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1. Introduction 

Present day methodologies for mathematical simulation and computational experiment are 

generally implemented in electromagnetics through the solution of boundary-value 

(frequency domain) problems and initial boundary-value (time domain) problems for 

Maxwell’s equations. Most of the results of this theory concerning open resonators have 

been obtained by the frequency-domain methods. At the same time, a rich variety of applied 

problems (analysis of complex electrodynamic structures for the devices of vacuum and 

solid-state electronics, model synthesis of open dispersive structures for resonant quasi-

optics, antenna engineering, and high-power electronics, etc.) can be efficiently solved with 

the help of more universal time-domain algorithms. 

The fact that frequency domain approaches are somewhat limited in such problems is the 

motivation for this study. Moreover, presently known remedies to the various theoretical 

difficulties in the theory of non-stationary electromagnetic fields are not always 

satisfactory for practitioners. Such remedies affect the quality of some model problems 

and limit the capability of time-domain methods for studying transient and stationary 

processes. One such difficulty is the appropriate and efficient truncation of the 

computational domain in so-called open problems, i.e. problems where the computational 

domain is infinite along one or more spatial coordinates. Also, a number of questions 

occur when solving far-field problems, and problems involving extended sources or 

sources located in the far-zone. 

In the present work, we address these difficulties for the case of 0TE n - and 0TM n -waves in 

axially-symmetrical open compact resonators with waveguide feed lines. Sections 2 and 3 

are devoted to problem definition. In Sections 4 and 5, we derive exact absorbing conditions 

for outgoing pulsed waves that enable the replacement of an open problem with an 

equivalent closed one. In Section 6, we obtain the analytical representation for operators that 

link the near- and far-field impulsive fields for compact axially-symmetrical structures and 

consider solutions that allow the use of extended or distant sources. In Section 7, we place 

some accessory results required for numerical implementation of the approach under 
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consideration. All analytical results are presented in a form that is suitable for using in the 

finite-difference method on a finite-sized grid and thus is amenable for software 

implementation. We develop here the approach initiated in the works by Maikov et 

al. (1986) and Sirenko et al. (2007) and based on the construction of the exact conditions 

allowing one to reduce an open problem to an equivalent closed one with a bounded 

domain of analysis. The derived closed problem can then be solved numerically using the 

standard finite-difference method (Taflove & Hagness, 2000). 
In contrast to other well-known approximate methods involving truncation of the 
computational domain (using, for example, Absorbing Boundary Conditions or Perfectly 
Matched Layers), our constructed solution is exact, and may be computationally 
implemented in a way that avoids the problem of unpredictable behavior of computational 
errors for large observation times. The impact of this approach is most significant in cases of 
resonant wave scattering, where it results in reliable numerical data. 

2. Formulation of the initial boundary-value problem 

In Fig. 1, the cross-section of a model for an open axially-symmetrical ( ∂ ∂φ ≡ 0 ) resonant 

structure is shown, where { }ρ φ, ,z  are cylindrical and { }ρ ϑ φ, ,  are spherical coordinates. By 

[ ]φΣ Σ × π= 0,2  we denote perfectly conducting surfaces obtained by rotating the curve φΣ  

about the z -axis; [ ]ε σ ε σ
φΣ Σ × π, ,

= 0,2  is a similarly defined surface across which the relative  

 

 

Fig. 1. Geometry of the problem in the half-plane 2φ = π . 
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permittivity ( )ε g  and specific conductivity ( ) ( )−σ = η σ1
0 0g g  change step-wise; these 

quantities are piecewise constant inside Ωint  and take free space values outside. Here, 

{ }= ρ,g z ; ( )η = µ ε
1 2

0 0 0  is the impedance of free space; ε0 , and µ0  are the electric and 

magnetic constants of vacuum. 

The two-dimensional initial boundary-value problem describing the pulsed axially-

symmetrical 0TE n - ( ρ φ= = ≡ 0zE E H ) and 0TM n - ( ρ φ= = ≡ 0zH H E ) wave distribution in 

open structures of this kind is given by 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) { }

( )
{ }
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 (1) 

where { }ρ ϕ=


, , zE E E E  and { }ρ ϕ=


, , zH H H H  are the electric and magnetic field vectors; 

( ) ( )φ=, ,U g t E g t  for 0TE n -waves and ( ) ( )φ=, ,U g t H g t  for 0TM n -waves (Sirenko et al., 

2007). The SI system of units is used. The variable t  which being the product of the real time 

by the velocity of light in free space has the dimension of length. The operators 1D , 2D  will 

be described in Section 2 and provide an ideal model for fields emitted and absorbed by the 

waveguides. 

The domain of analysis Ω  is the part of the half-plane φ = π 2  bounded by the contours φΣ  

together with the artificial boundaries Γ j  (input and output ports) in the virtual 

waveguides Ω j , = 1,2j . The regions { }{ }Ω = = ϑ ∈Ω <int , :g r r L  and Ωext  (free space), 

such that Ω =Ω Ω Γ int ext , are separated by the virtual boundary 

{ }{ }Γ = = ϑ ∈Ω =, :g r r L .  

