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1. Introduction 

Somatosensory Evoked Potentials (SEPs) are brain electrical physiological signals elicited by 
the direct electrical stimulation of peripheral nerves. In other words, SEP is viewed as the 
nerve electric response produced by spinal cord sending or receiving sensory information in 
response to a stimulus (Turner et al., 2003). SEP has been widely used during the clinical 
testing and monitoring of the spinal cord and the central nervous system with the surface 
electrical stimulation. It can be said that the SEP is the most popular technique for 
intraoperative spinal cord monitoring in the operating room over 30 years (Nash et al., 1977; 
El-Hawary et al., 2006). However, in practice, the SEP signals recorded in the operating 
theaters are always contaminated by severe background noises (Krieger & Sclabassi 2001). 
The factors which cause noises may be electrical, physiological, anesthetic, surgical or 
abrupt event such as cough, body movement or adverse response to the stimulus of the 
patients. Generally, the recorded SEP signal is of a very poor signal-to-noise ratio (SNR) 
nature of the typical values between -20 dB to 0 dB (McGillem  et al., 1981).  
Literature review of SEP extraction techniques showed that the Ensemble Averaging (EA) is 
the most commonly used practical technique for SEP extraction (MacLennan & Lovely 
1995). Research studies reveal that the EA-SEP approach is a kind of stimulus-locked signal 
averaging method, which is able to enhance the SNR in evoked potential recordings when a 
huge number of independent stimulus trails are used (such as hundreds or more than one 
thousands stimuli). This means that the EA-SEP extraction may lengthen the surgical time 
and hinder the surgical procedures (El-Hawary et al., 2006). Furthermore, EA-SEP approach 
is lack of ability to provide the timely warning of the eminent danger of cord injury in spine 
surgeon monitoring. In conclusion, the major drawbacks of EA-SEP approach are: First, the 
assumption that the captured SEP signals are truly deterministic and invariant between 
ensembles is dubious. Actually, a number of studies showed that SEPs are nonstationary 
and time-varying across stimulus trails (Nishida et al., 1993; Woody, 1967). Second, the 
procedure is very time-consuming, requiring up to 2000 ensembles to identify the SEP 
signal, which causes the discomfort to the subjects, and brings larger opportunity for the 
interference to degrade the SEP extraction. Moreover, careful evaluation of the working 
principle of the EA-SEP method reveals that the averaging process may merge the details 
carrying the information of certain neurological function in SEP. With the analysis above, 
we can conclude that EA-SEP method may fail to track trial-to-trial variations both in 
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latency and amplitude. A more effective and reliable technique is expected to minimize the 
number of trials for SEP extraction, and the single trail SEP extraction is desired. 
A lot of researches have been carried out for SEP extraction and various signal processing 
techniques have been investigated, including parametric modelling, nonlinear filtering, 
wavelet transform, adaptive filtering and independent component analysis (ICA) (Lange & 
Inbar 1996; Wei et al., 2002). It can be seen that a large number of records are still required to 
obtain a qualitative estimation in parametric model, and the study by Lange and Inbar 
suggested that it may not be able to provide adequate estimation of SEP (Lange & Inbar 1996).  
In recent years, the present authors and some other researchers intensively investigated on the 
SEP extraction using adaptive filtering technique (AF-SEP) (Lin et al., 2004) (Lin et al., 2004; 
Hu et al., 2005; Lam et al., 2005). Research results showed that AF-SEP performs better 
compared with the EA-SEP or other parameter estimation approaches in either stationary or 
non-stationary situation, and AF-SEP was recommended as the most appropriate method to 
improve SNR of SEP (Lam et al., 2005). Specifically, AF-SEP under investigation usually 
employed the conventional linear transversal adaptive filter. There are two different structures 
have been proposed: one is the adaptive noise canceller (ANC) SEP extraction method (ANC-
SEP) (Hu et al., 2005; Ren et al., 2009), another is the multi-filter SEP extraction method (MAF-
SEP) for low SNR SEP estimation, where the ANC is used to remove the correlated noise in a 
primary signal and the uncorrelated noise, while the SEP components enhancement is carried 
out by the adaptive signal enhancer (ASE). Experimental results have shown that MAF-SEP 
method can greatly reduce the number of input trials for SEP extraction (Lam et al., 2005). 
Adaptive filter theory tells that the different adaptive algorithms provide different filtering 
performances (Haykin, 2001). The least mean squares (LMS) based adaptive noise canceller 
SEP method (LMS-ANC-SEP) was found to be a fast, simple, and reliable SEP extraction 
method for intraoperative spinal cord monitoring (Lam et al., 2005). The LMS algorithm is 
famous for its simplicity at the price of having a relatively slow convergence rate and sensitive 
to the noise disturbance. To speed up the convergence, a Recursive Least Squares (RLS) based 
ANC-SEP (RLS-ANC-SEP) extraction algorithm was developed and studied in (Ren et al., 
2009), where the Least Square cost function has been employed. RLS is a stable and accurate 
adaptive filtering algorithm (Haykin, 2001) since it updates the estimate using all the past 
available information, instead of the instantaneous measurement and error values in LMS. 
Intensive experimental results demonstrate that the RLS-ANC-SEP extraction outperforms the 
EA-SEP and the LMS-ANC-SEP. It also showed that the RLS-ANC-SEP is much less sensitive to 
noise disturbance over its counterpart algorithms, but at the expense of a heavier 
computational load.  
Some research has shown than the conventional adaptive filters minimizing least squares (LS) 
or mean square error (MSE) are very sensitive to non-Gaussian or impulsive noise (Chan & 
Zou, 2004; Hazarika et al., 1997; Kong & Qiu, 1999). This is of increasing importance in 
biomedical signal processing field. Kong and Qiu (Kong & Qiu 1999) have done some 
preliminary research on a latency change detection and estimation algorithm under α-stable 
noise condition. They showed that the adaptive time delay estimation (TDE) algorithms based 
on the least mean square criterion failed to give an accurate estimation of the latency changes 
in the EP signal, and they employed the direct least mean square (DLMS) adaptive TDE 
algorithm derived based on the direct least mean p-norm criterion proposed by Etter and 
Stearn (Etter & Stearn, 1981). Theoretical analysis and simulation studies concluded that the 
DLMS algorithm is robust to the noises in EP signals with both Gaussian and non-Gaussian 
distributions. 
SEP signals recorded in the operating room have illustrated the impulsive characteristics 
under certain circumstance, such as some orthopedic manipulations using saw, drill, bone 
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taps or bone bits. Based on our knowledge, there is no research carried out for the SEP 
extraction under the impulsive noise environment.  
In this research, we will investigate the incorporation of robust M-estimator in the adaptive 
noise canceller structure for the SEP extraction. A recursive least M-estimate SEP extraction 
algorithm named as RLM-ANC-SEP has been developed by minimizing a robust M-
estimator cost function. The performance of the RLM-ANC-SEP, RLS-ANC-SEP, LMS-ANC-
SEP, and EA methods regarding to SEP extraction will be evaluated and compared 
quantitatively.   

