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1. Introduction 

Echo phenomenon has been always existed in telecommunications networks. Generally it has 

been noticed on long international telephone calls. As technology advances and the data 

transmission methods tend more to packet-switching concepts, the traditional echo problem 

remained up-to-date. An important issue in echo analysis is a round-trip delay of the network. 

This is a time interval required for a signal from speaker’s mouth, across the communication 

network through the transmit path to the potential source of the echo, and then back across the 

network again on the receive path to the speaker’s ear. The main problem associated with IP-

based networks is that the round-trip delay can be never reduced below its fundamental limit. 

There is always a delay of at least two to three packet sizes (50 to 80 ms) (Choi et al., 2004) that 

can make the existing network echo more audible (Gordy & Goubran, 2006). Therefore, all 

Voice over IP (VoIP) network terminals should employ echo cancellers to reduce the 

amplitude of returning echoes. A main parameter of each echo canceller is a length of its 

coverage. The coverage means the length of time that the echo canceller stores its 

approximation in memory. The adaptive filter should be long enough to model an unknown 

system properly, especially in case of VoIP applications (Nisar et al., 2009; Youhong et al., 

2005). On the other hand, it is known that an active part of the network echo path is usually 

much smaller compared to the whole echo path that has to be covered by the adaptive filtering 

algorithm. That is why the knowledge of the echo delay is important for using echo cancellers 

in packet-switching networks. Today, there is a wide family of adaptive filtering algorithms 

that can exploit sparseness of the echo path to reduce high computational complexity 

associated with long echo paths (Dyba, 2008; Hongyang & Dyba, 2008; Khong & Naylor, 2006; 

Hongyang & Dyba, 2009). In this chapter, we discuss numerous methods used for estimation 

of echo delay. Algorithms based on cross-correlation function and adaptive filters are used in 

the art. We will consider both types of them, discuss their advantages and drawbacks. 

Afterwards, we will pay our attention to the adaptive filtering techniques. We provide a study 

on different partial, proportionate, sparseness-controlled time- and frequency-domain 

adaptive filters. The readers will get closer to an issue of echo cancellation, which is relevant in 

nowadays telecommunications networks. Ones will able to recognize important features and 

particular areas of implementation of various adaptive algorithms. Further, we are giving a 

short introduction to the issue of echo control for telecommunications networks. This 

description emphasises on two most important aspects of perceptual echo control, which are 

echo loudness and echo delay. 
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1.1 Echo control issue 
In the very beginning of the telephone age, all calls were made through an analog pair of 

copper wires. The technology has progressively moved to digital circuit switched 

networks over the past several decades. Today most of the phone traffic is handled by the 

Public Switched Telephone Network (PSTN), which provides end-to-end dedicated 

circuits. During the last years a move to packet-switched networks has been initiated to 

support voice traffic over Internet Protocol (IP). The main reason for the move from 

circuit-switched voice networks to packet-switched networks is to enable convergence 

between data services and voice services. It is of economical interest to be able to use the 

same equipment for voice and data traffic. Reduced cost of placing a phone call is another 

reason, since the voice-packet is treated and routed much in the same way as any other 

data packet (note that Quality of Service plays a vital role in this process). Thus, 

conventional long distance tariffs have a tendency to be completely eliminated in Voice 

over IP (VoIP) networks as well. 
Echo issue has long been recognized as a problem on telecommunications networks, though 
generally it has been noticed mostly on international telephone calls or when using speaker 
phones. As technology advances and the information transmission methods tend more to 
packet-switching concepts, the traditional echo problem should be reviewed and updated. 
Previously unconsidered factors now play an important part in the echo characteristics. This 
section describes the echo delay problem, which is often encountered in packet-switched 
networks. This problem is highlighted in relation to VoIP networks. More specific details on 
the process of locating and eliminating echoes are included in conclusion to the chapter. 
Consider a simple voice telephone call, where an echo occurs when you hear your own 
voice repeated. An echo is the audible leak-through of your own voice into your own 
receive path. Every voice conversation has always at least two participants. From the 
perspective of each participant, there are two voice paths in every call: 

 Transmit path – The transmit path is usually depicted as Tx path. In a conversation, 
the transmit path is created when any person begins speaking. The sound is 
transmitted from the mouth of the speaker to the ear of the listener.  

 Receive path – The receive path is also called the return and depicted as Rx path. In 
a conversation, the receive path is created when a person hears the conversation 
coming from the mouth of another speaker. 

Fig. 1 illustrates a simple diagram of a voice call between two persons A (Kirill) and B 

(Kate). From the user A’s perspective, the Tx path carries his voice to the user B’s ear, and 

the Rx path carries the user B’s voice to the user A’s ear. 

 

 

Fig. 1. A simple telephone call scenario 
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There is one significant factor in the echo analysis, and especially for the packet-switching 
networks. It is a round-trip delay of the voice network. The round-trip delay is the length of 
time required for an utterance from the user A’s mouth, across the network on the Tx path 
to the source of the leak, and then back across the network again on the Rx path to the user 
A’s ear. Let’s define two important statements about echo nature, which are the following: 

 The louder the echo (echo amplitude), the more annoying it is,  

 The longer the round-trip delay (the “later” the echo), the more annoying it is. 
Table 1 shows how time delay can affect the quality of a voice conversation. 
 

One-Way Delay Range (ms) Effect on Voice Quality 

0-25 
This is the expected range for national calls. There are no 
difficulties during conversation. 

25-150 

This is the expected range for international calls using a 
terrestrial transport link and IP telephony, which 
includes only one instance of IP voice. This range is 
acceptable for most users, assuming the use of echo 
control devices. 

150-400 

This is the expected range for a satellite link. Delays in 
this range can interrupt the normal flow of a 
conversation. A high-performance echo canceller must be 
used and careful network planning is necessary. 

Greater than 400 
This is excessive delay and must be avoided by network 
planning. 

Table 1. Effect of Delay on Voice Quality 

Fig. 2 shows how the echo disturbance influenced by the two parameters: delay and echo 
level. The metric called Talker Echo Loudness Rating (TELR) denotes the level difference 
between the voice and echo signals. The “acceptable” curve represents the limit for 
acceptable talker echo performance for all digital networks. The fact that the speaker A, in 
Fig. 1, hears an echo illustrates one of the basic characteristics of echo: perceived echo most 
likely indicates a problem at the other end of the call. The problem that is producing the 
echo that A hears, the leakage source, is somewhere on B’s side of the network. If the person 
B was experiencing echo, the problem would be on the user A’s side. 
The perceived echo usually originates in the terminating side of the network for the 
following two reasons: 

 Leakage happens only in analog circuits. Voice traffic in the digital portions of the 
network does not pass from one path to another. 

 Echo arriving after very short time, about 25 milliseconds, is generally imperceptible, 
because it is masked by the physical and electrical side-tone signal. 