The functions ( ),F g t , ( )ϕ g , ( )ψ g , ( )σ g , and ( )ε − 1g  which are finite in the closure Ω  of 

Ω  are supposed to satisfy the hypotheses of the theorem on the unique solvability of 

problem (1) in the Sobolev space ( )ΩW
1
2

T , ( )Ω =Ω× 0;T T  where < ∞T  is the observation 

time (Ladyzhenskaya, 1985). The ‘current’ and ‘instantaneous’ sources given by the 

functions ( ),F g t  and ( )ϕ g , ( )ψ g  as well as all scattering elements given by the functions 

( )ε g , ( )σ g  and by the contours φΣ  and ε σ
φΣ
,  are located in the region Ωint . In axially-

symmetrical problems, at points g  such that ρ = 0 , only zH  or zE  fields components are 

nonzero. Hence it follows that ( ) =0, , 0U z t ; < ∞z , ≥ 0t  in (1). 

3. Exact absorbing conditions for virtual boundaries in input-output 
waveguides 

Equations 
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 ( ) ( ) ( ) ( )
2

1

1

1 2
0 0 0, , , , , .

i

gg
D U g t U g t D U g t t

∈Γ∈Γ

   − = = ≥  
 (2) 

in (1) give the exact absorbing conditions for the outgoing pulsed waves 
( ) ( ) ( ) ( ) ( )= −1 1, , ,s iU g t U g t U g t  and ( ) ( ) ( )=2 , ,sU g t U g t  traveling into the virtual 

waveguides Ω1  and Ω2 , respectively (Sirenko et al., 2007). ( ) ( )1 ,iU g t  is the pulsed wave 

that excites the axially-symmetrical structure from the circular or coaxial circular waveguide 

Ω1 . It is assumed that by the time = 0t  this wave has not yet reached the boundary Γ1 .  

By using conditions (2), we simplify substantially the model simulating an actual 

electrodynamic structure: the Ω j -domains are excluded from consideration while the 

operators jD  describe wave transformation on the boundaries Γ j  that separate regular 

feeding waveguides from the radiating unit. The operators jD  are constructed such that a 

wave incident on Γ j  from the region Ωint  passes into the virtual domain Ω j  as if into a 

regular waveguide – without deformations or reflections. In other words, it is absorbed 

completely by the boundary Γ j . Therefore, we call the boundary conditions (2) as well as 

the other conditions of this kind ‘exact absorbing conditions’. 

In the book (Sirenko et al., 2007), one can find six possible versions of the operators jD  for 

virtual boundaries in the cross-sections of circular or coaxial-circular waveguides. We pick 

out two of them (one for the nonlocal conditions and one for the local conditions) and, 

taking into consideration the location of the boundaries Γ j  in our problem (in the plane 

= − 1z L  for the boundary Γ1  and in the plane = 2z L  for Γ2 ) as well as the traveling 

direction for the waves outgoing through these boundaries (towards = −∞z  for Γ1  and 

towards = ∞z  for Γ2 ), write (2) in the form: 
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(nonlocal absorbing conditions) and 
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 (6) 

(local absorbing conditions). The initial boundary-value problems involved in (5) and (6) 

with respect to the auxiliary functions ( )ρ ϕ, ,jW t  must be supplemented with the following 

boundary conditions for all times ≥ 0t : 

 

( ) ( ) ( )

( )
( )( )
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 (7) 

(on the boundaries ρ = 0  and ρ = ja  of the region Ω j  for a circular waveguide) and 
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 (8) 

(on the boundaries ρ = jb  and ρ = ja  of the region Ω j  for a coaxial waveguide). 

In (3) to (8) the following designations are used: ( )0J x  is the Bessel function, ja  and jb  are 

the radii of the waveguide Ω j  and of its inner conductor respectively (evidently, ≠ 0jb  if 

only Ω j  is a coaxial waveguide), ( ){ }µ ρnj  and { }λnj  are the sets of transverse functions and 

transverse eigenvalues for the waveguide Ω j .  

Analytical representations for ( )µ ρnj  and λnj  are well-known and for 0TE n -waves take the 

form: 
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For 0TM n -waves we have: 
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Here ( )qN x  are the Neumann functions. The basis functions ( )µ ρnj  satisfy boundary 

conditions at the ends of the appropriate intervals ( ρ < ja  or < ρ <j jb a ) and the following 

equalities hold 

 ( ) ( )
≠

µ ρ µ ρ ρ ρ = 
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
0

0,

1,

ja

nj mj

n m
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n m
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a

nj mj

b

n m
d

n m
 (13) 

in the circular or coaxial waveguide, respectively. 

4. Exact radiation conditions for outgoing spherical waves and exact 
absorbing conditions for the artificial boundary in free space 

When constructing the exact absorbing condition for the wave ( ),U g t  crossing the artificial 

spherical boundary Γ , we will follow the sequence of transformations widely used in the 

theory of hyperbolic equations (e.g., Borisov, 1996) – incomplete separation of variables in 

initial boundary-value problems for telegraph or wave equations, integral transformations 

in the problems for one-dimensional Klein-Gordon equations, solution of the auxiliary 

boundary-value problems for ordinary differential equations, and inverse integral 

transforms. 