2. Materials and methods  

In this section, the framework and the working principle of the adaptive noise canceller 
(ANC) using the finite impulse response (FIR) filter for SEP extraction is introduced. The 
SEP extraction system setup and data generation is presented accordingly. The SEP 
extraction methods using least mean square algorithm (LMS-ANC-SEP) and recursive least 
square algorithm (RLS-ANC-SEP) are provided for completeness and comparison purpose. 
The SEP extraction using the recursive least M-estimate (RLM) algorithm is derived and 
discussed at last.  

2.1 Adaptive noise canceller (ANC) for SEP extraction 

In Figure 1 (a), a block diagram of ANC for SEP extraction is illustrated, which mainly 
consists of a primary channel and a reference channel. The primary channel receives the 
source signal which refers to the raw SEP recording and can be modelled as 
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Fig. 1. (a) A block diagram of adaptive noise canceller for SEP extraction, (b) Diagram of the 
M order FIR adaptive filter in ANC 
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 ( ) ( ) ( )s n x n v n    (1) 

where x(n) is the true SEP signal and v(n) represents the background noise and 
interferences. In Figure 1, the reference channel represents a noise source denoted as r(n), 
and e(n) is the output of the ANC system, which is considered as the estimated version of the 
true SEP signal which can be formulated as 

 ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )Te n s n y n x n v n n n x n     w r  (2) 

where the output of the adaptive filter is denoted as y(n)=wT(n)r(n).  r(n)=[r(n),…,r(n-M)]T and 

w(n)=[w0(n),w1(n),…,wM(n)]T are the output, input data vector and weight vector of the 
adaptive FIR filter (AF), respectively. The derivation of the adaptive filtering algorithm is 
governed by a meaningful cost function. As the result, after the convergence of the AF, the 
difference between the filter output and the desired response will be minimized.  
It is worthy to note that for the ANC approach for SEP extraction, there are some important 
assumptions for achieving global convergence of the adaptive filter and the unbiased 
estimation of the desired signal. Firstly, the desired signal (x(n)) is corrupted by an additive 
interference (or noise) (v(n)) to form the primary signal s(n); Secondly, if the reference signal 
(r(n)) is a correlated version of the interference signal (v(n)) , then a FIR filter can be applied 
to transform r(n) to approximate v(n) and then suppress v(n) from s(n), which is illustrated 
in Figure 1(b); Thirdly, the reference signal (r(n)) must not contain a correlated component 
of x(n), otherwise, the SEP signal component may also be cancelled at the output of the 
ANC. Therefore, it can be concluded that in the study of SEP extraction under ANC 
framework, the SEP recording and the reference signal generation must be designed 
carefully to satisfy the above requirements. Some discussion of the SEP extraction system 
setup will be presented in the next section. 