A hybrid transformer is often main source of the electrical signal leakage. The typical analog 
telephone terminal is 2-wire device: a single pair of conductors is used to carry both the Tx 
and Rx signals. For analog trunk connections, known as 4-wire transmission, two pairs of 
conductors carry separate Tx and Rx signals. Digital trunks (T1/E1) can be virtual 4-wire 
links because they also carry separate Tx and Rx signals. A hybrid is a transformer that is 
used to interface 4-wire links to 2-wire links. Fig. 4 shows a hybrid transformer in an analog 
tail circuit. Because a hybrid transformer is a non-ideal physical device, a certain fraction of 
the 4-wire incoming (Rx) signal will be reflected into 4-wire outgoing (Tx) signal. A typical 
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fraction for a properly terminated hybrid in a PBX is about -25 decibels (dB), meaning that 
the reflected signal (the echo) will be a version of the Rx signal attenuated by about 25 dB. 
For a PSTN POTS (Plain Old Telephone Service) termination, the expected value is between 
12 and 15 dB. Echo strength is expressed in dB as a measurement called Echo Return Loss 
(ERL). Therefore, and ERL of 0 dB indicates that the echo is the same amplitude as the 
original source. A large ERL indicates a negligible echo. Remember that an echo must have 
both sufficient amplitude and sufficient delay to be perceived. For local calls with one-way 
delay from 0 to 25 ms, an echo of strength of -25 dB relative to the speech level of the talker 
is generally quiet enough to not be annoying. For a one-way delay in the range of 25 to 150 
ms, the ERL should exceed 55 dB to eliminate the perception of echo from the end-user 
perspective, as recommended in ITU-T recommendation G.168 on echo cancellation (ITU-T 
G.168, 2002). In this case echo cancellation is required. 
 

 

Fig. 2. Talker echo tolerance curves (ITU-T G.131, 2003) 

2. Echo delay estimation using cross-correlation 

The following section presents a study of cross-correlation-based Time Delay Estimation 
(TDE) algorithms. The main purpose is to analyze a number of methods, in order to find the 
most suitable one for real-time speech processing. As TDE is an important topic during 
transmission of voice signals over packet-switching telecommunication systems, it is vital to 
estimate the true time delay between Tx and Rx speech signals. We consider algorithms 
processing both in time- and frequency domains. An echo delay problem associated with IP-
based transport networks is also included into the discussion. An experimental comparison 
of the performance of numerous methods based on cross-correlation, normalized cross-
correlation and a generalized cross-correlation function is presented. 

2.1 General scenario of delay estimation using cross-correlation functions 
The known problem associated with IP-based networks is that the round-trip delay can be 
never reduced below its fundamental limit. There is always a delay of at least two to three 
packet sizes (50 to 80 ms) that can make the existing network echo more audible. Therefore, all 
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Voice over IP (VoIP) network terminals should employ echo cancellers to reduce the 
amplitude of returning echoes. A main parameter of each echo canceller is a length of 
coverage. Echo canceller coverage specifies the length of time that the echo canceller stores its 
approximation in memory. The adaptive filter should be long enough to model an unknown 
system properly, especially in case of VoIP applications. On the other hand, it is known that 
the active part of the network echo path is usually much smaller compared to the whole echo 
path that has to be covered by the adaptive filtering algorithm inside the echo canceller. That is 
why the knowledge of the echo delay is important for using echo cancellers in packet-
switching networks successfully. In general, every communications system includes a 
communications network and communications terminals on the both sides of the network. The 
communications terminals could be telephones, soft phones, and wireless voice 
communication devices. Fig. 3 illustrates how an echo assessment device can be arranged into 
the defined system. The echo delay estimator has to monitor two parallel channels. An 
outgoing voice channel transmits an original voice waveform from the first terminal through 
the communications network to the second terminal. An incoming voice channel receives an 
echo waveform of the original signal returning from the second terminal through the 
communications network back. This is a delayed and attenuated version of the original voice 
signal. 

 

Fig. 3. Arrangement of echo assessment module in the network 

 

Fig. 4. General block diagram of delay estimator 

Fig. 4 illustrates a general block diagram of the echo delay estimator. The echo delay 
estimator computes correlation between two voice channels for different set of delays in 
parallel manner (Carter, 1976). The delay-shift with the largest cross-correlation coefficient is 
selected as the delay estimate. Fig. 5 illustrates, in a flowchart form, steps performed when 
implementing a method of echo delay estimation utilizing cross-correlation algorithms. 
Once started from block 1, block 2 calculates the cross-correlation function for a buffer of 
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input samples of the Rx and Tx signals. Block 3 utilizes cross-correlation coefficients to 
compute the similarities between the transmitted signal and the received signal over a range 
of delays. For each particular delay, the similarity is obtained. Once the similarities have 
been determined for each delay within the range of delays, block 4 chooses a delay that 
produces the greatest similarity metric for the given input frames. Consequently, block 5 
indicates that the estimation process is completed. 
 

 

Fig. 5. Flowchart for estimating echo delay value 

2.2 Algorithms proceeding in time-domain 
Time domain implementation of Cross-Correlation Function (CCF) and Normalized CCF 
(NCCF) is presented. The cross-correlation function for a successive par of speech frames 
can be estimated by (Mueller, 1975) 
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Here, x(n) simply denotes a frame of the outgoing signal, y(n) is related to a frame of the 
incoming signal. According to Fig. 4, the estimation of the CCF is done for a supposed range 
of delays. The time-shift, τ, which is always in range of [τmin; τmax] and causes the maximal 
peak value of the CCF is declared as an estimate of the true echo delay TD. Similarly to the 
CCF, an estimate of the NCCF is done (Buchner et al., 2006) 
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Here, Ex and Ey denotes a short-term energy of the outgoing and the incoming frames. These 
values are calculated using the following equations 
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Let us further consider generalized cross-correlation algorithms, which operate in the 
frequency domain (Youn et al., 1983; Zetterberg et al., 2005). 

2.3 Algorithms proceeding in frequency-domain 
More sophisticated way how to provide TDE is to compute the cross-correlation function in 

the frequency domain. This process in literature is called Generalized Cross-Correlation 

(GCC) (Hertz, 1986). The idea behind this method is to perform pre-filtering of the input 

signals before calculating CCF. It makes possible to improve the accuracy of delay 

estimation. Note that the filtering procedure is performed in the frequency domain. Let us 

describe this process in more details. It is well known, that the simple cross-correlation 

function, Rxy, between signals x(n) and y(n) is related to the cross-power density function 

(cross-power spectrum), Gxy, by the general inverse Fourier transform relationship, as 

     2j fm

xy xy
R m G f e df


   (6) 

When x(n) and y(n) have been filtered with filters having transfer functions H1(f) and H2(f), 

the cross-power spectrum between the filter out-puts is given by 

        1 2

g

xy xy
G f H f H f G f    (7) 

Consequently, the Generalized Cross-Correlation Function (GCCF) between x(n) and y(n) is 
given by (Knapp & Carter, 1976) 

       2g j fm

xy g xy
R m f G f e df


     (8) 

      1 2g
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Here, Ψg, is a generalized weighting function. Table 2 represents weighting functions that 

were used for experiments with speech signals (Wilson & Darrell, 2006). 

