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1. Introduction

For the ever increasing demand in high data rates the spectrum from 300 MHz to 3500 MHz
gets crowded with radio, smartphones, and tablets and their competition for bandwidth.
Regulators cannot realistically reduce demand, nor can they expand the overall supply.
A solution is seen in the uprising of Multiple-Input Multiple-Output (MIMO)
communications. The sometimes poor spectral efficiency of established radio systems
can be increased dramatically without expanding bandwidth and at reasonable signal power
levels.
The term MIMO pays tribute to the fact that multiple antennas at sender and receiver are
used in order to have spatially distributed access to the channel thus establishing additional
degrees of freedom also referred to as spatial diversity. Spatial diversity can be used for solely
transmit redundant symbols, e.g. Space-Time Block Codes, as well as the transmission of
independent data streams via the spatial layers known as Spatial Multiplexing (SM). This
mode is preferred over pure diversity usage as recently discussed by Lozano & Jindal (2010).
However, the benefit comes at the price of increasing RF hardware expenses and geometry in
case of many installed antennas which are the main reasons for reluctant implementations
in the industry in former times. Additional algorithmic complexity at one point in the
communication system is another reason. For SM mode, this is mainly in the receiver, where
the independent data streams have to be separated in the detection process, leaving open
questions in implementation issues of MIMO technologies in handheld devices.
For high data rate communications, MIMO in conjunction with Orthogonal Frequency
Division Multiplexing (OFDM) offers the opportunity of exploiting broadband channels
within reasonable algorithmic complexity measures (Bölcskei et al., 2002).
OFDM used as a standard technique in broadband modulation eases the equalization issue
in MIMO broadband channels. For a given system with nR receive antennas and nT transmit
antennas the MIMO channel is described by the nR · nT Single-Input Single-Output (SISO)
spatial subchannels established between each transmit-receive antenna pair. For the sake of
notation they are arranged in a so called channel matrix.
MIMO-OFDM modulation technique allows to consider the MIMO problem for each OFDM
subcarrier separately. Thus, complexity is reduced by turning a K · nR × K · nT matrix
inversion into K inversions of nR × nT matrices in the case of linear MIMO detection
algorithms (Beinschob & Zölzer, 2010b).
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For coherent receivers channel estimation is necessary. Recent advances in channel coding
theory and feasibility of “turbo” principles and techniques led to new receiver designs,
(Akhtman & Hanzo, 2007b; Hagenauer et al., 1996; Liu et al., 2003), optimal Detectors
(Hochwald & ten Brink, 2003) and optimized codes for MIMO transmission (ten Brink et al.,
2004) with the help of EXIT chart analysis (ten Brink, 2001) on LDPC Codes (Gallager, 1962;
1963), which were in turn rediscovered and revised by MacKay (1999).
Iterative decoding to approximate a posteriori probability (APP) information on the received
data enhances the possibilities of classical adaptive signal processing approaches. On the
other hand, MIMO Spatial Multiplexing APP detectors are very complex and only slowly
convergent.
However, in practical systems large gaps between theoretically calculated capacity and
realized data rates can be observed. The negative impact of imperfect channel knowledge
on detection performance is significant (Dall’Anese et al., 2009). Those errors are especially
high in mobile scenarios. Constraints on the amount of reference symbols that use exclusive
bandwidth is natural. So, as a solution decision-directed techniques in adaptive channel
estimators are considered that utilize information from the obligatory forward error correction
in order to increase the channel estimation accuracy.
Our approach focuses on a minimization of pilot symbols. Therefore, only a small initial
training preamble is send followed by data symbols only as shown in Fig. 2. The use of
distributed pilot symbols, a common approach for slow fading channels – also employed
in LTE, is avoided that way. The application of adaptive filtering in combination with
decision-directed techniques is shown here to provide the necessary update of the channel
state information in time varying scenarios like mobile receivers.
The discussed channel estimation techniques aim to add only reasonable complexity, so
non-iterative approaches are considered. It is non-iterative in the sense that no a priori
feedback is given to the detector. Hence it is suited for low latency applications, too. Channel
estimates are readily available at OFDM symbol rate as well as the decoded data bits.
The chapter is organized as follows. The basic system model is presented in the next section,
with a discussion of channel characterization and used pilot symbols for minimum training
length in Section 2.3. Common approaches to channel estimation with minimum training
length are reviewed in Section 3. The receiver structure we focus on is presented in Section 4.
Results of conducted numerical experiments are discussed in Section 5.
Notation is used as follows. Bold face capital letters denote matrices, column vectors are typed
in bold small letters. The operator (·)H applies complex-conjugate transposition to a vector or
matrix. Time domain signals carry the check accent, e. g. x̌, in order to distinguish them from
their frequency domain counterpart.