2.2 SEP Extraction system setup and data generation 
2.2.1 SEP extraction system setup and signals 
 

 

Fig. 2. A typical setup of the SEP extraction system 

In our SEP extraction study, the SEP extraction system setup is illustrated in Figure 2. The 
SEP signals were collected over Cz’ (2 cm posterior to Cz, 10-20 international system for EEG 
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electrode placement) versus the Fz of the 10-20 system. The stimulation for SEP recording 
was applied on the posterior tibial nerve with the duration of 0.3 ms, the rate of 5.1 Hz and 
the constant current of 10 to 30 mA. The signals were amplified one hundred thousand 
times, bandpass filtered at 20-3000Hz. The SEP signals were acquired and recorded to a 
computer with 12-bit resolution and the sampling rate of 5 kHz. We collected 500 trials for 
one subject and then the average of these trials is taken as a standard SEP template in our 
study, which is shown in the first row of Figure 3 as xn. 
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Fig. 3. SEP signals. (1) xn: An example of a SEP template obtained from ensemble averaging 
of 500 trials; (2) vn: one example of recorded A1-Fz used as EEG  together with WGN for 
primary channel; (3) rn: one example of recorded Cz-Fz  recording used as EEG  together 
with correlated WGN as the reference channel signal; (4) sn: one example of the primary 
channel signal (EEG +SEP+WGN) at SNR=-15 dB. 

2.2.2 The primary channel signal and reference channel signal generation 

It is observed that continuous EEG is the major source of noise found in the primary SEP 
recording channel and its variation version in the reference channel (Lam et al., 2005). In our 
study, EEG is recorded over Cz and A1 (auricular) versus Fz, respectively from the awaken 
subjects at a sitting position in a quiet environment. This is because the A1-Fz recording 
signal has much less SEP component, and A1-Fz recording is suitable used for the 
generation of the reference channel signal r(n) (MacDonald et al., 2005). Meanwhile, the Cz-
Fz recording was used to superimpose onto the SEP template to generate the EEG-
contaminated SEP signal, that is, continuous EEG signals of different SNR levels were added 
to each SEP template to generate the EEG-contaminated SEP trials (the primary channel 
signal s(n) at different SNR level) for algorithm performance evaluation purpose. An 
autoregressive moving average (ARMA) filter was employed to simulate the correlated 
WGN noise for the reference channel. One example of the A1-Fz EEG signal and Cz-Fz EEG 
signal recorded from scalp is plotted in Figure 3 as vn and rn, respectively. The SNR of EEG-
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contaminated SEP was set to −10, −15 and −20 dB. The last row of Figure 3 (sn) shows the 
simulated primary channel SEP signal at -15dB with EEG and WGN. 

2.3 Adaptive noise canceller for SEP extraction using mean square estimation 

The SEP extraction method under the adaptive noise canceller (ANC) framework derived from 

the Mean-Square-Error was firstly introduced and evaluated by some of the present authors in 

(Lam et al., 2005). From the adaptive filter theory (Haykin, 2001) and the configuration of the 

ANC shown in Figure 1, the SEP extraction problem can be solved as a linear ANC problem 

since the FIR adaptive filter is used (named as ANC-SEP approach in this study). The 

commonly used error measure is the Mean-Square-Error (MSE defined as JMSE=E[e2(n)], where 

E[.] represents the ensemble operator). The minimisation of the MSE results in the Wiener 

normal equation under some statistically independent and signal wide-sense stationary (WSS) 

assumptions. The optimal solution of Wiener normal equation can be denoted as: 

 -1( ) ( ) ( )
opt mse mse

n n nw R P  (3) 

where Pmse is the cross-correlation vector between s(n) and r(n), and Rmse is the 

autocorrelation matrix of r(n), which can be written as 

 [ ( ) ( )]
mse

E s n nP r    

 [ ( ) ( )]T

mse
E k kR r r  (4)  

As discussed in many literatures, the well-known least mean squares (LMS) algorithm is a 

stochastic gradient based adaptive algorithm to obtain the optimal solution of JMSE. The 
updating of the adaptive filter coefficient vector can be denoted as (Haykin, 2001) 

 ( ) ( 1) 2 ( ) ( )lmsn n e n n  w w r  (4) 

where lmsis the stepsize which is one of the most important factors that controls the initial 
convergence rate and steady state error of the LMS-ANC for SEP extraction. Generally, a big 
stepsize yields rapid convergence but larger steady-state misadjustment error. A small 

stepsize yields slow convergence but a corresponding smaller steady-state misadjustment 

error. There exists a theoretical lower and upper bound of the choice of lms (details can be 

referred to (Haykin, 2001). Usually, the choice of lms is suggested by the following condition 
in the LMS algorithm (Haykin, 2001) 