The parameter Ǆxy denotes a complex coherence function. It can be calculated as (Tianshuang 

& Hongyu, 1996) 
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Here, Gxx(f) and Gyy(f) are auto-power spectra of the outgoing and the incoming signal; 
Rxx(m) and Ryy(m) are auto-correlation functions of the same signals. Fig. 6 illustrates a block 
diagram of the implemented generalized cross-correlation algorithm, where the Fast Fourier 
Transform (FFT) is used for auto-spectra and cross-spectrum calculation. After the cross-
power spectrum is estimated, it is multiplied by the corresponding GCC weighting function. 
The inverse FFT is used for obtaining the time domain generalized-cross correlation 
function. This operation is repeated for the specified range of possible delays. After the 
whole process has completed, the time shift with maximum corresponding peak value is 
declared as an estimation of the true delay. 
 

Processor Name Weighting Function 

Cross-correlation 1 
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xy

G f  
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xx yy
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yyxx fGfG 1  
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 
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HB      xy xx yy
G f G f G f  

Wiener  
2

xy
f  

Table 2. Various GCC weighting functions 

 

 

Fig. 6. Diagram of the implemented generalized cross-correlation algorithm 

2.4 Discussion over experimental results 
We used MATLAB software as a simulation environment. The time difference between time 
when the outgoing signal leaves the voice terminal and moment when the incoming signal 
containing the echo of the original signal arrives back from the network is referred to as a 
true echo delay. This value for the first three figures that are presented below equals 6ms (48 
samples). For the purpose of TDE it is also necessary to specify time interval through which 
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the value of the true delay is searched. To cover the 6ms delay we choose the interval 
between 0 and 10ms what corresponds to the maximum delay value of 60 samples. 
Afterwards we present the estimation results for a group of different delays. It helps to 
understand better performance of the algorithms. Unfortunately, because of the non-
stationary nature of human speech, the CCF is not reliable for all situations. Its performance 
highly depends on numerous factors, i.e. signal strength, signal-to-noise ratio (SNR), etc 
(Chen et al., 2006). The NCCF is not so sensitive to the sudden changes in the signal’s 
amplitude. It outperforms the CCF when we work with low level signals. The advantages of 
the algorithms proceeding in the frequency domain compared to the algorithms operating in 
the time domain are accuracy and reduced computational complexity. Fig. 7 illustrates the 
outputs of the GCC algorithms, which were presented in Table 2. 
 

 

(a) ROTH - weighting function 

 

(b) SCOT - weighting function 

 

(c) PHAT - weighting function 

 

(d) CPS-M (M=2) - weighting function 
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(e) HT - weighting function 

 

(f) ECKART - weighting function 

 

(g) HB - weighting function 

 

(h) WIENER - weighting function 

 

Fig. 7. Time delay estimation using  GCCF  

Table 3 and 4 provides us along with the following results. The joint comparison was done 

in terms of the estimation accuracy of the algorithms. The group of delays was chosen for 

this experiment. Delay values are consistent with the ones referenced in the corresponding 

ITU-T recommendation G.131 (ITU-T G.131, 2003). Once the respective cross-correlation 

function was calculated, its maximum peak value is detected using the searching procedure 

described in Fig. 4. SCC is related to the Standard CC function. 
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[ms] SCC ROTH SCOT PHAT CPS-2 HT ECKART HB WIENER 

5 4,9 5,1 5,2 3,7 5,2 4,4 4,2 5,2 5,2 

10 9,7 10,3 10,3 7,5 10,3 8,8 8,3 10,4 10,3 

20 19,5 20,6 20,7 15,0 20,7 17,7 16,7 20,8 20,7 

30 29,2 30,9 31,0 22,4 31,0 26,5 25,0 31,2 31,0 

50 48,7 51,4 51,6 37,4 51,6 44,2 41,7 52,1 51,7 

100 97,3 102,9 103,3 74,8 103,3 88,5 83,3 104,2 103,4 

200 194,6 205,7 206,6 149,6 206,6 177,0 166,6 208,3 206,8 

300 292,0 308,6 309,9 224,4 309,9 265,4 249,9 312,5 310,3 

Table 3. Mean values of estimated delays 

 

[ms] SCC ROTH SCOT PHAT CPS-2 HT ECKART HB WIENER 

5 4,9 5,1 5,2 3,7 5,2 4,4 4,2 5,2 5,2 

10 9,7 10,3 10,3 7,5 10,3 8,8 8,3 10,4 10,3 

20 19,5 20,6 20,7 15,0 20,7 17,7 16,7 20,8 20,7 

30 29,2 30,9 31,0 22,4 31,0 26,5 25,0 31,2 31,0 

50 48,7 51,4 51,6 37,4 51,6 44,2 41,7 52,1 51,7 

100 97,3 102,9 103,3 74,8 103,3 88,5 83,3 104,2 103,4 

200 194,6 205,7 206,6 149,6 206,6 177,0 166,6 208,3 206,8 

300 292,0 308,6 309,9 224,4 309,9 265,4 249,9 312,5 310,3 

Table 4. Root mean square deviation of estimated delays 

The abscissa of the largest peak value is the estimated delay. Note that 50 trial speech 
records for each processor were evaluated to obtain the mean value and the Root Mean 
Square Deviation (RMSD) parameter (Anderson & Woessner, 1992). Not only different 
speech signals, but various hybrid impulse response models have been used. The results for 
delays from 5 to 300 ms are presented in the corresponding tables. Table 3 contents the 
mean values, whether Table 4 illustrates the estimated RMSD values. 

3. Echo delay estimation using adaptive filters 

In this section, we introduce methods for extracting an echo delay between speech signals 
using adaptive filtering algorithms. We know that time delay estimation is an initial step 
for many speech processing applications. Conventional techniques that estimate a time 
difference of arrival between two signals are based on the peak determination of the 
generalized cross-correlation between these signals. To achieve a good precision and 
stability in estimation, the input sequences have to be multiplied by an appropriate 
weighting function. Regularly, the weighting functions are dependent on the signals 
power spectra. The spectra are generally unknown and have to be estimated in advance. 
An implementation of the time delay estimation via the adaptive least mean squares is 
analogous to estimating the Roth generalized cross-correlation weighting function. The 
estimated parameters using the adaptive filter have a smaller variance, because it avoids 
the need for the spectrum estimation. In the following, we discuss proportionate and 
partial-update adaptive techniques and consider their performance in term of delay 
estimation. 
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Time delay estimation (TDE) has always been and remains a popular research topic. It is 
known, that the main problem associated with IP-based networks is the round-trip delay, 
which can never be reduced below its fundamental limit. A number of efforts were made in 
order to improve the TDE precision. Various methods based on the Generalized Cross-
Correlation (GCC) were proposed. The GCC algorithms arrange a pre-filter to obtain the 
modified signal spectrum for optimal time delay estimation. To specify the filter’s 
characteristic, it requires a priori knowledge of the statistics of the received signals. 
However, the efficiency of the algorithms decreases considerably when little or no prior 
knowledge about the signal statistics is known. From the time when Widrow proposed an 
adaptive filtering technique based on Least Mean Squares (LMS) (Widrow, 2005; Haykin, 
2001), an adaptive theory also found an application to delay estimation. An adaptive 
implementation of the time delay estimation via Widrow’s LMS algorithm is usually 
referred to as TDLMS. Comparing to the GCC algorithms, the adaptive filtering techniques 
do not require a priori information of the signal statistics, because the estimation of the 
signal spectrum is no longer needed. The adaptive filtering algorithms determine the time 
delay in an iterative manner. There are comparative studies, which provide comparison of 
the LMS versus the generalized cross-correlation (Zetterberg et al., 2005). Generally, the time 
domain implementation of any adaptive filter is associated with high computational 
complexity. It directly depends on the length of the adaptive filter. In order to reduce the 
computational load of the TDLMS (Emadzadeh et al., 2008), we offer using adaptive filtering 
algorithms with reduced computational complexity. They provide savings comparing to the 
conventional adaptive algorithms. In the following, we discuss each of the algorithms in 
greater details. First, a general scenario for the adaptive time delay estimation using a 
simple Normalized Least Mean Squares (NLMS) adaptive filtering algorithm is presented. 
Afterwards, we introduce the proportionate and partial-updated algorithms proceeding in 
the time domain. A new partial-updated proportionate NLMS algorithm is outlined. A 
comparison between the TDE algorithms is made in context of the network echo delay 
estimation. 

