to accomplish a particular 
task) it calls to the scheduler agent. This agent uses the context information, the suitability 
criteria table and a dynamic cost function (depending on the scenario) to select the most 
appropriate localization method. 
Some of the main advantages of this architecture are that the robot can choose the most 
appropriate localization method according to the surrounding environment and new 
decisions can be incorporated simply including its suitability criteria table. 
Fig. 6 shows the lower-level TMD elements, simplified to four testing alternatives of 
localization. This is a branch of the most general navigation subsystem TMD (Guirado et al., 
2009). 
DSM is applied to choose the most efficient method using an aggregation function that 
integrates the suitability criteria and the weights to generate a suitability value for each 
method. In our particular case, the criteria for decision-making are Computing Time (CT), 
GPS-Signal Necessity (GN), Luminosity (L), Fault-Tolerance (FT) and Precision (P). These 
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criteria are related to the method characterization done in the previous section. CT, L, FT 
and P are directly considered in the Table 2, while GN is related to the Indoor/Outdoor and 
Sensors method parameters. The economic Cost of implementation is used by the expert in 
the first decision level in order to choose the methods to be implemented in the robot, but it 
does not make sense to use it as a suitability criterion for selecting the best alternative 
method among those that are implemented in the robot. 
 

  

Localization 
task 

Wheel-based 
odometry 

 

Wheel-based 
odom. impl. 

 

Visual 
odometry 

 

DGPS-
based 

 

Kalman-
filter-based 

 

DGPS-based 
implem. 

 

Kalman-filter-
based implem. 

 

Visual odom. 
implem. 

 

Fig. 6. Representation of a TMD for a pre-filtered localization system 

CT is inversely proportional to the execution time of each method, favouring the faster 
method to calculate the exact position of the robot. We have considered this criterion 
because some instances need a fast response and it is necessary to use the fastest algorithm. 
CT is considered a non-critical (N) and static (S) criterion that means it is not used to discard 
any alternative method and its value is considered fixed for each method because the 
variations in testing are minimal. 
GN indicates if a method needs a good GPS signal to be considered in the selection process. 
This criterion is critical (C) only for the DGPS-based method because the robot cannot apply 
it if the received signal to get the position is low (less than 4 satellite signals). The other 
methods do not use the GN criterion because they do not use the GPS data; so, it is convenient 
or non-critical (N) for those methods. The criterion is dynamic (D) for all the methods, taking 
values 0 or 1 for DGPS-based method, and values between 1 and 5 for the rest. 
L represents the intensity of the light in the place where the robot is. If the luminosity is low, 
algorithms that require the use of conventional cameras for vision cannot be used. This is a 
dynamic (D) criterion since the robot must operate in places more or less illuminated with 
natural or artificial light. So, the value of this criterion is changing and its value is 
discretized between 1 and 5. As this criterion does not exclude any method in the selection 
process, it is considered non-critical (N). Notice that, in our case, luminosity is obtained 
analyzing the histogram of an image. 
FT is a parameter that indicates if the robot system is able to continue operating, possibly at 
a reduced level, rather than failing completely, when the applied method fails. This criterion 
is static (S) for each method. Its values have been obtained from our experiences. As in the 
previous criterion, this is also considered non-critical (N). 
P is related to the accuracy of the sensor data that each method uses. It has a dynamic (D) 
value because the environment conditions are changing. For instance, GPS signal quality is 
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fine in an open area; therefore, the precision of DGPS-based method is high. This is another 
non-critical (N) criterion because it does not discard any method by itself. 
As previously explained, the human expert has chosen four localization methods in the first 
decision level. These alternatives are wheel-based odometry (O), DGPS-based (G), Kalman-
filter-based (K) and visual odometry (V); each of them has assigned a set of suitability 
criteria. 
The cost function considers the criteria with their associated weights, 

 SM = GNM() * (1 + WCT * CTM + WL * LM + WFT * FTM + WP * PM) (2) 

The weights (Wi) are dynamic functions, so they can change depending on environment and 
performance requirements. 
The function for the critical criterion GN is defined as follow. 