In the domain ( )Ω = Ω Ω Γext int\ , where the field ( ),U g t  propagates freely up to infinity 

as →∞t , the 2-D initial boundary-value problem (1) in spherical coordinates takes the form 
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Let us represent the solution ( )ϑ, ,U r t  as ( ) ( ) ( )ϑ = µ ϑ, , ,U r t u r t . Separation of variables in 

(14) results in a homogeneous Sturm-Liouville problem with respect to the function 

( ) ( )µ ϑ = µ ϑ cos  
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( )

2
2

2 2
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1
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d d
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µ ϑ =




 (15) 

and the following initial boundary-value problem for ( ),u r t : 
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 (16) 

Let us solve the Sturm-Liouville problem (15) with respect to ( )µ ϑ cos  and λ . Change of 

variables = ϑcosx , ( ) ( )µ = µ ϑ  cosx  yields the following boundary-value problem for ( )µ x : 

 
( ) ( )
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2 2

2 2
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1 2 0 1
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1 1 0
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d d
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dxdx x
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With ( )λ = λ = +2 2 1n n n  for each = 1,2,3,n  equation (17) has two nontrivial linearly 

independent solutions in the form of the associated Legendre functions ( )1
nP x  and ( )1

nQ x . 

Taking into account the behavior of these functions in the vicinity of their singular points 

= ±1x  (Bateman & Erdelyi, 1953), we obtain 

 ( ) ( ) ( )( ) ( )1
2 1 2 1cos cos .n nn n n Pµ ϑ ϑ= + +  (18) 

Here ( ){ }
=

µ ϑ 


1,2,
cosn n

 is a complete orthonormal (with weight function ϑsin ) system of 

functions in the space ( ) < ϑ < π  L2 0  and provides nontrivial solutions to (15). Therefore, 

the solution of initial boundary-value problem (14) can be represented as 

 ( ) ( ) ( ) ( ) ( ) ( )
1 0

, , , cos , , , , cos sin ,n n n n
n

U r t u r t u r t U r t d
π

ϑ µ ϑ ϑ µ ϑ ϑ ϑ
∞

=

= =    (19) 

where the space-time amplitudes ( ),nu r t  are the solutions to problems (16) for λ = λ2 2
n . 

Our goal now is to derive the exact radiation conditions for space-time amplitudes ( ),nu r t  

of the outgoing wave (19). By defining ( ) ( ), ,n nw r t ru r t=  and taking into account that 

( )λ = +2 1n n n , we rewrite equation (16) as 

 
( )

( )
2 2

2 2 2

1
0 0, , , .n

n n
w r t r L t

t r r

 +∂ ∂
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Now subject it to the integral transform 

 ( ) ( ) ( ) 0, , ,
L

f f r Z r drγω ω ω
∞

= ≥  (21) 

where the kernel ( ) ( ) ( ) ( ) ( )γ γ γ ω = α ω ω +β ω ω , aZ r r J r N r  satisfies the equation (Korn & 

Korn, 1961) 

 ( )
2 2 2

2

2 2

1 2
0, .

a a
Z r

r rr r
γ

γ
ω ω

 ∂ − ∂ −
+ + + = 

∂∂  
 (22) 

Here ( ) ( )α ω β ω,  are arbitrary functions independent of r , and a  is a fixed real constant. 

Applying to (20) the transform (21) with = 1 2a  and γ = + 1 2n , we arrive at 

 ( ) ( ) ( )
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( )2

2

2
0

,,
, , , , .n

n n

L L L

Z rw r t
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  (23) 

 

Since the ‘signal’ ( ),nw r t  propagates with a finite velocity, for any t  we can always point a 

distance r  such that the signal has not yet reached it, that is, for these t  and r  we have 

( ), 0nw r t ≡ . Then we can rewrite equation (23) in the form 

 ( ) ( ) ( )
( )

( )
( )2

2

2
0

,,
, , , , .n

n n

L r L r L

Z rw r t
w r t Z r dr Z L w L t

r rt

γ
γ γ

ω
ω ω ω

∞

= =

  ∂∂∂
− − − + = 

∂ ∂∂  
  (24) 

From (24) the simple differential equation for the transforms ( ),nw tω  of the functions 

( ),nw r t  follows: 

 ( ) ( )
( )

( )
( )2

2

2

, ,
, , , .n

n n

r Lr L

Z r w r t
w t w L t Z L

r rt

γ
γ

ω
ω ω ω

==

  ∂ ∂∂
+ = − 

∂ ∂∂  
  (25) 

 

In this equation, the values ( )α ω  and ( )β ω  entering into ( )γ ω,Z r  are not defined yet. With 

( )α ω = 1  and ( )β ω = 0 , we have 

 ( ) ( )γ γω = ω,Z r rJ r  (26) 

and 

 ( ) ( ) ( ) .
L

f f r r J r drγω ω
∞

=   (27) 

The last integral is the Hankel transform (Korn & Korn, 1961), which is inverse to itself, 

and 
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

∞

γ

∞

γ

ω ω = χ − ω ω  

 χ − = ω ω ω ω ω 









0

0

,

.

f f r r L r J r dr

f r r L f r J r d

 (28) 

By χ  we denote the Heaviside step-function  

 ( )
0 0

1 0

 for 
.

 for 

r
r

r
χ

<
= 

≥
 (29) 

Taking into account (26), equation (25) can be rewritten in the form 

 ( ) ( )
2

2

2
, , ,nw t g t

t
ω ω ω

 ∂
+ = 

∂  
  (30) 

where  

 ( ) ( ) ( ) ( ) ( )
( )1

2

,
, , ,n

n

r L

w r t
g t w L t J L LJ L LJ L

rL
γ γ γω ω ω ω ω

=

∂ ′= + −  ∂ 
 (31) 

and the symbol ‘ ′ ’ denotes derivatives with respect to the whole argument ωL . 