3.1 General scenario of delay estimation using adaptive filters 
Traditionally, the NLMS algorithm is used for the echo canceller implementation. It applies 
a Finite Impulse Response (FIR) adaptive filter with adjustable weights for modelling the 
unknown echo path’s impulse response. The NLMS algorithm minimizes the least mean 
squares difference between two signals: the reference incoming signal and the filtered 
original (outgoing) signal (see Fig. 7). 
 

 

Fig. 7. Time delay estimation using adaptive filter 
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Basically, the NLMS algorithm is a simple extension of the Widrow’s LMS algorithm. 
According to Fig. 7, the adaptive filter weights are tuned iteratively using a special rule. The 
important parameter controlling the whole adaptation process is referred to as a step-size 
parameter. It should be varied in time in order the algorithm to be able to track non-
stationary changes in the echo path’s impulse response. Unlike the LMS algorithm, the 
NLMS algorithm’s step-size is adjusted according to the instantaneous short-time energy of 
the input signal. The adaptive filtering process using the NLMS algorithm can be described 
by the following set of equations 

            0

1
1

T
n n e n n

n n
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
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x x
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where w is a vector containing L coefficients of the adaptive filter; x is a vector consisting of 
L samples of the input signal x(n); e(n) is a difference between the reference signal, y(n), and 
the adaptive filter output during the nth iteration; Ǎ0 is the fixed NLMS step-size parameter 
from the interval (0;1). Fig. 8 illustrates the basic principle of the NLMS adaptive algorithm. 
While the signal x(n) corresponding to the outgoing voice signal (that notation is used in the 
previous section) is referred to as the far-end signal, the signal y(n) corresponding to the 
incoming voice signal is referred to as the near-end signal. Basically, the near-end signal y(n) 
is the delayed and attenuated version of the far-end signal x(n). 
 

 

Fig. 8. Principle of the normalized least mean squares algorithm 
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3.2 Time-domain adaptive algorithms 
Knowing the adaptive theory, it is trivial that the delay estimation can be achieved by 
selecting the largest value from the adaptive filter weights vector, w. There is only one issue 
that has to be taken into account. The adaptive filter needs some time in order to converge to 
the optimal performance. The existing adaptive algorithms differ from each other with 
different convergence properties and computational memory requirements. The robust fast 
converging algorithms are primarily used in the acoustical echo cancellation applications. 
They take a lot of computational resources. In our case, it is not necessary to apply the 
complex algorithms, because the adaptive filter is not directly used for the purpose of echo 
cancellation, but for the delay estimation. Therefore, the reduced complexity adaptive 
filtering algorithms became the subject of our interest. 

3.2.1 Proportionate adaptive filtering algorithms 
In the following, we provide a reader along with a principal of the proportionate adaptive 
technique. The proportionate normalized least mean squares (PNLMS) algorithm proposed 
in (Duttweiler, 2000) has been developed for use especially in the telephone network 
environment. For hybrid echo cancellers, it is reasonable to assume that the echo path has a 
sparse character (i.e., many IR’s (Impulse Response) coefficients are close to zero). Although 
there are studies and research on the multiple reflection echo paths, a typical echo path 
impulse response in the practical communication networks has only one reflection, which 
means all the active coefficients are occupied in a continuous area of the whole echo span. 
Therefore, we do not need to update all the filter weights to achieve a nominal performance. 
One can adjust and operate only with non-zero active coefficients. Basically, this is a main 
idea behind the PNLMS algorithm and other subsequently derived proportionate adaptive 
filters (Hongyang & Doroslovacki, 2006; Paleologu et al., 2006). Proportionate approaches 
achieve their higher convergence rate by using the fact that the active part of network echo 
path is usually much smaller (4-8ms) compared to 64-128 ms of the whole echo path that has 
to be covered by the adaptive filter. In case of voice transmission over the packet-switching 
network, these numbers may be more considerable. In the PNLMS algorithm, the adaptive 
step-size parameters are assigned to all the filter coefficients. They are calculated from the 
last estimate of the filter weights in such a way that a larger coefficient receives a larger 
increment. As a result, the convergence rate can be increased the fact that the active taps are 
adjusted faster than non-active coefficients. Therefore for the sparse IR, the PNLMS 
algorithm converges much faster comparing to the NLMS. This feature is an advantage 
especially when it is necessary to estimate the long echo delays. The PNLMS algorithm can 
be described using the following equations: 

                0

1
1 1

1T
n n n e n n

n n n
      

  
w w G x

x G x
 (15) 

       0 1
1 1 , . . . , 1

L
n diag g n g n   G  (16) 

where G(n-1) is a diagonal matrix adjusting the step-size parameters, Ǎ0 is an overall step-
size parameter. The diagonal elements of G(n) are estimated as follows: 

         0 1
max max , , . . . , ,

l p L l
n w n w n w n   

     (17) 

www.intechopen.com



 
Perceptual Echo Control and Delay Estimation 

 

99 

    
 1

0

l

l L

ii

n
g n

n











, 0 1l L    (18) 

Parameters ǅp and ρ are positive numbers with typical values for ǅp = 0.01 and for ρ = 5/L. 

The first term in (17), ρ, prevents wl(n) from stalling when it is much smaller than the largest 

coefficient and ǅp regularizes the updating when all coefficients have zero values at 

initialization. In spite of the sparse system identification, which is a vital requirement for the 

fast converging adaptive filters, there is another requirement. It is directly addressed to the 

adaptive filter implementation. The algorithm should have reasonable power concerns. 