 

1      if the method does not work with GPS          

1 if GPS signal is available       GN()
GPS signal()

0 if GPS signal is not available




= 
− =  

 (3) 

So, it can only be equal to 0 for the DGPS-based method, and the GPS signal must also be 
insufficient. 
The description of the elements (tasks, methods and inferences) has been represented using 
the CML notation, as CommonKADS methodology proposes (Schreiber et al., 1999). Here is 
an example for the localization task: 
 

TASK Localization; 
GOAL: “Obtain the exact position and orientation of the robot at any 

given time”; 
INPUT: 

sensor-data: 
“Readings from sensors (GPS, cameras, encoders, ...)”; 

OUTPUT: 
robot-position-and-orientation: 

“x, y and θ coordinates of the robot position and rotation angle on 
the reference system”; 

SELECTION-CRITERIA: 
NS Computing-time =   “Speed factor for calculating the exact 

position of the robot”; 
CD GPS-necessity =   “Necessity to use the GPS signal”; 
ND Luminosity =     “Light conditions near the robot”; 
NS Fault-tolerance =  “Resilience to failure”; 
ND Precision =      “Accuracy in calculating the robot position”; 

CRITERION-WEIGHTS: 
Computing-time-weight = “if a quick answer is needed, this criterion 

is very important”; 
Luminosity-weight =  “methods using camera (eg. visual odometry) 

need good lighting conditions”; 
Fault-tolerance-weight = “if there is a high fault probability, this 

criterion will have a high weight”; 
Precision-weight =   “it the robot is moving on a narrow space, 

this criterion will have a high weight”; 
AGREGATION-METHOD:    Multi-criteria function S

M
; 

END-TASK Localization;  
 

Each selection criterion has two letters in front of his name. The first one is the severity of 
the criterion, where N indicates non-critical and C indicates critical, and the second one is if 
the criteria can change or not, using D for dynamic and S for static. 
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5. Results 

The proposed methodology was tested through several physical experiments showing how 
the robot applies the knowledge model-based architecture using the suitability criteria 
values (depending on the environmental conditions) to select the appropriate method in 
every moment. 
In this section, we analyze the proposed methodology in a real scenario. Our real case has 
been that the mobile robot has guided a person at our University (see Fig. 7) from the bus 
stop (start) to the library (goal). Firstly, the visitor tells the robot to guide him to the library. 
In this case, the user used the touch screen. Then, the mobile robot calculated the optimal 
route according to several parameters (we are not detailing it here). The solution of this 
stage was the line marked in Fig. 7 (left). The mobile robot is moving at 0.5 m/s with a 
sampling time of 0.2 s. In order to avoid sudden transitions from one method to another, 
due to sensor noises and disturbances, we have tuned a filter, where a decision will not be 
taken until a method is not selected 10 consecutive times. 
In this case, the robot moves through four areas along the trajectory. The path labelled with 
“a” is a wide-open space. The path labelled with “b” is a narrow way with some trees. 
Finally, the path labelled with “c” is open space but close to buildings. Notice that the robot 
moved on a pavement terrain, which leads to slip phenomena, is not expected. The real 
trajectory followed by the robot is shown in Fig. 7 (right); note that the x-axis has a different 
scale from y-axis in the plot. 
 

    

Fig. 7. Real scenario (University map) and followed trajectory. The mobile robot has guided 
a person from bus stop (start) to the library (goal) 

As previously explained, the GN criterion is critical for the DGPS-based method. This means 

that method is not selectable if GPS signal is insufficient (less than 4 satellites available). So, 

we represent in Fig. 8 the number of satellites detected by the GPS justifying the necessity to 

use other alternatives localization methods in some trajectory paths. 

CT and FT are static criteria and so they have the same values in all situations, since they are 

related to independent characteristics of the environment (CTO=5, CTG=2, CTK=1, CTV=4, 

FTO=2, FTG=4, FTK=5 and FTV=3). Other criteria (GN, L and P) are dynamic, that means they 

can change depending on the environment conditions. 
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Fig. 8. GPS signal during the robot travel 

In the first area (“a”), the GN and L criteria was equal for all methods, since all of them 
could be used without problems in current conditions. In addition, the robot initially 
considered the same weights for all criteria (WCT = WL = WFT = WP = 0.25). Applying the cost 
function, robot obtained the following suitability values for each method: 

SO = 1 * (1 + 0.25 * 5 + 0.25 * 5 + 0.25 * 2 + 0.25 * 2) = 4.5 

SG = 1 * (1 + 0.25 * 2 + 0.25 * 5 + 0.25 * 4 + 0.25 * 5) = 5 

SK = 1 * (1 + 0.25 * 1 + 0.25 * 5 + 0.25 * 5 + 0.25 * 3) = 4.5 

SV = 1 * (1 + 0.25 * 4 + 0.25 * 5 + 0.25 * 3 + 0.25 * 3) = 4.75 

As expected, robot used the DGPS-based localization method, since it obtains the larger 
suitability value. Notice in Fig. 8 that there are more than three satellites available during 
this path. 
In the second area (“b”), the GN and L criteria remained the same for all methods. Factors 
for P criterion changed for some methods with respect to the previous area. The GPS signal 
was frequently lost due to the trees and the error increased considerably (see Fig. 8). In 
addition, the user increased the velocity of the robot, which led to give a higher weight to 
TC criterion, keeping a constant value for the other (WCT = 0.4; WL = WFT = WP = 0.2). These 
were the obtained suitability values for each method: 