2. System model

2.1 Bit-interleaved coded MIMO-OFDM

A multiple antenna systems is represented as a time discrete model in a multi-path channel in
the following fashion: The vector of received values ř at the time sample m of a MIMO system
is the superposition of L · nT previously sent samples and the current nT samples, where L + 1
is the length of the sampled channel impulse response. It is given by

ř[m] =
√

Es

L

∑
l=0

Ȟ[l, m] · š[m − l] + σww̌[m], (1)
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Fig. 1. MIMO-OFDM system with standard receiver processing.

where š[m] denotes the current vector of symbols of each of the transmit antenna, w̌ is an
identically, independently distributed (iid) additive white Gaussian noise term and Ȟ[l, m]
is the MIMO channel matrix in delay and time domain, indexed with l respectively m. It is
therefore the MIMO Channel Impulse Response per time sample m. The past sent samples are
denoted by š[m − l], for l �= 0, l ≤ L. The data symbols of the K subcarriers are modulated
by an inverse Fast Fourier Transform (IFFT). In simulations every value corresponding to a
transmit antenna of the resulting vectors is transmitted using the formula above.
The MIMO-OFDM system model in frequency domain is described by

r[n, k] =
√

EsH[n, k] · s[n, k] + σww[n, k], (2)

where n denotes the time index of an OFDM symbol and k its subcarrier index, where K is
the total number of subcarriers. As a Signal-to-noise measure Eb/N0 is defined with noise
variance given by σ2

w = N0, where N0 is the spectral noise power density in equivalent base
band domain and with the energy per (QAM) symbol

Es = Rc · κ · Eb, (3)

where Rc is the code rate and κ bits per QAM symbol.
The receive vector r[n, k] and noise vector w[n, k] are of dimension nR × 1, the send vector
s[n, k] of nT × 1 and the matrix H[n, k] of nR × nT, at which nR is the number of transmit
antennas. The entries of w[n, k] are complex circular-symmetric Gaussian distributed random
variables where wr[n, k] ∼ CN (0, 1), r = 1, . . . , nR holds.
A perfect synchronization and total avoidance of block interference is assumed, so the OFDM
cyclic prefix Lcp is longer than the discrete maximum path delay denoted by the channel order
L, hence Lcp > L. The system overview is depicted in Fig. 1.
The MIMO-OFDM sent symbols are separately bit-interleaved LDPC codewords, where the
EXIT chart of the employed LDPC code is shown in Fig. 4. The sender limits the codeword
and interleaver length to the number of available bits in a MIMO-OFDM symbol n that is
nT · K · κ. The data symbols are drawn from an M-order QAM modulation alphabet S.
The mapping, denoted by M{·}, modulates κ = log2 M bits to a QAM symbol. This is
done consecutively for all nT sent streams/layers hence the notation MnT{·}. The QAM
constellations are considered unit power-normalized to simplify notation. At the receiver,
the Log-Likelihood Ratios (LLRs) can be de-interleaved and LDPC decoded at once after
reception, FFT and MIMO detection, which yields the approximated a-posteriori LLRs LD2[n]
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out of the received symbols:

LD2[n] = C−1
{

Π−1{LD1[n]}
}

. (4)

Scrutinizing the sign of LD2[n] yields the most probable sent codeword y[n]. Finally, the
transmitted information bits ũ[n] are recovered by discarding the redundancy bits in y[n].