Unfortunately, the PNLMS algorithm has drawbacks. One of them is an increase in the 

computational complexity by 50% compared to the NLMS algorithm. Furthermore, the 

PNLMS algorithm shows the slow convergence rate after the fast initial start. It is because of 

the slow convergence rate dedicated to the small coefficients (Gay, 1998). The increased 

computational complexity can be reduced by the way of selective partial-updating. In turn, 

the slow convergence of the PNLMS in the stable state can be improved by switching from 

the PNLMS to NLMS equations after the fast initial convergence has been achieved (Benesty 

& Gay, 2002). Recently researchers proposed the partial-update techniques for using along 

with the adaptive algorithms. The partial-update algorithms reduce computational 

complexity by updating only a subset of the filter weights per iteration. They can be relevant 

for applications requiring fast real-time processing. Unfortunately, there is another side to 

the coin. The fewer coefficients you are going to update per iteration, there is more 

misalignment presented in the algorithm. Therefore, a certain trade-off should be made 

when selecting the number of coefficients to update. The following subsection presents 

several partial-update algorithms along with the proposed modification of the partial-

update PNLMS algorithm. 

3.2.2 Partial-update adaptive filtering algorithms 
The partial-update algorithms can be seen to exploit the sparseness of the echo path in 

two different ways. It is known that when the unknown system’s impulse response is 

sparse, many of the adaptive filter’s weights can be approximated to zero. Alternatively, 

the sparseness may be present in the weight update vector as a consequence of the 

distribution of the input samples in the (Lx1) input vector, xn=[x(n), x(n-1), …, x(n-L+1)]T. 

In both these cases, exploiting the sparseness properties can reduce complexity and 

improve performance of the adaptive algorithm (Fevrier & Gelfand, 1999). Some of the 

first work on the partial-update algorithms was done by Douglas (Douglas, 1997). It 

presents the periodic and the sequential updating schemes for the Max-NLMS algorithm. 

However, these partial-update algorithms show slow convergence 2properties compared 

to the full-update algorithms. The reason is inconsistent updating schemes. More recently, 

the partial-updating concept was developed by Aboulnasr (Aboulnasr, 1999). It leads to 

the M-Max NLMS algorithm and supporting convergence analysis (Aboulnasr & Mayyas, 

1998). Another block-updating scheme for the NLMS algorithm was studied by Schertler 

(Schertler, 1998). The latter work was published by Dogancay and Tanrikulu. They 

consider approaches for more robust Affine Projection Algorithm (APA) (Dogancay & 

Tarinkulu, 2001, 2002). Further, we give a summary of the general partial-update 

algorithms along with the proposed one. 
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M-Max NLMS 

The algorithm selects a specified number of the coefficients providing the largest reduction 
in the mean squared error per iteration (Naylor & Sherliker, 2003). Only M out of the total L 
filter coefficients are updated. Those M coefficients are the ones associated with the M 
largest values within the following vector |x(n - i + 1)|; i = 1; . . .; L. The update equations 
for this algorithm are 

            0

1
1

i i iT
n n e n n

n n
    


w w x

x x
 (19) 
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, 0

0, otherwise
i

i M x n i
w n i L

     


 (20) 

One of the features of the M-MAX-NLMS algorithm is that it reduces the complexity of the 
adaptive filter by selectively updating the coefficients while maintaining the closest 
performance to the full-update NLMS algorithm. We present misalignment curves for the 
algorithm in the up-following section. The misalignment value was calculated using the 
equation formula 
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 (21) 

Here, wj is the j-th coefficient of the adaptive filter, while hj is the j-th coefficient of the 
simulated echo path’s IR. 

Selective-partial-update NLMS 

This algorithm opposed to the M-Max NLMS has a block structure. An objective behind the 
latter is the same: it reduces computational costs by updating a subset of the filter 
coefficients. But first, the vector x(n) and the coefficient vector w(n) are arranged into K 
blocks of length M = L/K, where L is an integer as in 

        1 2
...

T
T T T

K
n n n n   x x x x  (22) 

        1 2
...

T
T T T

K
n n n n   w w w w  (23) 

The coefficient vector’s blocks w1(n), w2(n),…,wK(n) represent candidate subsets that can be 
updated during the current iteration. For a single-block updating scheme, the constrained 
minimization problem, which is solved by the NLMS algorithm, can be written as 

    
 

   2 0

1
1

i i i

i

n n e n n
n

    w w x
x

 (24) 

The selection of the block that has to be updated is made by determining the block with the 
smallest squared-Euclidian-norm update. According to Eq. (24), that justification can be 
described by the following terms 
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    
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1 1

arg 1 arg
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   

 x x  (25) 

Generalization from the single-block to the multiple-block updating scheme is done through 
the following. Suppose that only the B (B<K) blocks with the largest magnitudes are selected 
to be updated. Let a vector IB = {i1, i2,…, iB} denote the subset of B blocks out of {1, 2, …, K} to 
be updated. Thus, the equation for the B-block updating scheme is 

    
 

   2 0

1
1

I I I

I

B B B

B

n n e n n
n

    w w x
x

 (26) 

where xIB and wIB are defined as follows 
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T
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The computational and memory requirements of the selective-partial-update NLMS 
algorithm are almost identical to those of the selective-block-update algorithm proposed in 
(Aboulnasr & Mayyas, 1998). Nevertheless, simulation results illustrated in the next section 
shows that this approach does not lead to the reasonable trade-off between performance and 
simplicity. The algorithm’s efficiency is weaker than the one of the M-Max NLMS algorithm. 
As an alternative approach, a sparse-partial-update NLMS algorithm applies more relevant 
selection criterion. 

Sparse-partial-update NLMS 

This algorithm utilize a so-called sparse-partial (SP) weight selection criterion (Jinhong & 
Doroslovacki, 2008). The adaptive filter weights are updated based on the largest product of 
the multiplication of x(n) and w(n). The SP-NLMS single-block update equations are given 
by 
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Hongyang and Dyba recently suggested a generalization for updating B blocks out of K, i.e. 
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: is one of the largest among , ... ,T T

B i i i iB B
i B n n n n  I w x w x  (32) 

Simple-partial-update PNLMS 

This proposed algorithm exploits the sparseness of the communication channel to speed up 
the initial convergence and employs the partially updating scheme to reduce the 
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computational complexity. A selection procedure is performed in accordance with the 
estimated magnitude of the channel’s impulse response. The S-PNLMS algorithm for single 
-block update is defined as follows. Arrange x(n) and w(n) into K blocks of length M = L/K 
in the same way as it is done in Eq. (22, 23). Then let Gi(n) denote the corresponding MxM 
block of the diagonal weighing matrix, G(n). The recursion for updating adaptive filter 
weights is given by 

                0

1
1 1

1
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n n n e n n
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where the block selection is done according to the following 

  min
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It is different to 

  min

1
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j j j

j M

i n
 

  x G x  (35) 

which is used with the SPU-PNLMS algorithm. It is apparently from the simulations that the 
S-PNLMS has similar performance to the SP-NLMS and outperforms the SPU-PNLMS 
algorithm. The S-PNLMS for updating B blocks out of M has these update equations 
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B i M
i n B n nI G G G  (37) 

Further, we provide the comparison results for the presented algorithms and demonstrate 
their performance while estimating the predefined echo delay. Table 5 illustrates the 
computational complexity of the full-update algorithms and shows saving achieved by the 
partially updating schemes. 
 