If G  is a fundamental solution of the operator [ ]B G  (i.e., ( ) ( )= δ  B G t t , where ( )δ t  is the 

Dirac delta function), then the solution to the equation ( ) ( )=  B U t g t  can be written as a 

convolution ( )= ∗U G g  (Vladimirov, 1971). For ( ) ( ) ∂ ∂ + ω = δ 
2 2 2t G t t  we have 

( ) ( ) −= χ ω ω1 sinG t t t , and then 

 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( )

( )

0 0

0 0

1
, , , , sin

2

,
, sin sin .

t

n n

t t
n

n

r L

w t G t g d J L w L t d
L

w rL
LJ L w L t d J L t d

r

∞

γ

γ γ

=

ω = ω − τ ω τ τ = ω τ ω − τ  τ + ω

∂ τ
′+ ω τ ω − τ  τ − ω ω − τ  τ   ω ∂

 

 



(32) 

Applying the inverse transform (28) to equation (32), we can write 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )

0

0 0

0 0

, ,

,1
sin ,

2

sin , .

n n

t
n

n

r L

t

n

w r t r L w t r J r d

w r
J r J L t d r w L L d

rL

J r J L t d rLw L d

∞

γ

∞

γ γ

=

∞

γ γ

χ − = ω ω ω ω =

 ∂ τ
= ω ω ω − τ  ω τ − τ +   ∂  

′+ ω ω ω ω − τ  ω τ τ 



 

 



 (33) 

Let us denote 

 ( ) ( ) ( )
∞

γ γ= ω ω ω − τ  ω 1

0

sinI J r J L t d     and    ( ) ( ) ( )2

0

sin .I J r J L t dγ γω ω ω ω τ ω
∞

′=  −    (34) 
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Then from (Gradshteyn & Ryzhik, 2000) we have for > > 0r L  

 ( )

( )

22 2

1 1 2

22 2

1 2

0 0

1

22

2

,

,

cos
, ,

t r L

r L t
I P r L t r L

rLrL

r L t
Q t r L

rLrL

γ

γ

τ

τ
τ

τγπ
τ

π

−

−



 < − < −

  + − −  = − < − < +    


  + − −
 − − − > +    

 (35) 

where ( )γP x  and ( )γQ x  are the Legendre functions of the first and second kind, 

respectively. For γ = + 1 2n , we can rewrite this formula as 

 . ( ) ( ) ( ) ( ) ( )1

1
0

2
, ,nI P q t r L r L t t

rL
χ τ χ τ τ=  − − −   + − −  − >    . (36) 

where ( )22 2 2q r L t rL = + − − τ   and ( )nP q  denotes a Legendre polynomial. Considering 

that 

 
∂

=
∂

2 1I I
L

,     
( )

( )
∂

=
∂ −

1

2

1

1

n
n

P q
P q

q q
 (37) 

(Janke et al., 1960), and ( ) ( )χ = δd x dx x , we can derive 

 
( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ){ }

   = χ − τ − − χ + − − τ − + − +           − 

+ δ − τ − + + δ + − + τ

1

2 2

1 1

22 1

1
.

2

n n

n

P q P q q
I t r L r L t

L r LrL q

P q t r L r L t
rL

 (38) 

Finally, taking into account the relation ( ) ( ), ,n nw r t ru r t= , we have from (33) 

 
( ) ( ) ( ) ( ) ( )

( )

( )

( )

( )( ) ( ) ( )( )}

− −

− + =

    ∂ τ−   = − τ − τ +    ∂−   

+ − − + − − + >

 1

2

,1
, ,

2 1

, 1 , , .

t r L

n
n n n n n

t r L r L

n
n n

u rL rqL
u r t P q P q u L P q d

r L rrL q

u L t r L u L t r L r L

 (39) 

By using (19), we arrive at the desired radiation condition: 

 

( ) ( ) ( ) ( ) ( )
( )

( )

( )
( )

( )

1
1 1 1 1

2
1 0

1
1 1 1

0

1
, , , , cos sin

2 1

, ,
cos sin

t r L

n n n
n t r L

n n

r L

L rqL
U r t P q P q U L d

r LrL q

U r
P q d d

r

− − π∞

= − +

π

=

  −  ϑ = − ϑ τ µ ϑ ϑ ϑ −  −  
∂ ϑ τ

− µ ϑ ϑ ϑ τ +
∂ 

  







 (40) 
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( )( ) ( ) ( )( ) ( )

( )

