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1. Introduction 

Esterification is a widely employed reaction in organic process industry. Organic esters are 
most frequently used as plasticizers, solvents, perfumery, as flavor chemicals and also as 
precursors in pharmaceutical products. One of the important ester is Citronellyl laurate, a 
versatile component in flavors and fragrances, which are widely used in the food, beverage, 
cosmetic and pharmaceutical industries. In industry, the most common ester productions are 
carried out in batch reactors because this type of reactor is quite flexible and can be adapted to 
accommodate small production volumes (Barbosa-Póvoa, 2007). The mode of operation for a 
batch esterification reactor is similar to other batch reactor processes where there is no inflow 
or outflow of reactants or products while the reaction is being carried out. In the batch 
esterification system, there are various parameters affecting the ester rate of reaction such as 
different catalysts, solvents, speed of agitation, catalyst loading, temperature, mole ratio, 
molecular sieve and water activity (Yadav and Lathi, 2005). Control of this reactor is very 
important in achieving high yields, rates and to reduce side products. Due to its simple 
structure and easy implementation, 95% of control loops in chemical industries are still using 
linear controllers such as the conventional Proportional, Integral & Derivative (PID) 
controllers. However, linear controllers yield satisfactory performance only if the process is 
operated close to a nominal steady-state or if the process is fairly linear (Liu & Macchietto, 
1995). Conversely, batch processes are characterized by limited reaction duration and by non-
stationary operating conditions, then nonlinearities may have an important impact on the 
control problem (Hua et al., 2004). Moreover, the control system must cope with the process 
variables, as well as facing changing operation conditions, in the presence of unmeasured 
disturbances. Due to these difficulties, studies of advanced control strategy have received great 
interests during the past decade. Among the advanced control strategies available, the Model 
Predictive Control (MPC) has proved to be a good control for batch reactor processes (Foss et 
al., 1995; Dowd et al., 2001; Costa et al., 2002; Bouhenchir et al., 2006). MPC has influenced 
process control practices since late 1970s. Eaton and Rawlings (1992) defined MPC as a control 
scheme in which the control algorithm optimizes the manipulated variable profile over a finite 
future time horizon in order to maximize an objective function subjected to plant models and 
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constraints. Due to these features, these model based control algorithms can be extended to 
include multivariable systems and can be formulated to handle process constraints explicitly. 
Most of the improvements on MPC algorithms are based on the developmental reconstruction 
of the MPC basic elements which include prediction model, objective function and 
optimization algorithm. There are several comprehensive technical surveys of theories and 
future exploration direction of MPC by Henson, 1998, Morari & Lee, 1999, Mayne et al., 2000 
and Bequette, 2007. Early development of this kind of control strategy, the Linear Model 
Predictive Control (LMPC) techniques such as Dynamic Matrix Control (DMC) (Gattu and 
Zafiriou, 1992) have been successfully implemented on a large number of processes. One 
limitation to the LMPC methods is that they are based on linear system theory and may not 
perform well on highly nonlinear system. Because of this, a Nonlinear Model Predictive 
Control (NMPC) which is an extension of the LMPC is very much needed.  
NMPC is conceptually similar to its linear counterpart, except that nonlinear dynamic 
models are used for process prediction and optimization. Even though NMPC has been 
successfully implemented in a number of applications (Braun et al., 2002; M’sahli et al., 2002; 
Ozkan et al., 2006; Nagy et al., 2007; Shafiee et al., 2008; Deshpande et al., 2009), there is no 
common or standard controller for all processes. In other words, NMPC is a unique 
controller which is meant only for the particular process under consideration. Among the 
major issues in NMPC development are firstly, the development of a suitable model that can 
represent the real process and secondly, the choice of the best optimization technique. 
Recently a number of modeling techniques have gained prominence. In most systems, linear 
models such as partial least squares (PLS), Auto Regressive with Exogenous inputs (ARX) 
and Auto Regressive Moving Average with Exogenous inputs (ARMAX) only perform well 
over a small region of operations. For these reasons, a lot of attention has been directed at 
identifying nonlinear models such as neural networks, Volterra, Hammerstein, Wiener and 
NARX model. Among of these models, the NARX model can be considered as an 
outstanding choice to represent the batch esterification process since it is easier to check the 
model parameters using the rank of information matrix, covariance matrices or evaluating 
the model prediction error using a given final prediction error criterion. The NARX model 
provides a powerful representation for time series analysis, modeling and prediction due to 
its strength in accommodating the dynamic, complex and nonlinear nature of real time 
series applications (Harris & Yu, 2007; Mu et al., 2005). Therefore, in this work, a NARX 
model has been developed and embedded in the NMPC with suitable and efficient 
optimization algorithm and thus currently, this model is known as NARX-MPC. 
Citronellyl laurate is synthesized from DL-citronellol and Lauric acid using immobilized 
Candida Rugosa lipase (Serri et. al., 2006). This process has been chosen mainly because it is a 
very common and important process in the industry but it has yet to embrace the advanced 
control system such as the MPC in their plant operation. According to Petersson et al. (2005), 
temperature has a strong influence on the enzymatic esterification process. The temperature 
should preferably be above the melting points of the substrates and the product, but not too 
high, as the enzyme’s activity and stability decreases at elevated temperatures. Therefore, 
temperature control is important in the esterification process in order to achieve maximum 
ester production. In this work, the reactor’s temperature is controlled by manipulating the 
flowrate of cooling water into the reactor jacket. The performances of the NARX-MPC were 
evaluated based on its set-point tracking, set-point change and load change. Furthermore, 
the robustness of the NARX-MPC is studied by using four tests i.e. increasing heat transfer 
coefficient, increasing heat of reaction, decreasing inhibition activation energy and a 
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simultaneous change of all the mentioned parameters. Finally, the performance of NARX-
MPC is compared with a PID controller that is tuned using internal model control technique 
(IMC-PID). 