ALG. MULT. ADD. DIV. 

NLMS 3L+1 3L-1 1 

M-Max-NLMS 3M+1 3M-1 1 

SPU-NLMS 3M*B+1 3M*B -1 1 

SP-NLMS 3M*B +1 3M*B -1 1 

PNLMS 6L+1 4L-2 L+1 

M-Max-PNLMS 6M +1 4M -2 M +1 

SPU-PNLMS 6M*B +1 4M*B -2 M*B +1 

SP-PNLMS 6M*B +1 4M*B -2 M*B +1 

S-PNLMS 6M*B +1 4M*B -2 M*B +1 

Table 5. Comparison of computational complexity 
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3.3 Discussion over experimental results 
To evaluate the performance of the adaptive filtering algorithms, we implemented them in 

MATLAB environment. The working scenario is as follows. The filters have to estimate the 

predefined echo path’s impulse responses specified in the ITU-T Recommendation G.168 

(ITU-T G.168, 2002). They consist of 1024 taps. The overall step-size parameter, Ǎ0, is chosen 

to be 0.1. The control parameters ρ and ǅp are chosen to be 0.001 and 0.01 respectively. In the 

first part of the experiment, we look at the misalignment curves of the M-Max-, SPU-, SP- 

and S-PNLMS algorithms. They are illustrated in Fig. 9 below. The SPU-updating scheme 

produces the worst results. The proposed S-criterion considerably outperforms it especially 

in terms of the initial convergence speed. The rest of the algorithms have nearly the same 

convergence and tracking performance. 

 

 

(a) Max-PNLMS algorithm 

 

(b) SPU-PNLMS algorithm 
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(c) SP-PNLMS algorithm 

 

(d) S-PNLMS algorithm 

Fig. 9. Misalignment curves of the partial-update algorithms 

All the algorithms, except the M-Max-PNLMS, show poor results when the M value equals 
64. It can be explained by the fact that the active part of the IR is approximately 16ms long. 
This value corresponds to 128 samples for sampling frequency of 8kHz, therefore, 64 
samples are not enough to cover the active region completely. Regarding to the dissimilar 
selection criterion, the M-Max-PNLMS algorithm can deal relatively well with that problem. 
The Max-updating formula does not count with the sparse character of the IR. It performs 
selection according to the distribution of the values of the input vector. Otherwise, its 
drawback is lower initial convergence speed comparing to the SP-PNLMS algorithm. The 
second part of our experiment concerns the performance of the adaptive algorithms versus 
the ones based on the generalized cross-correlation function. They are compared in the 
context of the time delay estimation. The time difference between time when the outgoing 
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signal leaves the voice terminal and the moment when the incoming signal containing the 
echo of the original signal arrives back from the network is referred to as a true echo delay. 
Table 6 concludes the results for the AF and GCC algorithms for different delay values. 
Fig. 10 shows the estimated echo delay diagram for the echo path that has a 60 ms pure 
delay. It can be observed that the outputs from the adaptive filter in the steady state have 
much smaller variance than the results obtained from the algorithm based on the 
generalized cross-correlation function.  
 

 

(a) TDE using S-PNLMS algorithm 

 

(b) TDE using S-PNLMS algorithm 

Fig. 10. Estimated echo delay curves 
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[ms] ROTH SCOT CPS-2 HB M-Max SPU SP S samples 

5 5,1 5,2 5,2 5,2 5,1 5,1 5,0 5,0 40 

10 10,3 10,3 10,3 10,4 10,3 10,3 10,4 10,1 80 

20 19,6 19,7 20,0 20,0 20,5 20,5 20,1 20,3 160 

30 29,3 29,6 30,1 30,0 30,8 30,8 30,1 30,2 240 

50 49,0 49,7 49,4 49,8 51,3 51,3 50,3 50,1 400 

100 98,1 99,4 98,8 99,6 102,5 102,5 100,5 100,6 800 

200 196,2 198,8 197,6 199,1 205,1 205,1 201,3 201,2 1600 

300 294,2 298,1 296,4 298,7 307,6 307,6 301,8 301,9 2400 

Table 6. Mean values of estimated echo delays 

4. Partial, proportionate and sparse control for multi-delay filters 

Taking into the account the fact that the generalized cross-correlation algorithms operate in 
the frequency domain and use advantages of the fast Fourier transform, reasonable 
computational savings for adaptive filtering algorithms can be achieved as well. The basic 
operation underlying frequency domain adaptive filters is the transformation of the input 
signal into a more desirable wave form before its adaptive processing. This is accomplished 
by the Discrete Fourier Transform (DFT) whereby the input signal is transformed to the 
frequency domain as shown in Fig. 11. 
 

 

Fig. 11. Frequency domain adaptive filter configuration 

Frequency Domain (FD) adaptive filters have primarily two advantages compared to time 
domain implementations (Dohnal, 1995). The first advantage is the potentially large savings 
in the computational complexity. The Fast Fourier Transform (FFT) is an efficient 
implementation of the DFT, which provides these savings. A second advantage is that the 
DFT structures generate signals that are approximately uncorrelated (orthogonal) (Shynk, 
1992). As a result, a time-varying step-size parameter is used for each adaptive weight, 
thereby allowing a more uniform convergence rate across the adaptive filter. Thus, the 
overall convergence rate of the algorithm may be improved, sometimes approaching that 
achievable with Recursive Least Squares (RLS) algorithms without a similar increase in the 
computational complexity (Widrow & Stearns, 1985). Many other attractive features and 
variation of the FD adaptive filters can be found in the literature (Khong et al., 2007). 

www.intechopen.com



 
Perceptual Echo Control and Delay Estimation 

 

107 

4.1 Sparse partial-update proportionate multi-delay filter 
The multi-delay frequency domain adaptation algorithm generates its individual step-size 
control factors that are mutually orthogonal. This advantage put the Multi-Delay block 
Frequency domain (MDF) algorithm closer to the analytical RLS algorithm. It differs from 
the algorithms processing in the time domain with better convergence properties and lower 
computational complexity. The MDF algorithm decreases the processing delay associated 
with frequency domain adaptive filters. The delay value is directly proportional to the 
number of the filter coefficients. The multi-delay approach solves this problem by 
partitioning the time-domain filter of length L into K sub-filters each of length N with L=KN. 
Consequently, the delay value is reduced by a factor of L/N compared to the full length 
approach. The diagram of the MDF algorithm is shown in Fig. 12. This algorithm uses the 
FFT of size NFFT. It equals to the smallest power of two integers larger than or equal to 
2L/K=2KN/K=2N. The MDF algorithm works as follows. Let us first define m, as the frame 
index. The speech signals are operated on the frame-by-frame basis. 
The first step of the MDF algorithm is to convert the most recent overlapped input samples 

to the frequency domain as follows 

               0 1 1 0 1 1
, 1 , 1 , ... , 1 , , , ... ,

T

f N N
K m diag FFT x m x m x m x m x m x m       X (38) 