1 1 1 1 1

0

, , 1 , , cos sin

cos , , 0 .

n
n

n

U L t r L U L t r L d

r L

π  + ϑ − − + − ϑ − + µ ϑ ϑ ϑ ×  
×µ ϑ > ≤ ϑ ≤ π

 



  

By passing to the limit →r L  in (40), we obtain 

 

( )
( )

( ) ( )

( ) ( )

( ) ( )
( )

( ) ( )

2 2
1

2 222
1 2

1 1 1 1

0

2
1

1 1 12
0

1 1

1 1
, , 1 1

2 2 24

, , cos sin

, ,
1 cos sin

2

, , 1 , , 2

t

n n
n t L

n

n n

r L

n

t tt
U L t P P

LL LL L t

U L d

U rt
P d d

rL

U L t U L t

∞

= −

π

π

=

     − τ − τ− τ  ϑ = − − − ×        − − τ     

× ϑ τ µ ϑ ϑ ϑ −

  ∂ ϑ τ− τ
− − µ ϑ ϑ ϑ τ +   ∂   

+ ϑ + − ϑ −

 









( ) ( ) ( )1 1 1

0

cos sin cos ,

0 .

n nL d
π  µ ϑ ϑ ϑ µ ϑ  
≤ ϑ ≤ π

  

 (41) 

Formula (41) represents the exact absorbing condition on the artificial boundary Γ . This 

condition is spoken of as exact because any outgoing wave described by the initial problem 

(1) satisfies this condition. Every outgoing wave ( ),U g t  passes through the boundary Γ  

without distortions, as if it is absorbed by the domain Ωext  or its boundary Γ . That is why 

this condition is said to be absorbing. 

5. On the equivalence of the initial problem and the problem with a bounded 
domain of analysis 

We have constructed the following closed initial boundary-value problem 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )
{ }

( )

( ) ( )

( ) ( ) ( )
1

2 2

2 2

0
0

1

1

1
0

0 0 0 0

0

int

int

, ,

,

, , , ,

, , , ,

, , , , , ,

, and , are continuous when crossing

, , ,

t
t

tg
p z

tg tg

i

g

g g U g t F g t t g
tt z

U g t g U g t g g
t

E p t U z t z L t

E p t H p t

D U g t U g t

ρ φ

ε σ

ε σ ρ
ρ ρ ρ

ϕ ψ
=

=

= ∈Σ

∈Γ

  ∂ ∂ ∂ ∂ ∂
− − + + = > ∈Ω  

∂ ∂ ∂∂ ∂   

∂
= = ∈Ω

∂

= = ≤ ≥

Σ

 − =
  ( )

( )

2

2
0 0

0

, ,

, ,

g

g

D U g t t

D U g t

∈Γ

∈Γ














   = ≥  

   =  

 (42) 

where the operator D  is given by (41). It is equivalent to the open initial problem (1). This 

statement can be proved by following the technique developed in (Ladyzhenskaya, 1985). 
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The initial and the modified problems are equivalent if and only if any solution of the initial 

problem is a solution to problem (42) and at the same time, any solution of the modified 

problem is the solution to problem (1). (In the Ωext -domain, the solution to the modified 

problem is constructed with the help of (40).) The solution of the initial problem is unique 

and it is evidently the solution to the modified problem according construction. In this case, 

if the solution of (42) is unique, it will be a solution to (1). Assume that problem (42) has two 

different solutions ( )1 ,U g t  and ( )2 ,U g t . Then the function ( ) ( ) ( )= −1 2, , ,u g t U g t U g t  is 

also the generalized solution to (42) for ( ) ( ) ( ) ( ) ( )= = ϕ = ψ ≡1, , 0iF g t U g t g g . This means 

that for any function ( ) ( )γ ∈ ΩW
1
2, Tg t  that is zero at =t T , the following equality holds: 

 

( )

( ) ( )

Ω

Σ

 ∂ ργ ∂ ∂γ ∂ ∂ ∂γ ∂
ε − ρ − − σ γ +  
∂ ∂ ∂ρ ∂ρ ∂ ∂ ∂ρ  

  ∂ ∂
+ ρ γ ρ + γ =  

ρ ∂ρ ∂  




   

int

int

2

1

1
cos , cos , 0.

T

T

u u u
u dgdt

t t z z t

u
u n n z dsdt

z

 (43) 

Here, ( )Ω =Ω ×int int 0,T T  and int
TΣ  are the space-time cylinder over the domain intΩ  and its 

lateral surface; ( )cos ,n ρ
 

 and ( )cos ,n z
 

 are the cosines of the angles between the outer 

normal n


 to the surface int
TΣ  and ρ


- and z


-axes, respectively; the element dg  of the end 

surface of the cylinder int
TΩ  equals ρ ρd dz .  

By making the following suitable choice of function, 

 ( )
( ) 0

0

, for
,

for ,
t

u g d t
g t

t T

τ

ζ ζ τ
γ

τ


< <

= 


< <

  (44) 

it is possible to show that every term in (43) is nonnegative (Mikhailov, 1976) and therefore 

( ),u g t  is equal to zero for all ∈Ωintg  and < <0 t T , which means that the solution to the 

problem (42) is unique. This proves the equivalency of the two problems. 