2. Batch esterification reactor 

The synthesis of Citronellyl laurate involved an exothermic process where Citronellol 
reacted with Lauric acid to produce Citronellyl Laurate and water. 
  

 

Fig. 1. Schematic represent esterification of Citronellyl laurate 

The esterification process took place in a batch reactor where the immobilized lipase catalyst 
was mixed freely in the reactor. A layout of the batch esterification reactor with associated 
heating and cooling configurations is shown in Fig.2.  
 

 

Fig. 2. Schematic diagram of the batch esterification reactor. 

Typical operating conditions were 310K and 1 bar. The reactor temperature was controlled 
by manipulating the water flowrate within the jacket. The reactor’s temperature should not 
exceed the maximal temperature of 320K, due to the temperature sensitivity of the catalysts 
(Yadav & Lathi, 2004; Serri et. al., 2006; Zulkeflee & Aziz, 2007). The reactor’s temperature 
control can be achieved by treating the limitation of the jacket’s flowrate, Fj, which can be 
viewed as a state of the process and as the constraint control problem. The control strategy 
proposed in this paper was designed to meet the specifications of the laboratory scale batch 
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reactor at the Control Laboratory of School of Chemical Engineering, University Sains 
Malaysia, which has a maximum of 0.2 L/min limitation on the jacket’s flowrate. Therefore, 
the constraint of the jacket’s flowrate will be denoted as Fjmax = 0.2 L/min. 
The fundamental equations of the mass and energy balances of the process are needed to 

generate data for empirical model identification. The equations are valid for all ݐ ∈ [Ͳ, ∞]. 
The reaction rate and kinetics are given by (Yadav & Lathi, 2004; Serri et. al., 2006; Zulkeflee 

& Aziz, 2007): 

 
ௗ஼ಲ೗ௗ௧ = [஼ಲ೗]௥೘ೌೣఈ௄ಲ೗ቆଵା൬ ಼ಲ೎ൣ಴ಲ೎൧൰ା൬಼ಲ೎಼೔ ൰ା൬ൣ಴ಲ೎൧ഁ಼೔ ൰ቇ + [஺௟ܥ] ቆͳ + ቀఈ௄ಲ೎[஼ಲ೎]ቁቇ  (1) 