2.2 MIMO channel model

Typically a (static) MIMO channel realization can be modeled by drawing the coefficients Ȟr,t

independently from a complex circular-symmetric Gaussian distribution.

Ȟr,t[l] ∼ CN
(

0,
1

(L + 1)

)

, r = 1, . . . , nR, t = 1, . . . , nT. (5)

Doing so for all L + 1-multi-path time-domain MIMO channel coefficients implies a constant
power delay profile for all spatial subchannels.
Of course, in mobile communication time-variant channel behaviour is expected. For multiple
antennas systems in urban environments we have array size limitations thus small distances
between the colocated antennas which renders the assumption of i.i.d. channel coefficients
unrealistic. In order to conduct realistic simulations the 3GPP developed a Spatial Channel
Model (SCM) suitable to test algorithms supporting mobile MIMO systems in macro- or micro
urban scenarios (Spatial channel model for Multiple Input Multiple Output (MIMO) simulations,
2008).
Mobile receivers experiences velocity-dependent Doppler frequency shifts in components of
the superposed received signal. For an OFDM system the consequence might be a gradually
loss of orthogonality of the subcarriers which results in Intercarrier Interference (ICI).
Considering a wireless OFDM system at carrier frequency f0 with OFDM symbol duration
TOFDM = (K + Lcp)/ fS in seconds ( fS being the sampling rate), a maximum Doppler
frequency in Hertz for a given mobile station’s relative radial velocity of vMS is given by

fD =
vMS

c
· f0, (6)

with c being the speed of light. As a measure in OFDM systems the normalized Doppler
frequency is of more interest because of its independence of the system parameters K and Lcp:

fD,n = fD · TOFDM. (7)

As a rule of thumb, significant ICI appears if fD,n > 5 × 10−3. Associated with fD a coherence
time interval Tcoh can be defined as by Proakis & Salehi (1994)

Tcoh =
1

2 fD
. (8)

2.3 Training symbol design

Training symbols must be carefully chosen in order to maximize the signal-to-noise ratio
during estimation. In OFDM systems, it is important to design training symbols that have
low peak-to-average-power ratio (PAPR) in time-domain. Spatial orthogonality should be
preserved in frequency-domain for the different transmit antennas. As basic construction of
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Fig. 2. Frame structure for proposed MIMO-OFDM RLS-DDCE with preamble length NP

symbols with Np ≥ nT

orthogonal sequences Frank-Zadoff-Chu (FZC) sequences pt, t = 1, . . . , nT are chosen (Chu,
1972):

pH

i pj =

{

1 for i = j

0 for i �= j.
(9)

It is a special property of FZC sequences that the sequence pj is yielded by cyclic shifting of
pi by j − i positions. The sequences are inserted over time and a subcarrier-specific phase to
lower the PAPR is added, e.g. for the first sequence

p1[n, k] = ejπM′(n−1)2/nT+ϕ[k], n = 1, . . . , nT. (10)

The phases are taken from another FZC sequence of length K:

ϕ[k] = πM′′(k − 1)2/K, k = 1, . . . , K. (11)

M′ and M′′ are prime numbers less or equal to nT + 2 and K + 2, respectively. Each antenna t
sends its pt [n, k] as training preamble at the beginning of the frame. Construction is possible
for all length of nT and K and leads to time and frequency domain signals with minimum
PAPR.
The underlying frame structure provides a training sequence at the beginning of each frame
as shown in Fig. 2.