 0 1 /( )inMP   (5) 

where Pin and M is the input power and the order of the adaptive FIR filter, respectively. In 

principle, the selection of the stepsize not only depends on the desired steady-state error 

level but also the statistical properties of the input signal of the adaptive filter. In other 

words, the convergence rate of the LMS algorithm is greatly affected by the dynamic range 

of the eigenvalues of the autocorrelation matrix Rmse. Considering this essential limitation, it 

is not difficult to understand that the performance of the ANC-SEP approach using LMS 

algorithm may suffer from the conflict to the WSS assumption for s(n) and r(n) and the 

nonstationary property of the r(n) . 
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2.4 Adaptive noise canceller for SEP extraction using least square estimation 

Motivated by the performance enhancement of the ANC-SEP method using LMS 
algorithm compared with EA-SEP (Hu  et al., 2005; Lam et al., 2005; Cui et al., 2008), some 
investigations of the ANC-SEP using RLS algorithm have been carried out and presented 
in (Ren et al., 2009). Instead of using MSE cost function, a conventional least square (LS) 
cost function is employed and the optimal solution of JLS is described as follows (Haykin 
2001) 

 
2

1

( ) ( )
n

n k
LS

k

J n e k 


 , and 1( ) ( ) ( )

opt Ls LS
n n nw R P  (6) 

where, is the forgetting factor with the value between 0 and 1, which controls the effective 
amount of data used in the averaging and hence the degree to which the RLS algorithm can 
track the signal variation. The closer the value of ┣ goes to one, the lower will be the steady-
state misadjustment error of the RLS algorithm. Its tracking ability, however, will also be 
slower. RLS(n) is the autocorrelation matrix of the input vector at time index n and PLS(n) is 
the cross-correlation vector between the input vector and the reference signal at time index 
n. Generally, they can be estimated as 

 1

( ) ( ) ( ) ( 1) ( ) ( )
n

n i T T

LS LS

i

n i i n n n 



   R r r R r r

 
(7)

 

 1

( ) ( ) ( ) ( 1) ( ) ( )
n

n i

LS LS

i

n s i i n s n n 



   P r P r

 
(8)

 

By applying the matrix inversion lemma to the optimal solution in (6), the famous recursive 
least square (RLS) algorithm can be derived, and it is summarized in Table 1 for the 
completeness (Interested readers can refer to (Haykin, 2001)). From Table 1, it is noted that 
the computational complexity of the RLS algorithm is of order M2.  

 

1) Initialization: ( 1) 0RLS  w , 1( 1)RLS Mn   P I , n=0, where M is the 

filter order of the adaptive filter using in ANC, can be the inverse of an 

estimation of the input signal power. 

2) Calculation of the adaptive filter output: ( ) ( ) ( 1)T
RLSy n n n r w  

3) Estimation error: ( ) ( ) ( )e n s n y n   

4) Calculation of the Kalman gain vector: 

( 1) ( )
( )

( ) ( 1) ( )
RLS

RLS T
RLS

n n
n

n n n







 
P r

K
r P r

 

5) Update of the inverse correlation matrix: 

 
1

( ) ( 1) ( ) ( ) ( 1)T
RLS RLS RLS RLSn n n n n


     P P K r P  

6) Update of the filter weights: ( ) ( 1) ( ) ( )RLS RLS RLSn n n e n  w w K  

 n=n+1, back to step 2) 

Table 1. RLS-ANC-SEP algorithm 
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2.5 Adaptive noise canceller for SEP extraction using robust estimation 

Carefully evaluating the properties of the recording SEP signals in the operating room, it 
noted that these SEP signals may have some nonstationary and impulsive like properties 
when the trial patients happen to the eye movement, cough and stimulus etc, which 
commonly exist. Under these kind of circumstances, the performance of the ANC-SEP 
methods using LMS or RLS will degrade or fail to extract SEP signal due to the adverse 
effect of the noise. The new method is desired. Motivated by the research work done by 
Chan and Zou (Chan & Zou, 2004), a new error measure method based on the M-estimate 
has been introduced and the corresponding cost function instead of JMSE or JLS is used for 
providing the robustness in the algorithm, which is given as  

    1 1
( ) ( ) ( ) ( ) ( )

n nn i n i T
R i i

J n e i s i n i    
 

    w r  (10) 

where   is the positive forgetting factor and  is an M-estimate function, which provides 
certain ability to suppress the adverse effect of impulsive noise on the cost function when 
the error signal becomes very large. In our study, the Huber M-estimate function and the 
related weighting function are used, which can be denoted as 

 

2

2

/ 2, 0  
( )

/ 2

e e
e

otherwise





  

 
  

(11)