 
ௗ஼ಲ೎ௗ௧ = [஼ಲ೎]௥೘ೌೣఈ௄ಲ೎ቆଵା൬ ಼ಲ೎ൣ಴ಲ೎൧൰ቇ + [஺௖ܥ] ቆͳ + ቀఈ௄ಲ೗[஼ಲ೗]ቁቇ + ఈ௄ಲ೗௄ಲ೎௄೔[஼ಲ೗] + ఈ௄ಲ೗[஼ಲ೎]ఉ௄೔[஼ಲ೗]  (2) 

 
ௗ஼ಶೞௗ௧ = − [஼ಲ೗]௥೘ೌೣఈ௄ಲ೗ቆଵା൬ ಼ಲ೎ൣ಴ಲ೎൧൰ା൬಼ಲ೎಼೔ ൰ା൬ൣ಴ಲ೎൧ഁ಼೔ ൰ቇ + [݈ܣ] ቆͳ + ቀఈ௄ಲ೎[஼ಲ೎]ቁቇ (3) 

 
ௗ஼ೈௗ௧ = − [஼ಲ೎]௥೘ೌೣఈ௄ಲ೎ቆଵା൬ ಼ಲ೎ൣ಴ಲ೎൧൰ቇ + [஺௖ܥ] ቆͳ + ቀఈ௄ಲ೗[஼ಲ೗]ቁቇ + ఈ௄ಲ೗௄ಲ೎௄೔[஼ಲ೗] + ఈ௄ಲ೗[஼ಲ೎]ఉ௄೔[஼ಲ೗]  (4) 

௜ܭ  = ா೔/ோି݌ݔ௜݁ܣ ೝ்  (5) 

஺௖ܭ  = ாಲ೎/ோି݌ݔ஺௖݁ܣ ೝ்   (6) 

஺௟ܭ  = ாಲ೗/ோି݌ݔ஺௟݁ܣ ೝ்   (7) 

where ܥ஺௖ , ஺௟ܥ ,  ௐ are concentrations (mol/L) of Lauric acid, Citronellol, Citronellylܥ ா௦ andܥ

laurate and water respectively; rmax (mol l-1 min-1 g-1 of enzyme) is the maximum rate of 

reaction,  KAc (mol l-1 g-1 of enzyme), KAl (mol l-1 g-1 of enzyme) and  Ki (mol l-1 g-1 of enzyme) 

are the Michealis constant for Lauric acid, Citronellol and inhibition respectively; ܣ௜ ,  ஺௖ܣ	

and ܣ஺௟ are the pre-exponential factors (L mol/s) for inhibition, Lauric acid and Citronellol 

respectively; ܧ௜ ,  ஺௟ are the activation energy (J mol/K) for inhibition, acid lauricܧ ஺௖ andܧ	

and Citronellol respectively; R is the gas constant (J/mol K). 

The reactor can be described by the following thermal balances (Aziz et al., 2000): 

 
ௗ ೝ்ௗ௧ = ஺௖ܸݎ௥௫௡ܪ∆ + ொሶ[௏ሺ஼ಲ೎஼௣ಲ೎ା஼ಲ೗஼௣ಲ೗ା஼ಶೞ஼௣ಶೞା஼ೈ஼௣ೈሻ]  (8) 

 
ௗ்ೕௗ௧ = ሺிೕ஼௣ೢఘೢ൫்ೕ೔೙ି்ೕ൯ିொሶ ሻ௏ೕ஼௣ೢఘೢ   (9) 

 ሶܳ = ൫	ܣܷ ௝ܶ − ௥ܶ൯ (10)  

where Tr (K) , Tj (K) and Tjin is reactor, jacket and inlet jacket temperature respectively; ∆ܪ௥௫௡ 
(kJ/mol) is heat of reaction; V(l) and Vj(l) is the volume of the reactor and jacket 
respectively;	݌ܥ஺௖ , ஺௟݌ܥ ,  ,ௐ are specific heats (J/mol K) of Lauric acid, Citronellol݌ܥ ா௦ and݌ܥ
Citronellyl laurate and water respectively; ߩ௪ is the water density (g/L) in the jacket;	ܨ௝ is 
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the flowrate of the jacket (L/min); ሶܳ  (kW) is the heat transfer through the jacket wall; A and 
U are the heat exchange area (m2) and the heat exchange coefficient (W/m2/K)  respectively.  
Eq. 1 - Eq. 10 were simulated using a 4th/5th order of the Runge Kutta method in MATLAB® 
environment. The model of the batch esterification process was derived under the 
assumption that the process is perfectly mixed where the concentrations of [ܿܣ], [݈ܣ], [ݏܧ], [ݓ] and temperature of the fluid in the tank is uniform. Table 1 shows all the value of the 
parameters for the batch esterification process under consideration. The validations of 
corresponding dynamic models have been reported in Zulkeflee & Aziz (2007). 
 