SO = 1 * (1 + 0.4 * 5 + 0.2 * 5 + 0.2 * 2 + 0.2 * 2) = 4.8 

SG = 0 * (1 + 0.4 * 2 + 0.2 * 5 + 0.2 * 4 + 0.2 * 2) = 0 

SK = 1 * (1 + 0.4 * 1 + 0.2 * 5 + 0.2 * 5 + 0.2 * 3) = 4 

SV = 1 * (1 + 0.4 * 4 + 0.2 * 5 + 0.2 * 3 + 0.2 * 4) = 5 
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The selected method was visual odometry. DGPS method got a low suitability value due to 
“b” was a cover area (trees) and the GPS signal was temporary lost (see Fig. 8). 
In the third area (“c”), the GN and L criteria remained the same for all methods. Factors for 
the P criterion slightly changed from the previous area (GPS signal was slightly better since 
there were not trees, although still affected by the proximity to the buildings). The user 
reduced the velocity of the robot, and it led to reduce the weight of the TC criterion, keeping 
a constant value for the other (WCT = 0.1; WL = WFT = WP = 0.3). The obtained suitability 
values were: 

SO = 1 * (1 + 0.1 * 5 + 0.3 * 5 + 0.3 * 2 + 0.3 * 2) = 4.2 

SG = 1 * (1 + 0.1 * 2 + 0.3 * 5 + 0.3 * 4 + 0.3 * 3) = 4.8 

SK = 1 * (1 + 0.1 * 1 + 0.3 * 5 + 0.3 * 5 + 0.3 * 3) = 5 

SV = 1 * (1 + 0.1 * 4 + 0.3 * 5 + 0.3 * 3 + 0.3 * 3) = 4.7 

The Kalman-filter-based obtained the larger suitability value since “c” was an open area 
where DGPS and visual odometry work fine. 
In the last area (inside the library), the GN criterion was zero for the DGPS-based method, 
since the signal was completely lost; moreover, the L criterion decreased slightly for visual 
odometry method due to changing light conditions. When the robot goes inside the library, 
it considers the same weights for all criteria again (WCT = WL = WFT = WP = 0.25). The 
obtained suitability values were: 

SO = 1 * (1 + 0.25 * 5 + 0.25 * 5 + 0.25 * 2 + 0.25 * 3) = 4.75 

SG = 0 * (1 + 0.25 * 2 + 0.25 * 5 + 0.25 * 4 + 0.25 * 1) = 0 

SK = 1 * (1 + 0.25 * 1 + 0.25 * 5 + 0.25 * 5 + 0.25 * 3) = 4.5 

SV = 1 * (1 + 0.25 * 4 + 0.25 * 4 + 0.25 * 3 + 0.25 * 3) = 4.5 

Finally, as expected, when the mobile robot guided to the person inside the library, wheel-
based odometry method obtained the larger suitability value. 
Fig. 9 shows the average values during the experiment for the localization methods. This 
information has been used in the test of the proposed methodology. 

6. Conclusions and future works 

The main objective of this work is to take a further step in developing a generic and flexible 
decision mechanism to select the most proper localization algorithm for a social robot. We 
present the preliminary results for a single decision between four alternatives (selected by 
the human expert in the first decision level). More tests will be performed within the same 
operating environment in the future. 
The main advantages of the proposed architecture are to facilitate further addition of new 
algorithms that could be developed in the future and the capacity of deciding in real-time 
the most appropriate technique to be used in the current conditions. 
From a practical point of view, and according to our physical experiments, the proposed 
methodology permits to successfully guide users at our university by choosing the best 
localization method taking into account the surrounding environment. 
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Fig. 9. Average suitability values for the localization methods in every path (“a”, “b”, “c”, “d”) 

Here we have applied a direct DSM that means the best method is the one with the highest 
suitability value (or one of them if there is more than one), but we are considering to 
incorporate fuzzy logic to the cost function and to apply other types of membership 
functions to the DSM. 
In order to follow evaluating the proposed mechanisms of DSM in robotics, we are 
extending the use of these techniques to other social robot tasks. The final goal is to build an 
ontology in the domain of social robotic. 
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