3. Decision-directed channel estimation techniques

From Eq. (2) it is clear that estimating the channel matrix H is difficult even if the send vector
is known due to the rank-deficit of the problem. Therefore, for the estimate it needs a scheme
that efficiently exploits all given diversities: time, frequency and space. A promising approach
is given by Akhtman & Hanzo (2007a), that proposed an adaptive channel estimation
structure. In the first step, a spatial auto- and crosscorrelation estimator is employed for each
subcarrier individually. Originally, a further stage for dimension reduction – using the PAST
scheme – is employed. It is not considered here in order to eliminate further influence of
parameters and to separate the effects. However, in order to exploit the correlation of adjacent
subcarriers, LDPC codewords are interleaved over spatial streams and subcarriers. So the
structure is enhanced by the usage of short yet powerful LDPC codes, employing the belief
propagation decoder to approximate posteriori information on the send symbol which are
used in the decision-feedback processing. Deep fading occurring occasionally on individual
subcarriers would result in low LLRs, which are less trusted in belief propagation decoding.
But through message-passing their information is recovered from the other connected nodes.
By simple parity or syndrome check – a property which LDPC codes inherit from the family
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of linear block codes –, a reliable and readily available criterion is given to control the overall
decision feedback of the channel estimator.

3.1 Recursive least squares estimation

Due to the unknown error distribution the channel estimation is often formulated as a Least
Squares problem: Find a channel matrix estimate H̃[n] at the symbol n that projects the send
vector s[n] in the receive vector space, such that the euclidean distance to the actual received
vector r[n] is be minimized:

JRLS[n] =
n

∑
m=1

ξn−meH[m, n]e[m, n], (12)

with the error signal

e[m, n] = r[m]− H̃[n] · s[m]. (13)

This classic approach yields good results with increasing samples if the unknown channel
matrix H is constant. For time-variant channels old samples will increase the estimation error
as the channel coefficients keep changing slowly. To gain adaptivity a “forgetting” factor 0 <

ξ ≤ 1 is introduced, that applies a weighting depending on the sample index such that newer
sample have stronger influence on the estimate than older ones. An exponential decreasing
weighting has some implementation qualities that will be pointed out in the following.
A LS channel estimate of the channel matrix H is yielded by

H̃[n] = (Φ̃
−1

[n]Θ̃[n])H. (14)

with the estimated spatial auto- and cross-correlation matrices based on

Φ̃[n] =
n

∑
m=1

ξn−ms[m]sH[m] = ξΦ̃[n − 1] + s[n]sH[n], (15)

and

Θ̃[n] =
n

∑
m=1

ξn−ms[m]rH[m] = ξΘ̃[n − 1] + s[n]rH[n]. (16)

The known pilot symbols are used as substitutes for the sent vectors s[n, k] if n ≤ Np,
otherwise the decision-feedback is used. A ξ := 1 is optimal if a static channel is considered
because the estimation error keeps decreasing with increasing n as long as there are no false
decisions in the feedback.
If only pilot symbols are utilized, no further information is available beyond the training and
the channel estimates need to be used for the rest of the frame. For ξ = 1.0, this technique is
referred as ordinary Least-Squares (LS) Channel Estimation in the following.
Due to the orthogonal designed pilot symbols, the matrices H̃[n, k] have full condition at n =
nT yet they are superposed by noise.
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Fig. 3. Signal Flow diagram RLS algorithm.

3.2 Algorithmic structure

In Fig. 3 the algorithmic structure is shown. After NP pilots of constant-energy type (Chu,
1972), the output of the MIMO detector is used instead of the known pilots in order to estimate
the spatial auto- and cross-correlation matrices Φ̃ resp. Θ̃ independently per subcarrier.
Averaging is performed in the recursive part of the structure and weighting with a forgetting
factor ξ is applied to suppress older samples and adapt to newer ones. The detector uses the
channel estimate for detection. To mitigate the effect of outdating CSI, a predictor is employed
that tracks the time-variant MIMO channel H and calculates an prediction H̃[n + 1|Hn].
Through the immediately detection of data this algorithm is in principle suited to low delay
applications as pointed out by Beinschob & Zölzer (2010a).

3.3 Decision feedback

3.3.1 Hard decision feedback

Further information on the channel can be acquired by using the detection output in Eq. (15)
and (16), i. e. estimated sent vectors as proposed in Akhtman & Hanzo (2007a),

s̃[n] = MnT{sgn{LD1[n]}}, ∀n > NP. (17)

The algorithm is illustrated in Fig. 3. This is referred to as decision-directed channel
estimation. It is prone to error propagation since incorrect decisions increases the channel
estimation error, which in return increases the probability of incorrect decisions. Feedback
with incorrect symbols in an early stage of the frame renders the channel estimate for the rest
completely useless.