 

where  is the threshold parameter. The optimal solution w(n) for minimizing JR(n) can be 
obtained by differentiating (10) with respect to w(n) and setting the derivatives to zero. This 
yields the following M-estimate normal equation 

 ( ) ( ) ( )R Rn n nR w P  (12) 

where 

 ( ) ( 1) ( ( )) ( ) ( )T
R Rn n q e n n n  R R r r  (13) 

  ( ) ( 1) ( ( )) ( ) ( )R Rn n q e n s n n  P P r  (14) 

 
1, 0  ( ) /

( )
0,

ed e de
q e

otherwisee

     


 (15) 

where, RR(n) and PR(n) are called the M-estimate correlation matrix of r(n) and the M-
estimate cross-correlation vector of r(n) and s(n), respectively. The adaptive algorithm for 
solving the normal equation (12) can be obtained in the same way as developing RLS 
algorithm, and the resulting algorithm is called recursive least M-estimate  algorithm (RLM) 
and it is summarized in Table 2. From Table 1 and Table 2, it can be seen that the 
computational complexity of RLM and RLS is similar except the cost to determine the 
weighting function q(e) in (15). It is also noted that when the signal is Gaussian distributed, 
RLS and RLM are identical. The contribution of the weight function q(e(n)) lies at the 
suppression of the adverse effects of the large estimation error due to the undesired 
impulsive interference on the adaptive filter weight vector w(n). The degree of this 
suppression is controlled by the parameterin our study, a recursive estimation approach 
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is adopted which directly connects to the variance of the estimation error under the 
assumption of the interference is with contaminated Gaussian (CG) or alpha-stable 
distributions. The parameter has been determined (shown in Table 2) when there is 95% 
confidence to detect and reject the impulses (Chan & Zou, 2004). 

 

1) Initialization: ( 1) 0RLM  w , 1( 1)RLM Mn   P I , n=0, where M is the filter 

order of the ANC, can be the inverse of an estimation of the input signal 

power. 

2)  Calculation of the adaptive filter output: ( ) ( ) ( 1)T
RLMy n n n r w  

3)  Estimation error calculation: ( ) ( ) ( )e n s n y n   

4) Estimate the variance of the estimation error, determine the parameter  and 
determine the weighting function (Chan & Zou, 2004)： 

 2 2
1( ) ( 1) (1 ) ( )en n c med A n        , 2.24 ( )n  ,

1, 0  
( )

0,

e
q e

otherwise

   


， 

where   is the forgetting factor, 2 2( ) { ( ), , ( 1)}e wA n e n e n N   , wN  is the 

length of the estimation window, and 1 1.483(1 5 /( 1))wc N    is the finite 

sample correction factor 

5)Calculation of the Kalman gain vector:
( ( )) ( 1) ( )

( )
( ( )) ( ) ( 1) ( )

RLM
R T

RLM

q e n n n
n

q e n n n n



 

P r
K

r P r
 

6)  Update of the inverse correlation matrix: 

 
1

( ) ( 1) ( ) ( ) ( 1)T
RLM RLM RLM RLMn n n n n


     P P K r P  

7)  Update of the filter weights: ( ) ( 1) ( ) ( )RLM RLM Rn n n e n  w w K  

8) Calculate the estimation error: 
( ), ( ) 1

( )
( 1), ( ) 0

e n q e
e n

e n q e


   

 

 n=n+1, back to step 2) 
 

Table 2. RLM algorithm 

3. Simulation study and discussion 

As discussed above, we have introduced the SEP extraction approaches under the ANC 
framework by using different adaptive filtering algorithms. Specifically, employing LMS, 
RLS and RLM algorithms to update the weighting vector of the adaptive FIR filter in ANC 
results in the LMS-ANC-SEP method, RLS-ANC-SEP method and RLM-ANC-SEP method, 
respectively. In this section, the performance of these adaptive filtering methods for SEP 
extraction under Gaussian and impulsive noise environment has been evaluated and 
compared by intensive simulation experiments.  

3.1 Experiment 1: SEP extraction under Gaussian noise 

In this section, we aim to visually illustrate the SEP extraction performance of the 
algorithms discussed above under Gaussian noise condition. The detailed performance 
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comparison between EA-SEP, LMS-ANC-SEP, RLS-ANC-SEP and RLM-ANC-SEP methods 
under EEG and WGN contamination can be referred to the work presented in papers (Lam 
et al., 2005) and (Ren et al., 2009). Here, we only illustrate one set of the SEP extraction 
results for reader’s favorite review. Figure 4 shows the SEP extraction results from 50 SEP 
trails by different algorithms. In this experiment, the SEP template (xn), simulated primary 
signals (sn, vn) and reference signal (rn) are the same as those shown in Figure 3 at SNR=-
15dB. The order of the adaptive filter M is set to be 10, the step size ┤ of the LMS-ANC-SEP 
is chosen as 2x10-4, the forgetting factor of the RLS-ANC-SEP and RLM-ANC-SEP algorithms 