Parameters Units Values Parameters Units Values 

AAc 

AAl 

Ai 

EAc 

EAl 

Ei 

Tji 

CpAc 

CpAl 

CpEs 

L mol/s 

L mol/s 

L mol/s 

J mol/K 

J mol/K 

J mol/K 

K 

J/mol K 

J/mol K 

J/mol K 

18.20871 

24.04675 

0.319947 

-105.405 

-66.093 

-249.944 

294 

420.53 

235.27 

617.79 

Cpw 

V 

Vj ሶܳ  
ΔHrxn 

ǂ 
ǃ 

U 

A 

R 

J/mol K 

L 

L 

J/m3 

kJ 

- 

- 

J/s m2 K 

m2 

J/mol K 

75.40  

1.5 

0.8 

11.648 

16.73 

1 

1 

2.857 

0.077 

8.314 

Table 1. Operating Conditions and Calculated Parameters 

3. NARX model 

The Nonlinear Autoregressive with Exogenous inputs (NARX) model is characterized by 
the non-linear relations between the past inputs, past outputs and the predicted process 
output and can be delineated by the high order difference equation, as follows: 

ሻݐሺݕ  = ݂൛ݕሺݐ − ͳሻ, … ݐ൫ݕ − ݊௬൯, ݐሺݑ − ͳሻ … ݐሺݑ − ݊௨ሻൟ + ݁ሺݐሻ  (11) 

where ݑሺݐሻ and ݕሺݐሻ represents the input and output of the model at time ݐ in which the 

current output ݕሺݐሻ ∈ ℜ depends entirely on the current input ݑሺݐሻ ∈ ℜ. Here ݊௨and ݊௬ are 

the input and output orders of the dynamical model which are  ݊௨ ≥ Ͳ, ݊௬ ≥ ͳ. The function ݂ is a nonlinear function. തܺ = ݐሺݕ] − ͳሻ … ݐ൫ݕ − ݊௬൯	ݑሺݐ − ͳሻ … ݐሺݑ − ݊௨ሻ]் denotes the system 

input vector with a known dimension ݊ = ݊௬ + ݊௨. Since the function ݂ is unknown, it is 

approximated by the regression model of the form: 

ሻݐሺݕ  = ෍ ܽሺ݅ሻ. ݐሺݑ −௡ೠ
௜ୀ଴ ݅ሻ + ෍ ܾሺ݆ሻ. ݐሺݕ −௡೤

௝ୀଵ ݆ሻ + ෍ ෍ ܽሺ݅, ݆ሻ. ݐሺݑ − ݅ሻ௡ೠ
௝ୀ௜

௡ೠ
௜ୀ଴ . ݐሺݑ − ݆ሻ

+ ෍ ෍ ܾሺ݅, ݆ሻ. ݐሺݕ − ݅ሻ௡೤
௝ୀ௜

௡೤
௜ୀଵ . ݐሺݕ − ݆ሻ + ෍ ෍ ܿሺ݅, ݆ሻ. ݐሺݑ − ݅ሻ௡೤

௝ୀଵ
௡ೠ

௜ୀ௢ . ݐሺݕ − ݆ሻ + ݁ሺݐሻ 

         (12) 
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where ܽሺ݅ሻ and ܽሺ݅, ݆ሻ are the coefficients of linear and nonlinear for originating exogenous 

terms; ܾሺ݅ሻܽ݊݀	ܾሺ݅, ݆ሻ are the coefficients of the linear and nonlinear autoregressive  

terms; ܿሺ݅, ݆ሻ are the coefficients of the nonlinear cross terms. Eq. 12 can be written in matrix 

form: 