3.3.2 Soft decision feedback

In contrast to Eq. (17) hard decision, the sent MIMO-OFDM symbols can be estimated
by evaluating the symbol expectation values (Glavieux et al., 1997) based on the detection
probabilities p associated with LD1[n]:

s̃t[n] = E {st} = ∑
c∈S

c · p(s̃t[n] = c), ∀t. (18)

The reconstructed sent vectors can be applied in Eq. (15) and (16). The soft symbol value is
determined by the reliability of LLRs, i. e. magnitude. If low LLRs occur Eq. (18) evaluates
to near zero, which can lead to stability problems in Eq. (14) for ξ < 1 due to exponentially
decreasing values in Θ̃. This scheme is referred to as soft-decision RLS (RLSsd).
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Fig. 4. Extrinsic mutual information transfer (EXIT) chart of used LDPC code 1024 bit length
constructed with edge distributions from Richardson et al. (2001).

4. Proposed receiver structure

4.1 Conditioned a posteriori decision-feedback

Following the decision-feedback strategy of Eq. (17) the estimator has no information about
the certainty of the feedback. Using soft-decision feedback the estimated sent vectors still
contain the noise from detection stage. The developing of the channel estimation error ε[n]
can be very roughly modeled as follows:

ε[n] =
σ2

e

n
+ Neσ2

c (19)

On one hand the channel estimation error decreases with growing n through the averaging
effect, where the error energy per gained channel estimate sample due to noise and spatial
interference is denoted σ2

e . On the other hand an incorrect decision directly adds the error
energy σ2

c , which contains the energy of a false channel estimate plus noise and interference.
The cost of incorrect decisions are unequally higher as the benefit of another correct sample
for averaging, especially for higher n. Hence an incorrect decision should be avoided even at
the price of low number of samples to average.
By utilizing channel decoder LD2 information at the decision stage, the feedback of incorrect
decisions can be avoided. For time-invariant channels the weighting factor is set to ξ := 1.0
because an update via Eq. (15) and (16) is applied only if the codeword associated with the
MIMO-OFDM symbol is successfully decoded. For linear block codes this is indicated by the
syndrome vector

γ[n] = A · y[n]. (20)

The parity check matrix is denoted A, the received codeword is

y[n] = sgn{LD2[n]}. (21)

Note that Eq. (20) and (21) are evaluated in most LDPC decoder implementations as break
criterion for the iteration process. So, if the decoder signals ‖γ[n]‖H = 0, where ‖ · ‖H denotes
the Hamming distance, the sent vectors in Eq. (15) and (16) are substituted by

{s̃[k, n]}K
k=1 = MnT{Π{y[n]}}, (22)
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using the property of the systematic linear block code which renders additional re-encoding
unnecessary. Because of the high codeword distance it is unlikely that the codeword y[n]
contains undetected errors or being another valid codeword. However, this is a source of
the algorithm’s residual errors. In the case ‖γ[n]‖H �= 0, no update is performed instead the
former channel estimate is assumed to be still valid:

H̃[n, k] := H̃[n − 1, k], (23)

which can be seen as a simple zero order hold prediction.
As pointed out with the rough model in Eq. (19), feedback of erroneous data increases the
estimation error over-proportional compared to the benefit of another sample to average.
However, for valid codewords this approach leads to an extension of the training length due
to the usage of data symbols as virtual pilots. The benefit is especially large at the beginning
of a frame, directly after the end of pilots. There, the channel estimate error is still high and
therefore the probability of false detection is high. The proposed scheme is referred in the
following as Conditional Feedback (RLSCF).
The estimated channel matrix H̃ is used in the MIMO detection, where LLR channel values
LD1 are determined per OFDM symbol and subcarrier on a Maximum Likelihood (ML) basis:

LD1(t, ν) =
1

σ2
w

(

min
s∈S ν,+1

‖r − Hs‖ − min
s∈S ν,−1

‖r − Hs‖
)

, (24)

where Sν,+1 denotes the set of all possible send vectors that ν-th bit is +1, |S| = |M|nT and
considering unit-power constellations. Of course, ML-approximating detection algorithms,
i. e. List Sphere Decoder (Hochwald & ten Brink, 2003) can be applied here as well. σ2

w is the
channel noise power which is often assumed to be known at the receiver.