6. Far-field zone problem. Extended and remote sources 

As we have already mentioned, in contrast to approximate methods based on the use of the 

Absorbing Boundary Conditions or Perfectly Matched Layers, our approach to the effective 

truncation of the computational domain is rigorous, which is to say that the original open 

problem and the modified closed problem are equivalent. This allows one, in particular, to 

monitor a computational error and obtain reliable information about resonant wave 

scattering. It is noteworthy that within the limits of this rigorous approach we also obtain, 

without any additional effort, the solution to the far-field zone problem, namely, of finding 

the field ( ),U g t  at arbitrary point in extΩ  from the magnitudes of ( ),U g t on any arc 

r M L= ≤ , 0 ≤ ϑ ≤ π , lying entirely in intΩ  and retaining all characteristics of the arc Γ . 

Thus in the case considered here, equation (39) defines the diagonal operator ( )L rS t→  such 

that it operates on the space of amplitudes ( ) ( ){ }, ,nu r t u r t=  of the outgoing wave (19) 

according the rule 

 ( ) ( ) ( )
( ),

, , ,L r

r L

u r
u r t S t u L

r
→

=

 ∂ τ
= τ 

∂  




;     r L> ,     0,t τ≥ ≥  (45) 
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and allows one to follow all variations of these amplitudes in an arbitrary region of extΩ . 

The operator 

 
( ) ( ) ( )

( ), ,
, , , , , ; , 0 , 0,

0 ,

L r

r L

U r
U r t T t U L r L t

r
→

=

 ∂ ϑ τ ϑ = ϑ τ > ≤ ϑ ≤ π ≥ τ ≥
 ∂
 

≤ ϑ ≤ π








 (46) 

given by (40) , in turn, enables the variations of the field ( ),U g t , extg∈Ω , to be followed. 

It is obvious that the efficiency of the numerical algorithm based on (42) reduces if the 

support of the function  ( ),F g t  and/or the functions ( )gϕ  and ( )gψ  is extended 

substantially or removed far from the region where the scatterers are located. The arising 

problem (the far-field zone problem or the problem of extended and remote sources) can be 

resolved by the following straightforward way. 
Let us consider the problem 

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) { }

( )
{ }

( ) ( )

( )

( )

2 2

2 2

0
0

1

1
0

0 0

0 0 0

, ,

,

, , , , ,

, , , , ,

, ,

, and , are continuous when crossing

, , , ,

,

t
t

tg
p z

tg tg

i

g g U g t F g t F g t t g
tt z

U g t g g U g t g g g z
t

E p t t

E p t H p t

U z t z t

D U g t U

ρ φ

ε σ

ε σ ρ
ρ ρ ρ

ϕ ϕ ψ ψ ρ
=

=

= ∈Σ

  ∂ ∂ ∂ ∂ ∂
− − + + = + > ∈Ω  

∂ ∂ ∂∂ ∂   

∂
= + = + = ∈Ω

∂

= ≥

Σ

= < ∞ ≥

−



 

( ) ( ) ( )
2

1

1

2
0 0 0, , , , ,

gg
g t D U g t t

∈Γ∈Γ

















   = = ≥  

 (47) 

which differs from the problem (1) only in that the sources ( ),F g t and ( )gϕ , ( )gψ  are 

located out of the domain intΩ  enveloping all the scatterers (Fig. 1). The supports of the 

functions ( ),F g t , ( )gϕ , and ( )gψ  can be arbitrary large (and even unbounded) and are 

located in extΩ  at any finite distance from the domain intΩ . 

Let the relevant sources generate a field ( ),iU g t  in the half-plane { }Ω = ρ > < ∞0 : 0,g z . In 

other words, let the function ( ),iU g t  be a solution of the following Cauchy problem: 

 

( ) ( )

( ) ( ) ( ) ( ) { }

( )

2 2

02 2

0
0

0

1
0

0 0 0

, , , ,

, , , , ,

, , , , .

i

i i

t
t

i

U g t F g t t g
t z

U g t g U g t g g z
t

U z t z t

ρ
ρ ρ ρ

ϕ ψ ρ
=

=

  ∂ ∂ ∂ ∂
− + + = > ∈Ω  

∂ ∂∂ ∂   


∂
= = = ∈Ω

∂


= < ∞ ≥





   (48) 

It follows from (47), (48) that in the domain extΩ  the function ( ) ( ) ( ), , ,s iU g t U g t U g t= −  

satisfies the equations 
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( )

( ) ( ) { }

( )

2 2

ext2 2

ext
0

0

1
, 0, 0,

, 0, , 0, ,

0, , 0, , 0

s

s s

t
t

s

U g t t g
t z

U g t U g t g z
t

U z t z L t

=
=

  ∂ ∂ ∂ ∂
+ + ρ = > ∈Ω  

∂ρ ρ ∂ρ∂ ∂   


∂
= = = ρ ∈Ω

∂


= ≥ ≥



 (49) 

and determines there the pulsed electromagnetic wave crossing the artificial boundary Γ  in 

one direction only, namely, from  intΩ  into extΩ . 