 ൦ ݐሺݕሻݐሺݕ + ͳሻ⋮ݕሺݐ + ݊௬ሻ൪ = ܽ. ்ݑ + ܾ. ்ݕ + .ܣ [ܷ]் + .ܤ [ܻ]் + .ܥ [ܺ]்  (13) 

where 

 ܽ = [ܽሺͲሻ	ܽሺͳሻ … ܽሺ݊௨ሻ]்  (14) 

 

 ܾ = [ܾሺͳሻ	ܾሺʹሻ … ܾ൫݊௬൯]்  (15) 

 

ܣ  = [ܽሺͲ,Ͳሻ	ܽሺͲ,ͳሻ … ܽሺͲ, ݊௨ሻ	ܽሺͳ,ͳሻ … ܽሺ݊௨, ݊௨ሻ]்  (16) 

 

ܤ  = [ܾሺͳ,ͳሻ	ܾሺͳ,ʹሻ … ܾ൫ͳ, ݊௬൯	ܾሺʹ,ʹሻ … ܾ൫݊௬ , ݊௬൯]்  (17) 

 

ܥ  = [ܿሺͲ,ͳሻ	ܿሺͲ,ʹሻ … ܿ൫Ͳ, ݊௬൯	ܿሺͳ,ͳሻ … ܿ൫݊௨, ݊௬൯]்  (18) 

 

ݑ  = ݐሺݑ	ሻݐሺݑ] − ͳሻ …  ሺ݊௨ሻ]  (19)ݑ

 

ݕ  = ݐሺݕ] − ͳሻ	ݑሺݐ − ʹሻ …  ൫݊௬൯]  (20)ݑ

 ܷ = .ሻݐሺݑ] .ሻݐሺݑ	ሻݐሺݑ ݐሺݑ − ͳሻ … .ሻݐሺݑ ݐሺݑ − ݊௨ሻ	ݑሺݐ − ͳሻ. ݐሺݑ − ͳሻ … ݐሺݑ − ݊௨ሻ. ݐሺݑ − ݊௨ሻ] (21) 

 ܻ = ݐሺݕൣ − ͳሻ. ݐሺݕ − ͳሻ	ݕሺݐ − ͳሻ. ݐሺݕ − ʹሻ … ݐሺݕ − ͳሻ. ݐ൫ݕ − ݊௬൯	ݕሺݐ − ʹሻ. ݐሺݕ − ʹሻ … ݐ൫ݕ −݊௬൯. ݐ൫ݕ − ݊௬൯൧   (22) 

 ܺ = .ሻݐሺݑൣ ݐሺݕ − ͳሻݑ	. ݐሺ	ݕ − ʹሻ. . .ሻݐሺݑ ݐ൫ݕ − ݊௬൯ݑሺݐ − ͳሻ. ݐሺݕ − ͳሻ. . ݐሺݑ − ݊௨ሻ. ݐ൫ݑ − ݊௬൯൧ (23) 

The Eq. 13 can alternatively be expressed as: 

ሻݐሺݕ  = [்ܺ	்ܻ	்ܷ	்ݕ	்ݑ] ێێۏ
ۑۑےܥܤܣܾܽۍ

ې
  (24) 
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and can be simplified as: 

 തܻ = ഥܷ.  (25)  ܥ̅

where  

 തܻ =  ሻ  (26)ݐሺݕ

 

 ഥܷ = 	  (27)  [்ܺ	்ܻ	்ܷ	்ݕ	்ݑ]

 

ܥ̅  =  (28)  ்[ܥ	ܤ	ܣ	ܾ	ܽ]

 
Finally, the solution of the above identification problem is represented by  

ܥ̅  = ഥܷ\ തܻ  (29) 

The procedures for a NARX model identification is shown in Fig. 3. This model 
identification process includes: 
 
 
 

 
 

Fig. 3. NARX model identification procedure  

Identification Pretesting  

• Nonlinear study 

• Interaction study

Selection of input signals

Selection of model order for NARX model 

Model validation

Done

Is the model 
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Design new test 
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• Identification pre-testing: This study is very important in order to choose the important 
controlled, manipulated and disturbance variables. A preliminary study of the response 
plots can also gives an idea of the response time and the process gain. 