is set to be 0.99. The parameters for RLM-ANC-SEP in Table 2 are set as  =0.9 and Nw =7. 
From Figure 4, it is clear to see that the signals extracted from 50 trials by EA-SEP and LMS-
ANC-SEP are difficult to detect the positive and negative peaks required for quantitative 
analysis and diagnosis of the SEP signal. More precisely, the positive peak around 35ms and 
the negative peak around 40ms, which are two most commonly-used criteria for the online 
monitoring during the spinal surgery, are still buried in the heavy background noise, so that 
their latencies and amplitudes cannot be measured accurately. On the other hand, we can 
see that the performance of RLM-ANC-SEP is almost the same as that of RLS-ANC-SEP, 
which outperforms than other two algorithms. It is apparent that two peaks around 35ms 
and 40 ms can be easily observed and their latencies and amplitudes can be precisely 
measured in the results using RLS-ANC-SEP and RLM-ANC-SEP methods. All these 
findings in practice can be well explained in theory. That is, the RLS/RLM-based algorithms 
have a fast convergence rate than LMS-based algorithm. Furthermore, the RLM-ANC-SEP 
algorithm is comparable to RLS-ANC-SEP algorithm under EEG and WGN environment. We 
next test and compare their performances when few SEP trials are contaminated with 
impulsive noises. 
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Fig. 4. 50-trial SEP extraction results obtained by EA-SEP, LMS-ANC-SEP, RLS-ANC-SEP, 
and RLM-ANC-SEP method, respectively (SNR=-15dB) 
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3.2 Experiment 2: SEP extraction under impulsive noise  

This simulation is set up to compare the SEP extraction performance of the EA-SEP, LMS-
ANC-SEP, RLS-ANC-SEP and RLM-ANC-SEP under EEG and individual impulse 
contaminated noise environment. Generally, the impulsive noise can be generated by a 
contaminated Gaussian (CG) model proposed in (Haweel & Clarkson, 1992). The impulses 
are generated individually with arrival probability  Par=2×10-3 and the variance is chosen as 200. In 

our study, only for performance illustration purpose, the positions of the impulses are assumed to 
occur at 19ms, 28ms, 35ms, 44ms, and 78ms, respectively (which is not necessary to fix the 
position of the impulses, but here it is for us to gain the better performance visualization for 
different algorithms). The SEP template (xn), one sample primary interference (vn) with 
impulses, one sample of the reference signal (rn) and the resultant primary signal (sn) at -15dB 
are shown in Figure 5. The difference between Figure 3 and Figure 5 only lies at several impulses 
added in the primary interference signal (vn). In this case, the primary signal is composed of a SEP 
template, an A1-Fz EEG component, and a contaminated Gaussian noise.  
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Fig. 5. SEP signals with impulsive noise, (1) xn and rn are the same as those in Figure 3. (2) 
vn: one example of recorded A1-Fz used as EEG  tegether with CG noise for primary 
channel; (3) sn: One example of the primary channel signal (EEG +SEP+CGN) at -15 dB. 

For this simulation, all parameter settings are the same as those used in Experiment 1. The 

SEP extraction results from 50 SEP trails under impulsive noise by different algorithms are 

shown in Figure 6. If no impulsive noise occurs, the extraction results of four different methods 

should be approximately identical to their counterparts in Figure 4. As a result, Figure 5 can be 

regarded as a standard to evaluate the robustness of these methods when impulsive noises are 

added. From Figure 6, it is clear to see that the adverse impact of the impulses on the SEP 

extraction for EA-SEP, LMS-ANC-SEP and RLS-ANC-SEP algorithms compared with their 

counterpart algorithms under WGN shown in Figure 4. More specifically, for the EA-SEP 
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method, since the amplitudes of the impulsive noise are rather large compared to that of 

WGN, they cannot be averaged out completely using finite number of trials. As for the LMS-

ANC-SEP and RLS-ANC-SEP methods, which employ an LS criterion for the updating of the 

filter coefficients in ANC, their performances are degraded severely because the coefficient 

estimates in ANC are unstable and may be greatly deviated from the reasonable values 

when impulsive noise occurs. The performance degradation can be more easily observed in 

the result of RLS-ANC-SEP in Figure 6, where the adverse impacts of impulsive noises 

around 35ms and 44ms are distinct and its difference with RLS-ANC-SEP of Figure 4 is 

obvious. Unlike those methods based on averaging or LS criterion, RLM-ANC-SEP employs 

an M-estimation function in ANC so that the impulsive noise can be detected and 

suppressed effectively. As the result, its harmful impact on SEP extraction is reduced 

considerably. The simulation results illustrate the advantage of RLM-ANC-SEP, and we can 

see that RLM-ANC-SEP shows its robustness to the impulsive interferences and its 

performance is close to that under WGN condition. In Figure 6, we can hardly find the traces 

of impulsive noise in the RLM-ANC-SEP result and peaks were clearly seen and measurable. 