4.2 Complexity discussion

Most of the proposed processing is straight-forward: OFDM demodulation, subcarrierwise
MIMO detection, de-interleaving and LDPC decoding has to be done in any coherent
MIMO receiver coping with multipath channels. The additional complexity comes from an
interleaver and a MIMO symbol mapper in the channel estimation feedback chain. In the
soft decision case there is more computing power necessary with only marginal performance
gains compared to the hard decision technique. However, the main contribution to complexity
raises in the channel estimation itself for possibly updating the channel estimation at each
OFDM symbol if the SNR is sufficient high and the channel decoder is successful decoding
the codeword. In this case the LDPC decoder that is aware of a valid codeword and stops the
iteration, needs less internal iterations so there is a shift in complexity from the decoder to the
channel estimator.
The estimation procedure can be further simplified by help of the matrix inversion lemma to
avoid explicit inversion of the autocorrelation matrix. The resulting algorithm is described in
Beinschob et al. (2009).

5. Numerical experiments

5.1 Channel estimation accuracy & system performance

In a MIMO system, the detection depends on the received vector r and channel matrix H

(Hochwald & ten Brink, 2003). In real scenarios the channel matrix is not available and an
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Fig. 5. Average Mutual Information of a MIMO 4 × 4 Spatial Multiplexing with 4-QAM
modulation and different levels of Channel Estimation Errors in terms of NMSE.

estimate H̃ is used instead. To evaluate the quality of the detector output, which is of most
importance for the decision-directed scheme, the mutual information of the gained (uncoded)
LLRs is used (ten Brink, 1999). The performance degradation in presence of estimation errors
is assessed by modelling a channel estimate as follows:

H̃ = H + ∆H, (25)

where Hr,t ∈ CN (0, 1) are the i.i.d. MIMO Rayleigh Fading channel coefficients and elements
of ∆H are i.i.d. circular symmetric complex Gaussian random variables with error variance
σ2

e . This also covers to some extent the case of mobility induced interference because the ICI
leads to additional noise in the Frequency Domain as pointed out by Russell & Stuber (1995).
As a measure for the estimation error the normalized mean squared error is defined as

NMSE =

nT

∑
t=1

nR

∑
r=1

∣

∣Hr,t − H̃r,t

∣

∣

2

nT

∑
t=1

nR

∑
r=1

|Hr,t|2
. (26)

So, the channel capacity for discrete input alphabet (4-QAM) and continuous channel output
is shown in Fig. 5.
In general, the capacity increases with SNR and with decreasing channel estimation NMSE.
However, a saturation of I over SNR can be observed: With increasing estimation error the
maximum level of mutual information I decreases.
At minimum, a NMSE of −6 dB to −10 dB is necessary for a half-rate coded system to work
properly. Below −20 dB NMSE there is no significant difference in the system’s performance
using either the channel estimate or the actual channel matrix.

5.2 System level simulations for time-invariant channels

In Tab. 1 the system parameters are given for the experiments described in this section. For the
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nT × nR 4×4
Detector Maximum Likelihood
OFDM Subcarriers 128
Modulation 4-QAM
MIMO-OFDM symbols per frame 516
bandwidth efficiency ≈3.8 bit/s/Hz
Pilot symbols per antenna 4 (0.8%)
Channel Model CN (0, 1)
channel multi-path order L 6
OFDM cyclic prefix Lcp 7
channel coherence time Tc > frame length
LDPC code design rate Rc 1/2
codeword & interleaver length 1024 bit

Table 1. Simulation parameters for time-invariant channel
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Fig. 6. BER and NMSE for the discussed schemes evaluated by Monte Carlo simulations
using time-invariant channels with system parameters defined in Tab. 1.