The input vectors incoming to each of the sub-filter blocks can be obtained via the frame 
index shifting without invoking any computation as follows: 
 

 

Fig. 12. Block diagram of the MDF algorithm 
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    , 1, 1 , 1, ... , 1
f f

k m k m k K    X X  (39) 

The described approach suggests that only one FFT is needed per frame iteration in order to 
transform the input vector into the frequency domain. It implies a significant computation 
saving. The output and the error frequency-domain vectors can be expressed and calculated as 

      1
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E y d 
 (41) 

where Wf(k,m) is the kth coefficient vector and d(m) is the desired vector. The coefficient 
update equations to minimize the Mean Square Error (MSE) are the following 

         1
1, first half of ,

t f MDF f
k m FFT k m S m m

         Ǘ X E  (42) 

          1 1 , ,
MDF MDF f f

S m S m k m k m  
      X X  (43) 

    
zeros

, , , 0, 0, ... , 0

T

f t

N

k m FFT k m
 
 
  

Φ Ǘ   (44) 

      , 1 , ,
f f k f

k m k m K k m    W W Φ  (45) 

where k=1,2,…, K and μk is the block step-size control parameter, 0<<ǌ<1 is the forgetting 
factor. Further, we examine how the partial update technique may be incorporated into the 
MDF algorithm. For frequency-domain selection, the known approach is to select frequency 
bins corresponding to the largest magnitude Fourier transform of the tap-input over all the 
sub-filter blocks k=1,2,…, K (Khong et al,2008). However, the selection is better to perform 
on the coefficient-block basis (Deng & Dyba, 2008). It is faster and takes less computation 
power. Therefore, first we need to calculate metrics for each of the sub-filter in order to 
perform selection procedure. The number of metrics equals the number of sub-filter blocks 
K. One particular frequency-domain metric, Qk, may, for example, represent the sum of the 
frequency bins in the corresponding sub-filter block 

    
2

1

, ,
N

f f j
j

k m X k m


Q  (46) 

There is a little bit different selection approach, which shows better convergence 
performance compared to the last one. Define the 2L x 1 vector ǘ(m), which consists of the 
concatenated Fourier transform of the input signal across all sub-filters, as 

        1 2
( ) 0, , . . . , 1, , . . . ,

TT T

f f L
m m K m m m        ǘ X X  (47) 

Each element in the 2L x 2L diagonal selection matrix P(m) 
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    1, max , 0, . . . , 2 1

0,

f l

l

if l corresponds to M ima of m l L
p m

otherwise

   


 (48) 

The tap-selection routine is done by multiplying this matrix with the corresponding input in 
every kth sub-filter, as it is shown below 

      , ,
f k f

k m P m k m X X  (49) 

Otherwise, if it is supposed that the algorithm models a sparse network impulse response, 
the sparse partial updating scheme should be involved. The control metrics are calculated as 
follows (k=1,2,…, K) 

      , , ,
f f f

k m k m k m


 Q X W  (50) 

Here, we suggest using a new type of metric, in order to choose sub-filter blocks for 
updating. Note, that it should be calculated in the time-domain as follows 

  
 

  
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i
i

t L
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j
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k m

L w m 










 




Q  (51) 

We have to remember that the minimum number, M, of the sub-filter blocks to be updated 

must equal or be greater than two (2≤M<K). This is because the pure delay of the echo 
path is never known. Thus, if only one sub-filter is chosen, it can not cover all the 
possibilities of the variation of echo path. Another important question for frequency 
domain adaptive filters is the FFT length? – From our point of view, it is reasonable using 

the FFT of 256 samples long. This is an optimal length, which can provide satisfactory 
results for the high range of MDF algorithms. We have tried to apply different values, but 
they did not bring sufficient improvements. For example, if the echo path consists of 1024 

taps, the adaptive filter should be divided in 1024/(256/2) sub-filters. The number K of sub-
filters will equal 8.  
Before we present a proposed frequency domain algorithm, let us resume the following. The 
partial update frequency-domain algorithms may use the values of the calculated block 
metrics as selection criteria. Each type of metrics has its own features. In case of (13, 18, 19), 
only K (K<<2L) metrics are sorted in order to select M (2≤M<K) active subfilters. Since K is a 
small number compared to the entire number 2L of subfilters coefficients in (14, 15, 16, 
17), the sorting overhead may be reduced by factor 2L/N. We have spoken about the 
features of sparse echo paths and the possibility of improving their convergence rate by 
assigning the individual step-size parameters proportionally to the coefficient 
magnitudes. In the art, there is a big family of various MDF algorithms. Researchers are 
trying to improve algorithms performance from one hand and to reach computational 
savings from the other hand. Further we present our approach how to deal with this 
contradictory problem. First, we describe the basic idea of sparseness measure, and show 
how to incorporate it into the MDF framework. The concept of sparseness refers to a 
representational scheme where only a few units (out of a large massive) are effectively 
used to represent typical data vectors. In effect, this implies most units taking values close 
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to zero while only few take significantly non-zero values. Numerous sparseness measures 
have been proposed and used in the literature to date (Benesty et al, 2006). Such measures 
quantify how much energy of a vector is packed into only a few components. On a 
normalized scale, the sparsest possible vector (only a single component is non-zero) 
should have a sparseness of one, whereas a vector with all elements equal should have a 
sparseness of zero. In our approach, we use s sparseness measure based on the 
relationship between the L1 norm and the L2 norm: 

  
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 

 
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01

1 2
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1 1
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j

w mw m
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L w m
L w m
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







   
 

 




 (52) 

Here, L is the length of the adaptive filter in the time domain. This function evaluates to 

unity if and only if w contains only a single non-zero component, and takes a value of zero if 

and only of all components are equal (up to signs), interpolating smoothly between the two 

extremes. We use this sparseness measure ξ of the time domain estimated filter coefficients 

to adaptively control the number of taps that need to be updated 

   1
t

M L m    (53) 

Note that the total number of corresponding frequency domain coefficients is 2L for an L-
long time domain adaptive filter, therefore 

   2 2 1
f t

M M L m       (54) 

If selection is performed on the block-based basis, then the corresponding number of sub-

filters in frequency domain equals 

 
      2 1

1
2

L m
M round round K m

N




        
  

 (55) 

Fig. 13 shows sparseness measure for sparse and dispersive impulse responses. It is also 

shown the number of adaptive filter coefficients that should be updated, if partial updating 

scheme is considered. 