In a simple word, impulsive noise which degrades the outputs of EA-SEP, LMS-ANC-SEP 

and other LS-based SEP extraction methods will do little harm to RLM-ANC-SEP.  
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Fig. 6. 50-trial SEP extraction results obtained by EA-SEP, LMS-ANC-SEP, RLS-ANC-SEP, 
and RLM-ANC-SEP method, respectively (SNR=-15dB)  

As mentioned before, impulsive noise often occurs during spinal surgery in operating 
theatres and it will greatly decrease the quality of SEP recording. Current SEP recording 
technique works in this way when some SEP trials are contaminated with impulsive noise, 
they will be discarded. However, these trials with impulsive noise also contain useful SEP 
information, and the rejection of these trials will increase the time to record a useful SEP 
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signal, and make the recording and monitoring discontinuous, which is undesirable. 
Therefore, making use of SEP trials contaminated with impulsive noise is necessary and 
robust SEP extraction method, such as the proposed RLM-ANC-SEP method, is 
advantageous. Our preliminary study and experimental results show that the RLM-ANC-
SEP method has an excellent performance in impulsive noise environment, it may be taken 
as a good solution to achieve reliable and continuous SEP recording for monitoring under 
Gaussian and impulsive noise environment.  

4. Conclusion 

Aiming at developing the efficient SEP recording system, we have introduced the SEP 
extraction methods under the ANC framework using adaptive FIR filter. A new SEP 
extraction method called RLM-ANC-SEP was developed to obtain the the fast and robust 
performance under Gaussian and Contaminated Gaussian noise environment. RLM-ANC-
SEP minimizes the modified Huber M-estimator based cost function instead of the 
conventional mean square error and least squares error based cost functions, which 
provides the robust ability when impulses occurring in the primary channel, and  maintains 
the fast convergence as the RLS-ANC-SEP algorithm. Simulation study proved that either 
RLM-ANC-SEP or RLS-ANC-SEP has better and more robust convergence performance than 
LMS-ANC-SEP. The performances of RLM-ANC-SEP and RLS-ANC-SEP showed equivalent 
under WGN condition, but RLM-ANC-SEP presented its robustness to the impulsive 
interferences. Clinical application and validation study could be our future work on this 
proposed SEP signal extraction approach. 

5. Acknowledgment 

This work was partially supported by Shenzhen Science and Technology Program (No. 
08CXY-01), Hong Kong ITF Tier 3 (ITS/149/08), and Research Grants Council of the Hong 
Kong SAR (GRF HKU7130/06E).  

6. References 

Chan, S. C. & Y. X. Zou (2004). A Recursive Least M - Estimate Algorithm for Robust 
Adaptive Filtering in Impulse Noise: Fast Algorithm and Convergence 
Performance Analysis, IEEE Transactions on Signal Processing, Vol. 52, No.4, pp. 975-
991. 

Cui, H., C. Shen, et al. (2008). Study on Adaptive Noise Canceller Based on Fixed-Point 
Algorithm for Real-Time Somatosensory Evoked Potential Monitoring, 
Bioinformatics and Biomedical Engineering, Vol. 3, pp.2213 – 2216. 

El-Hawary, R., S. Sparagana, et al. (2006). Spinal Cord Monitoring in Patients with Spinal 
Deformity and Neural Axis Abnormalities: A Comparison with Adolescent 
Idiopathic Scoliosis Patients, SPINE, Vol. 31, No. 19, pp.E698-E706. 

Etter, D. M. & S. D. Stearn (1981). Adaptive Estimation of Time Delays in Sampled Data 
Systems, IEEE Transactions on Acoustic, Speech, Signal Processing, Vol. 29, pp. 582–
587. 

Haweel, T. I. & P. M. Clarkson (1992). A Class of Order Statistic LMS Algorithms, IEEE 
Transactions on Signal Processing, Vol. 40, No. 1, pp. 44-53. 

www.intechopen.com



 
Adaptive Filtering Applications 

 

210 

Haykin, S. (2001). Adpative Filter Theory (4th Edition), Prentice Hall. 
Hazarika, N., A. Tsoi, et al. (1997). Nonlinear Considerations in EEG Signal Classification, 

IEEE Transactions on Signal Processing, Vol. 45, pp. 829–836. 
Hu, Y., B. Lam, et al. (2005). Adaptive Signal Enhancement of Somatosensory Evoked 

Potential for Spinal Cord Compression Detection: An Experimental Study, 
Computers in Biology and Medicine, Vol. 35, pp. 814-828. 