BER/NMSE system level simulations a Maximum Likelihood bit detector with LLR output,
combined with a short LDPC code of 1024 bit length, inserted in an MIMO-OFDM symbol,
were used. Simulations were conducted for the case of minimum pilot symbol length NP =
nT. The proposed channel estimation (RLSCF) was compared to the ordinary LS approach,
the hard/soft-decision feedback approach by Eq. (17) (RLS resp. RLSsd) and detection with
perfect channel state information (PCSI). Independent block-fading MIMO channel realization
were generated which were frequency-selective but time-invariant during the frame, see Eq.
(5).
The channel estimation error is assessed in terms of normalized mean squared error (NMSE),
shown in Fig. 6. Least Squares channel estimation using only the available short training
symbol sequence was inferior to the discussed decision-directed schemes. An improvement
of RLS/RLSsd over LS can be observed. With increasing Eb/N0 more correct feedback was
available and decreased the NMSE, as reflected by the stronger slope of the RLS/RLSsd curve.
RLS and RLSsd performed equally on average. The proposed method, RLSCF, performed
worse than RLS/RLSsd for low Eb/N0. This is because the feedback is limited to valid
codewords only, which occurred seldom. So the averaging effect is almost as limited as in
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Fig. 7. Developing of NMSE over time resp. OFDM symbol index for RLSCF scheme
(multiple frames and channel realizations averaged).

the LS case. Beyond 1 dB Eb/N0 RLSCF performed better than RLS/RLSsd because it can be
deduced that there were plenty of virtual pilots, as depicted in Fig. 7(a).
There the rate of indicated successful decoding over MIMO-OFDM symbol index n is shown.
Especially in the beginning of the frame a higher rate of successful decoding could be achieved
with the proposed channel estimator RLSCF. This led to more virtual pilots and improved
NMSE depicted in Fig. 7(b).
The developing channel estimation error in terms of normalized mean square error (NMSE)
can be seen for different Eb/N0 in Fig. 7(b). Due to the short training the channel estimation
error is rather high at the beginning of the frame and decreases with ∝ 1/n if the SNR is
sufficient so that the decoder could deliver successful decoded feedback. This the case for
Eb/N0 above ≈1 dB, below only insignificant improvements could be realized. This threshold
is a property of the LDPC code, which is visualized in the EXIT chart in Fig. 4. Only if the
input information exceeds the threshold successful decoding is possible. This means for the
proposed scheme, for Eb/N0 < 1 dB only marginal gains could to realized compared to LS,
where as for higher values significant improvements in terms of NMSE were achieved.
For completeness the resultant system Bit Error Rate (BER) of the conducted simulations are
shown in Fig. 6. For reference a curve for detection with perfect channel state information
(PCSI) is shown, too. On the right hand side the detection based on Least Squares channel
estimation using only the available training symbols is shown. The performances of the
discussed decision-directed schemes were in between, reflecting the same tendency as the
NMSE plot in Fig. 6. Here for higher Eb/N0 RLSsd performed marginal superior. By using
detection-based decision-directed strategies it was possible to decrease the BER but due to
erroneous feedback it was rather small. For the proposed conditional a-posteriori feedback
(RLSCF) a gain of 1 dB could be achieved. The gap of 2 dB to the decoding with perfect channel
knowledge can be explained with the limited codeword distance of the short LDPC code used.
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Fig. 8. Comparison of adaptivity on time variant channels (10 m/s) of channel code
constraint feedback (RLSCF) for different forgetting factors ξ, also shown the effective data
window length of forgetting factor in samples for coherence time (3 dB - blue line) and 10 dB
(red line).

5.3 Simulations for 3GPP channels

To evaluate algorithms for real application a realistic channel model is needed. In particular
the mobility component for the multipath MIMO case must be modelled very well. For this
purpose the 3GPP Spatial Channel Model (Spatial channel model for Multiple Input Multiple
Output (MIMO) simulations, 2008) is applied here.