The problems (49) and (14) are qualitatively the same. Therefore, by repeating the 

transformations of Section 4, we obtain 

 

( )
( )

( ) ( )

( ) ( )

( ) ( )
( )

∞

= −

π

π

=

     − τ − τ− τ     ϑ = − − − ×       − − τ     

× ϑ τ µ ϑ ϑ ϑ −

 − τ ∂ ϑ τ
 − − µ ϑ ϑ ϑ τ +

  ∂   

 









2 2
1

2 2221 2

1 1 1 1

0

2
1

1 1 12
0

1 1
, , 1 1

2 2 24

, , cos sin

, ,
1 cos sin

2
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 (50) 

( ) ( ) ( ) ( ) ( )
π  + ϑ + − ϑ − µ ϑ ϑ ϑ µ ϑ ≤ ϑ ≤ π  
  1 1 1 1 1

0

, , 1 , , 2 cos sin cos , 0 ,
ns s

n nU L t U L t L d  

or, in the operator notations, ( ) ( ), , 0i

g
D U g t U g t

∈Γ
 − =  , – the exact absorbing condition 

allowing one to replace open problem (47) with the equivalent closed problem 
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 (51) 
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7. Determination of the incident fields 

To implement the algorithms based on the solution of the closed problems (42), (51), the 

values of the functions ( ) ( )1 ,iU g t  and ( ),iU g t  as well as their normal derivatives on the 

boundaries 1Γ  and Γ  are required (see formulas (3), (5), (50)).  Let us start from the 

function ( ) ( )1 ,iU g t . In the feeding waveguide 1Ω , the field ( ) ( )1 ,iU g t  incoming on the 

boundary 1Γ  can be represented (Sirenko et al., 2007) as 

 ( ) ( ) ( ) ( ) ( ) ( )1 1

1 1 1 1 1
, , , ; , .

i i
n n n

n n

U g t U g t v z t b a z Lµ ρ ρ= = < < ≤ −   (52) 

Here (see also Section 3), 0,1,2,...n =  only in the case of 0TM n -waves and only for a coaxial 

waveguide 1Ω . In all other cases 1,2,3,...n = . On the boundary 1Γ , the wave ( ) ( )1 ,iU g t  

can be given by a set of its amplitudes ( ){ }1 1 ,n n
v L t− . The choice of the functions ( )1 1 ,nv L t− , 

which are nonzero on the finite interval 1 20 T t T T< ≤ ≤ < , is arbitrary to a large degree and 

depends generally upon the conditions of a numerical experiment. As for the set 

( ){ }
1

1 ,n z L n
v z t z

=−
∂ ∂ , which determines the derivative of the functiоn ( ) ( )1 ,iU g t  on 1Γ , it 

should be selected with consideration for the causality principle. Each pair 

( ) ( ) ( ) ( )( ) ( ){ }
1

1 1 1 1 1 1, , ; ,n n n n nz L
V t v L t v z t z

=−
ρ = − µ ρ ∂ ∂ µ ρ is determined by the pulsed 

eigenmode ( ) ( )1 ,i
nU g t  propagating in the waveguide 1Ω  in the sense of increasing z . This 

condition is met if the functions ( )1 1 ,nv L t−  and  ( )
=−

∂ ∂
1

1 ,n z L
v z t z  are related by the 

following equation (Sirenko et al., 2007): 

 ( ) ( )
( )

1

1

1 1 0 1

0

0
,

, ; .
t

n
n n

z L

v z
v L t J t d t

z

τ
λ τ τ

=−

∂
− = −  −  ≥  ∂  (53) 

The function ( ),iU g t  generated by the sources ( ),F g t , ( )gϕ , and ( )gψ  is the solution to 

the Cauchy problem (48). Let us separate the transverse variable ρ  in this problem and 

represent its solution in the form (Korn & Korn, 1961): 

 ( ) ( ) ( )1

0

, , ,iU z t v z t J d
∞

λρ = λρ λ  (54) 

 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 1
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1 1 1

0 0 0

, , ,

, , , .i

v z t v z t d v z t J J d d

v z t J d J d U z t J d

∞ ∞ ∞

λ µ µ

∞ ∞ ∞

µ

 
= δ µ − λ µ = λ µρ λρ ρ ρ µ = 

  
 

= λ µρ µ λρ ρ ρ = λ ρ λρ ρ ρ 
  

  

  
 (55) 

In order to find the functions ( ),v z tλ , one has to invert the following Cauchy problems for 

one-dimensional Klein-Gordon equations:  

 

( ) ( )

( ) ( ) ( ) ( )

2 2

2

2 2

0
0

0, , , ,

, , , , .
t

t

v z t F z t t z
t z
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λ λ λ λ

λ

ϕ ψ
=

=

 ∂ ∂
− + − = > < ∞ 
∂ ∂  


 ∂

= = < ∞
∂

 (56) 
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Here, ( ),F z tλ , ( )zλϕ  и ( ),z tλψ  are the amplitude coefficients in the integral presentations 

(54) for the functions ( ),F g t , ( )gϕ , and ( )gψ . 