Kong, X. & T. S. Qiu (1999). Adaptive Estimation of Latency Change in Evoked Potentials by 
Direct Least Mean p-Norm Time-Delay Estimation, IEEE Transactions On Biomedical 
Engineering, Vol. 46, No.8, pp. 994-1003. 

Krieger, D. & R. Sclabassi (2001). Real-Time Intraoperative Neurophysiological Monitoring, 
Methods, Vol. 25, pp. 272-287. 

Lam, B., Y. Hu, et al. (2005). Multi-adaptive Filtering Technique for Surface Somatosensory 
Evoked Potentials Processing, Medical Engineering & Physics, Vol. 27, pp. 257-266. 

Lange, D. H. & G. F. Inbar (1996). A Robust Parametric Estimator for Single-Trial Movement 
Related Brain Potentials, IEEE Transactions on Biomedical Engineering, Vol. 43, pp. 
341-347. 

Lin, B. S., B.-S. Lin, et al. (2004). Adaptive Interference Cancel Filter for Evoked Potential 
Using High-Order Cumulants. IEEE Engineering in Medicine and Biology Society, Vol. 
1, pp.396-398. 

MacDonald, D. B. & A. Z. Zayed (2005). Tibial Somatosensory Evoked Potential 
Intraoperative Monitoring: Recommendations Based on Signal to Noise Ratio 
Analysis of Popliteal Fossa, Optimized P37, Standard P37, and P31 Potentials, Journal 
of Clinical Neurophysiology, Vol. 116, No.8, pp. 1858-1869. 

MacLennan, A. R. & D. F. Lovely (1995). Reduction of Evoked Potential Measurement Time 
by a TMS320 Based Adaptive Matched Filter, Medical Engineering & Physics, Vol. 17, 
pp. 248-256. 

McGillem, C. & J. Aunon (1981). Signal Processing in Evoked Potential Research: 
Applications of Filtering and Pattern Recognition, Critical Reviews in Bioengineering, 
CRC, Vol. 9, pp. 225-265. 

Nash, C. L., R. A. Lorig, et al. (1977). Spinal Cord Monitoring During Operative Treatment 
of the Spine, Clinical Orthopaedics and Related Research, Vol. 126, pp. 100-105. 

Nishida, S. & M. Nakamura (1993). Method for Single-Trial Recording of Somatosensory 
Evoked Potentials, Journal of Biomedical Engineering, Vol. 15, pp. 257-262. 

Ren, Z. L., Y. X. Zou, et al. (2009). Fast Extraction of Somatosensory Evoked Potential using 
RLS Adaptive Filter Algorithms, The 2nd International Congress on Image and Signal 
Processing (CISP'09), pp. 4444-4447. 

Turner, S., P. Picton, et al. (2003). Extraction of Short-Latency Evoked Potentials Using a 
combination of Wavelets and Evolutionary Algorithms, Medical Engineering & 
Physics, Vol. 25, pp. 407-412. 

Wei, Q. & K. Fung (2002). Adaptive Filtering of Evoked Potentials with Radial-Basis-
Function Neural Network Prefilter, IEEE Transactions on Biomedical Engineering, 
Vol. 49, pp. 225-232. 

Woody, C. D. (1967). Characterization of an Adaptive Filter for the Analysis of Variable 
Latency Neuroelectric Signals, Medical Biology Engineering, Vol. 5, pp. 539-553. 

www.intechopen.com



Adaptive Filtering Applications

Edited by Dr Lino Garcia

ISBN 978-953-307-306-4

Hard cover, 400 pages

Publisher InTech

Published online 24, June, 2011

Published in print edition June, 2011

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

Adaptive filtering is useful in any application where the signals or the modeled system vary over time. The

configuration of the system and, in particular, the position where the adaptive processor is placed generate

different areas or application fields such as: prediction, system identification and modeling, equalization,

cancellation of interference, etc. which are very important in many disciplines such as control systems,

communications, signal processing, acoustics, voice, sound and image, etc. The book consists of noise and

echo cancellation, medical applications, communications systems and others hardly joined by their

heterogeneity. Each application is a case study with rigor that shows weakness/strength of the method used,

assesses its suitability and suggests new forms and areas of use. The problems are becoming increasingly

complex and applications must be adapted to solve them. The adaptive filters have proven to be useful in

these environments of multiple input/output, variant-time behaviors, and long and complex transfer functions

effectively, but fundamentally they still have to evolve. This book is a demonstration of this and a small

illustration of everything that is to come.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Yuexian Zou, Yong Hu and Zhiguo Zhang (2011). Fast Extraction of Somatosensory Evoked Potential Based

on Robust Adaptive Filtering, Adaptive Filtering Applications, Dr Lino Garcia (Ed.), ISBN: 978-953-307-306-4,

InTech, Available from: http://www.intechopen.com/books/adaptive-filtering-applications/fast-extraction-of-

somatosensory-evoked-potential-based-on-robust-adaptive-filtering



© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.