5.3.1 Time adaptivity analysis

Fig. 8 illustrates the adaptivity of the DDCE structure depicted in Fig. 3. Clearly visible is the
balance of the forgetting factor ξ which was too inflexible if set to ξ = 1.0 then the algorithm
failed to track the channel well, although the NMSE became very low after 60 symbols. On
the other hand, if set to ξ = 0.7, even for 3 dB Eb/N0 the NMSE was insufficient for reliable
transmissions. So a higher Eb/N0 is needed for lower forgetting factors and thus higher
adaptivity to achieve the same system performance for mobility scenarios.

5.3.2 System level results

For the 3GPP channel simulations RLSCF-based DDCE schemes were investigated through
Monte Carlo simulations due to the lack of analytical tools to this kind of detection
and channel estimation feedback structure. A Point-to-Point link is considered with
Signal-to-noise-based assessment instead of range-dependence. Independent channel
realization were generated for each frame. A frame consisted of 516 MIMO-OFDM symbols
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Fig. 9. On the left BER vs. Eb/N0 for burst transmissions in time variant channels with
minimal pilot length NP = nT for 4 × 4 MIMO, on the right channel estimation error in
NMSE (same legend as left hand).

constructed by modulating uncorrelated random bits. Transmissions were simulated until
either 3 × 105 bit were transmitted or at least 200 frames errors were encountered per Eb/N0

and velocity setting. The Eb/N0 level was not further increased if in 3 × 105 bit no bit errors
occurred after the channel decoder.
As seen from the results for time-invariant channels, RLSCF clearly gave best results in terms
of BER/NMSE. As already mentioned, in order to maximize the bandwidth efficiency, we
focus on having minimal number of pilot symbols, that is when NP = nT. So for the 4 × 4
MIMO system we employed 4 pilot tones per subcarrier and spatial stream, having a pilot
rate of 0.8 %.
As pointed out in the previous section, it is obvious that the forgetting factor has influence on
the NMSE performance due to the averaging effect. Left of Fig. 9 shows the BER of RLSCF for
increasing velocities of the mobile terminal. But it is difficult to predict whether an improved
adaptivity on time-variant channels pays off the lost samples for the averaging. Simulation
results for comparative study can be seen in Fig. 9. For a forgetting factor of ξ = 0.9 (see
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Fig. 9(a)), it can be seen that performance degradation started somewhere above 30 m/s. For
lower velocities virtually error-free reception was observed for Eb/N0 above 4.5 dB. In the case
of very high velocities, strong variations in the channel occurred which led to an increased
channel estimation error in terms of NMSE.
In comparison with the forgetting factor setting of ξ = 0.7 (see Fig. 9(b)), we observed a
general rise in NMSE due to the smaller effective data window length, which in turn leads to a
worse BER. An exception is the highest velocity, which seemed unaffected by the shorter data
window size in terms of NMSE. The same NMSE performance for ξ = 0.7 and ξ = 0.9 could
be achieved. We can deduce that for 100 m/s during the longer data window size the channel
changed significantly and therefore the additional samples were of no use for the averaging
process. While the NMSE seemed unaffected there was influence visible in the BER results. A
shorter window length led to a earlier Eb/N0 level of virtually error-free transmission, about
1 dB.

6. Conclusion

A promising structure to perform channel estimation for a multitude of channel scenarios
using minimum amount of pilots enhanced by decision-directed techniques is presented.
Through the employment of modern channel coding in the feedback the algorithm is capable
to improve the channel estimate thus decreasing the estimation error beyond the pilot
sequence only by using data symbols as virtual pilots. Optimal tracking of time-variant
channels is still an open problem, although good results can be achieved by regarding
influence length resp. coherence time of the channel and choosing the forgetting factor ξ

appropriately. However, in many practical cases lower velocities are encountered which can
be exploited quite well with a high forgetting factor like ξ = 0.9 as shown in the results. For
highest velocities we loose about 1 dB in Eb/N0 but gain in NMSE and BER for the lower
velocities. There is a general trade-off between good system performance in low Eb/N0 or
high velocities scenarios where the usable data window size gets too small for significant
averaging gains in the channel estimation.
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