• Selection of input signal: The study of input range has to be done, to calculate the 
maximal possible values of all the input signals so that both inputs and outputs will be 
within the desired operating conditions range. The selection of input signal would 
allow the incorporation of additional objectives and constraints, i.e. minimum or 
maximum input event separations which are desirable for the input signals and the 
resulting process behavior. 

• Selection of model order: The important step in estimating NARX models is to choose 
the model order. The model performance was evaluated by the Means Squared Error 
(MSE) and Sum Squared Error (SSE). 

• Model validation: Finally, the model was validated with two sets of validation data 
which were unseen independent data sets that are not used in NARX model parameter 
estimation. 

The details of the identification of NARX model for the batch esterification can be found at 
Zulkeflee & Aziz (2008). 

4. MPC algorithm 

The conceptual structure of MPC is depicted in Fig. 4. The conception of MPC is to obtain the 

current control action by solving, at each sampling instant, a finite horizon open-loop optimal 

control problem, using the current state of the plant as the initial state. The desired objective 

function is minimized within the optimization method and related to an error function based 

on the differences between the desired and actual output responses. The first optimal input 

was actually applied to the plant at time t and the remaining optimal inputs were discarded. 

Meanwhile, at time t+1, a new measurement of optimal control problem was resolved and the 

receding horizon mechanism provided the controller with the desired feedback mechanism 

(Morari & Lee, 1999; Qin & Badgwell, 2003; Allgower, Findeisen & Nagy, 2004).  

 

 

 

 
 
 

Fig. 4. Basic structure of Model Predictive Control 

A formulation of the MPC on-line optimization can be as follows: 
 

 min௨[௧|௧],…௨[௠ା௣|௧]೔సబ ,ሻݐሺݕሺܬ  ሻሻ  (30)ݐሺݑ

OPTIMIZER PLANT Output 
setpoint 

ysp(t) 

Input u(t) Output y(t) 

Measurements 
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 min௨[௧|௧],…௨[௠ା௣|௧]ೖసబ ∑ ݐ]ݕ௞ሺݓ + [ݐ|݇ − ௦௣ሻଶݕ + ∑ ݐ]ݑ∆௞ݎ + ଶெ௞ୀଵ௉௞ୀଵ[ݐ|݇  (31) 

 

Where P and M is the length of the process output prediction and manipulated process 
input horizons respectively with P ≤ M. ݐ]ݑ +  ௞ୀ଴,…௉ is the set of future process input[ݐ|݇
values. The vector ݓ௞  is the weight vector . 
The above on-line optimization problem could also include certain constraints. There can be 
bounds on the input and output variables:   

௠௔௫ݑ  ≥ ݐ]ݑ + [ݐ|݇ ≥  ௠௜௡  (32)ݑ

 

௠௔௫ݑ∆  ≥ ݐ]ݑ∆ + [ݐ|݇ ≥  ௠௜௡  (33)ݑ∆−

 

௠௔௫ݕ  ≥ ݐ]ݕ + [ݐ|݇ ≥  ௠௜௡  (34)ݕ

 
It is clear that the above problem formulation necessitates the prediction of future outputs 
ݐ]ݕ  +  [ݐ|݇
 

In this NARX model, for k step ahead:  
The error e(t): 
[ݐ|ݐ]݁  = ሻݐሺݕ − ෍ ܽሺ݅ሻ. ݐሺݑ −௡ೠ

௜ୀ଴ ݅ሻ − ෍ ܾሺ݆ሻ. ݐሺݕ −௡೤
௝ୀଵ ݆ሻ − ෍ ෍ ܽሺ݅, ݆ሻ. ݐሺݑ − ݅ሻ௡ೠ

௝ୀ௜
௡ೠ

௜ୀ଴ . ݐሺݑ − ݆ሻ
− ෍ ෍ ܾሺ݅, ݆ሻ. ݐሺݕ − ݅ሻ௡೤

௝ୀ௜
௡೤

௜ୀଵ . ݐሺݕ − ݆ሻ − ෍ ෍ ܿሺ݅, ݆ሻ. ݐሺݑ − ݅ሻ௡೤
௝ୀଵ

௡ೠ
௜ୀ௢ . ݐሺݕ − ݆ሻ 

(35)