Now, by extending the functions ( )λ ,F z t  and ( )λ ,v z t  with zero on the interval 0<t , we 

pass on to a generalized version of problems (56) (Vladimirov, 1971) 

 
( )[ ] ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2 2
12

2 2
, , , ,

,

B v v z t F z t t z t z f z t
t z

t z

λ λ λ λ λ λ

 ∂ ∂
λ ≡ − + − λ = − δ ϕ − δ ψ = 

∂ ∂ 

< ∞ < ∞

 (57) 

( ( ) ( )1 tδ  is the generalized derivative of the function ( )tδ ). Their solutions can be written by 

using the fundamental solution ( ) ( ) ( ) ( )
1 22 2

0, , 1 2G z t t z J t z λ = − χ − λ −  
 of the operator 

( )B λ  as follows: 

 ( ) ( ) ( ) ( ) ( )
0

, , , , , , , .v z t G z t f z t G z z t f z d dzλ λ λλ τ λ τ τ
∞ ∞

−∞

=  ∗  = − −        (58) 

Equations (54) and (58) completely determine the desired function ( ),iU g t . 

8. Conclusion 

In this paper, a problem of efficient truncation of the computational domain in finite-
difference methods is discussed for axially-symmetrical open electrodynamic structures. 
The original problem describing electromagnetic wave scattering on a compact axially-
symmetric structure with feeding waveguides is an initial boundary-value problem 
formulated in an unbounded domain. The exact absorbing conditions have been derived for 
a spherical artificial boundary enveloping all sources and scatterers in order to truncate the 
computational domain and replace the original open problem by an equivalent closed one. 
The constructed solution has been generalized to the case of extended and remote field 
sources. The analytical representation for the operators converting the near-zone fields into 
the far-zone fields has been also derived. 
We would like to make the following observation about our approach. 

• In our description, the waveguide 1Ω  serves as a feeding waveguide. However, both of 

the waveguides can be feeding or serve to withdraw the energy; also both of them may 

be absent in the structure.  

• The choice of the parameters ( )α ω  and ( )β ω  determining ( ),Z rγ ω  (see Section 4) 

affects substantially the final analytical expression for the exact absorbing condition on 

the spherical boundary Γ . When constructing boundary conditions (41), (50), we 

assumed that ( )α ω = 1  and ( )β ω = 0 . In (Sirenko et al., 2007), for a similar situation, the 

exact absorbing conditions for outgoing pulsed waves were constructed with the 

assumption that ( ) ( )N Lγα ω = − ω  and ( ) ( )J Lγβ ω = ω . With such ( )α ω  and ( )β ω , 

equation (21) is the Weber-Orr transform (Bateman & Erdelyi, 1953). However, the final 

formulas corresponding to (39), (40) for this case turn into identities as r L→ , which 

present a considerable challenge for using them as absorbing conditions. In addition, 

the analytical expressions with the use of Weber-Orr transform are rather complicated 

to implement numerically. 
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• The function ( ),iU g t  (see Section 7) can be found in spherical coordinates as well. In 

this situation, we arrive (see Section 4) at the expansions like (19) with the amplitude 

coefficients ( ),nv r t  determined by the Cauchy problems  

 

( )
( ) ( )

( ) ( ) ( ) ( )

2 2

2 2 2

0

1
, , , 0, 0

,0 , , , 0

n n

n n n n
t

n n
r v r t F r t r t

t r r

v r r v r t r r
t =

 +∂ ∂
− + − = ≥ > 
∂ ∂ 

∂ = ϕ = ψ ≥ ∂

,  (59) 

where ( ),nF r t , ( )n rϕ , and ( )n rψ  are the amplitude coefficients for the functions 

( ),F g t , ( )gϕ , and ( )gψ . 

• The standard discretization of the closed problems (42), (51) by the finite difference 

method using a uniform rectangular mesh attached to coordinates { },g z= ρ  leads to 

explicit computational schemes with uniquely defined mesh functions 

( ) ( ), , , ,j k mU j k m U z t= ρ . The approximation error is ( )2O h , where h  is the mesh 

width in spatial coordinates, 2l h=  for ( )
int

max 2
g

g
∈Ω

 θ = ε <   or 2l h<  for 2θ ≥  is the 

mesh width in time variable t ; j jhρ = , kz kh= , and mt ml= . The range of the integers 

0,1,...,j J= , 0,1,...k K= , and 0,1,...m M=  depends both on the size of the intΩ  

domains and on the length of the interval [ ]0,T  of the observation time t . The 

condition providing uniform boundedness of the approximate solutions ( ), ,U j k m  

with decreasing h  and l  is met (see, for example, formula (1.50) in (Sirenko et 

al., 2007)). Hence the finite-difference computational schemes are stable, and the mesh 

functions ( ), ,U j k m  converge to the solutions ( ), ,j k mU z tρ  of the original problems 

(42), (51). 
As opposed to the well-known approximate boundary conditions standardly utilized by 

finite-difference methods, the conditions derived in this paper are exact by construction and 

do not introduce an additional error into the finite-difference algorithm. This advantage is 

especially valuable in resonant situations, where numerical simulation requires large 

running time and the computational errors may grow unpredictably if an open problem is 

replaced by an insufficiently accurate closed problem. 
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