The convergence process, by itself, can be divided into two stages, i.e. before and after the 

convergence of the impulse response (or some time, before and after the convergence of the 

considerable/large coefficients). It has been showed in the time domain adaptive filtering 

that it is better using PNLMS/IPNLMS at the initial stage for fast convergence, and 

afterwards switching to NLMS for assuring better misalignment. Here, for recognizing 

between two stages in adaptation process, we propose to use the following parameter 
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1 2
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10 log

0,001
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w m
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 (56) 
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Fig. 13. Sparseness measure and its impaction on length of adaptive filter 

The quantity in Eq. (56) represents an energy measure in [dBm] within an estimated impulse 
response. Fig. 14 demonstrates the curve for this parameter for two frequency domain 
algorithms. It can be observed that after 0.5 seconds estimation of IR energy measure for 
IPMDF stops fluctuating. Consequently, this fact can be used for switching between 
different adaptation schemes.  
 

 

Fig. 14. Estimated misalignment and energy measure for MDF and IPMDF algorithms 
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Before representing the proposed MDF scheme, declare the following statements: 
I. Utilization of sparseness measure, 0<ξ(m)<1 (for real IR) 

a. ξ(m)<0.7 
i. IR is considered dispersive 
ii. Mt = L, if fully updated scheme is chosen (mostly during initial period) 
iii. L/K ≤ Mt < L, if partial updated scheme is chosen 

b. ξ(m)≥0.7 
i. IR is considered sparse 
ii. Mt = L.(1- ξ(m)) 

II. Utilized updating schemas 
a. non-partial 
b. ǘ – based selection (coefficient-based), 2L-vector 
c. μ  - based selection (block-based), K-vector 

III. Utilization of IR energy measure, η 
a. |η(m) - η(m-1)| ≤ Δη, switching to the MDF algorithm 
b. |η(m) - η(m-1)| > Δη, switching to the IPMDF (SC-IPMDF) algorithm 

Finally, our proposed algorithm can be described as: 

1st stage: |η(m) - η(m-1)| ≤ Δη 
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4.2 Discussion over experimental results 
To compare the performance of the proposed algorithm with reference MDF, IPMDF, SC-

IPMDF adaptive filtering algorithms, we implement all four adaptive filters in MATLAB 

environment. These MDF-based filters estimate the impulse response of the predefined echo 

paths, which are specified by the ITU-T Recommendation (ITU-T G.168, 2002). The tested 

impulse responses are 1024 taps long. All experiments are performed using pre-recorded 

real speech signals. The number K of sub-filters equals 8. The following values for control 

parameters are used: Ǎinitial  = 0.1, αinitial = -0.75, ǆ = 10-3, Δη = 0.05 dBm, Tη = 8. The 
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performance of each algorithm is studied using the normalized misalignment parameter, 

which can be estimated as follows 
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2

10 log [ ]
m

MIS in dB
 
    
 

h w

h
 (57) 

where h is a true impulse response of length L. Another criterion is Echo Return Loss 
Enhancement (ERLE), which is used in real-life environment to evaluate performance 
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where y(m) is a desired signal (echo) and d(m) is adaptive filter’s output. Note that any 
reliable adaptive filter with disabled residual echo suppressor has to achieve ERLE of -15dB 
within 1 second after starting convergence process (ITU-T G.131, 2003). Fig. 15, 16, 17 
illustrate an application of μ-based selection metric. This kind of metric is used for sub-filter 
selection, when estimated sparse measure parameter, ξ, equals or larger than 0.7. This value 
was defined experimentally during multiple trials for numerous types of echo path. We 
suggest using μ-based selection metric as an individual block step-size parameter. It helps 
accelerating a speed of convergence by allocating larger step-size values for currently 
updated sub-filters. If you look at the diagram illustrated in Fig. 17 carefully, you will notice 
that the energy, which is available for adaptation, is concentrated around the sparse region 
of the echo path. Thus, this fact can be used for selecting sub-filters to be updated along with 
setting the step-size parameter for these sub-filters. When estimation of sparse measure, ξ, is 
smaller than 0.7, we suggest switching to the ǘ – based selection metric. 
 

 

Fig. 15. Sparse impulse response and estimated μ-based selection metrics 
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Fig. 16. Dispersive impulse response and estimated μ-based selection metrics 

Fig. 18 demonstrates the normalized misalignment and ERLE parameters obtained for real 
speech signals. The proposed partially updated scheme for MDF shows the similar 
performance comparing to the other three fully updated frequency domain algorithms. 
During our future work we are going to enhance the above described algorithm and 
propose a new class of partial sparse-controlled robust algorithms, which will work reliably, 
even in double-talk situation. We will apply all the knowledge, which were presented 
within this particular chapter. Further to conclude the chapter, let us provide summary of 
material and make several contributions according to the proposed algorithms. 
 

 

Fig. 17. Step-size parameter estimated using μ-based selection metric 
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Fig. 18. Misalignment and ERLE curves 

5. Conclusion 

The first section outlines a basic principle of echo control in packet-based networks. It 
explains why it is so important to provide monitoring during telephone conversations. 
When delivering the VoIP service in the packet-switching network, it is important to have 
the value of the echo delay under control. The increasing transmission delay associated with 
packet data transmission can make a negligible echo more annoying. Therefore, it is 
suggested using the echo assessment algorithm. It is purpose is to add an additional 
attenuation to a particular voice channel (which in terms means to activate an echo 
canceller), so as to remove the unwanted echo in time. In the second section, we consider an 
opportunity of using cross-correlation for estimating echo delays. That section provides 
readers along with up-to-date correlation-based TDE algorithms, which we use to estimate 
the echo path delays. The problem of long delays taken place in the packet-switching 
network is considered as a topic of interest. The experiments show that the algorithms 
precision decreases with increasing transmission delays. The generalized cross-correlation 
algorithms operating in the frequency domain provide more reliable result comparing to the 
standard cross-correlation and normalized cross-correlation algorithms. As an alternative to 
correlation-based methods, techniques, which use adaptive filtering algorithms, can be also 
applied. Therefore, the third section presents numerous partial-update algorithms and their 
application to delay estimation. The echo assessment is based on the reduced complexity 
partial-update adaptive filters. The experiments show a reliable performance of these 
algorithms. However, their precision suffers during the initial stage of convergence. 
According to the ITU-T Recommendation G.168, this period should not last more than one 
second. The Multi-Delay block Frequency domain (MDF) adaptive algorithm can easily 
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outperform all existing time domain algorithms. Moreover, taking into the account the fact 
that the generalized cross-correlation algorithms operate in the frequency domain and use 
advantages of the fast Fourier transform, further computational savings for the adaptive 
filters are achieved in the frequency domain. Therefore, the fourth section deals with partial, 
proportionate, and sparse-controlled adaptive filtering algorithms working in the frequency 
domain. What we claimed, within this section, is: a new metric for performing partial 
updating; a new approach for designating transitions between MDF and IPMDF-based 
updating schemas; a method for estimating step-size control parameter; a new partially 
updated sparseness-controlled improved proportionate multi-delay filter; all the approaches 
are suitable for implementation whether in time or frequency domains. The proposed 
algorithm has both a performance compared to the IPMDF and SC-MDF algorithms and 
reduced computational complexity along with the adjustable step-size parameter. Although 
the preferred embodiments of the proposed algorithm have been described, it will be 
understood by those skilled in the art that various changes may be made thereto without 
departing from the main scope of the invention or the appended claims. 
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