 
The prediction of future outputs: 
ݐሺݕ  + ݇ሻ = ෍ ܽሺ݅ሻ. ݐሺݑ −௡ೠ

௜ୀ଴ ݅ + ݇ሻ + ෍ ܾሺ݆ሻ. ݐሺݕ −௡೤
௝ୀଵ ݆ + ݇ሻ

+ ෍ ෍ ܽሺ݅, ݆ሻ. ݐሺݑ − ݅ + ݇ሻ௡ೠ
௝ୀ௜

௡ೠ
௜ୀ଴ . ݐሺݑ − ݆ + ݇ሻ

+ ෍ ෍ ܾሺ݅, ݆ሻ. ݐሺݕ − ݅ + ݇ሻ௡೤
௝ୀ௜

௡೤
௜ୀଵ . ݐሺݕ − ݆ + ݇ሻ

+ ෍ ෍ ܿሺ݅, ݆ሻ. ݐሺݑ − ݅ + ݇ሻ௡೤
௝ୀଵ

௡ೠ
௜ୀ௢ . ݐሺݕ − ݆ + ݇ሻ + ݁ሺݐ + ݇ሻ 	 

(36)

 
Substitution of Eq. 35  and Eq. 36 into Eq 31 yields: 
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min௨[௧|௧],…௨[௠ା௣|௧]ೖసబ ෍ ௞ݓ ൮ቌ෍ ܽሺ݅ሻ. ݐሺݑ −௡ೠ
௜ୀ଴ ݅ + ݇ቍ + ෍ ܾሺ݆ሻ. ݐሺݕ −௡೤

௝ୀଵ ݆ + ݇൲௉
௞ୀଵ+ ෍ ෍ ܽሺ݅, ݆ሻ. ݐሺݑ − ݅ + ݇ሻ௡ೠ

௝ୀ௜
௡ೠ

௜ୀ଴ . ݐሺݑ − ݆ + ݇ሻ
+ ෍ ෍ ܾሺ݅, ݆ሻ. ݐሺݕ − ݅ + ݇ሻ௡೤

௝ୀ௜
௡೤

௜ୀଵ . ݐሺݕ − ݆ + ݇ሻ
+ ෍ ෍ ܿሺ݅, ݆ሻ. ݐሺݑ − ݅ + ݇ሻ௡೤

௝ୀଵ
௡ೠ

௜ୀ௢ . ݐሺݕ − ݆ + ݇ሻ + ሻݐሺݕ − ෍ ܽሺ݅ሻ. ݐሺݑ −௡ೠ
௜ୀ଴ ݅ሻ

− ෍ ܾሺ݆ሻ. ݐሺݕ −௡೤
௝ୀଵ ݆ሻ − ෍ ෍ ܽሺ݅, ݆ሻ. ݐሺݑ − ݅ሻ௡ೠ

௝ୀ௜
௡ೠ

௜ୀ଴ . ݐሺݑ − ݆ሻ
− ෍ ෍ ܾሺ݅, ݆ሻ. ݐሺݕ − ݅ሻ௡೤

௝ୀ௜
௡೤

௜ୀଵ . ݐሺݕ − ݆ሻ − ෍ ෍ ܿሺ݅, ݆ሻ. ݐሺݑ − ݅ሻ௡೤
௝ୀଵ

௡ೠ
௜ୀ௢ . ݐሺݕ − ݆ሻሻ

− ௦௣ሻଶݕ + ෍ ݐ]ݑ∆௞ݎ + ଶெ[ݐ|݅
௞ୀଵ  

(37)

 

Where  
 

ሻݐ௦௣ሺݕ  = ݐ௦௣ሺݕ] + ͳሻ	ݕ௦௣ሺݐ + ʹሻ … . ݐ௦௣ሺݕ + ܲሻ]்      (38) 

 

ሻݐሺݑ∆  = ݐ]ݑ∆	[ݐ|ݐ]ݑ∆] + ͳ|ݐ] ݐ]ݑ∆	… + ܯ − ͳ|(39)    ்[[ݐ 

 
The above optimization problem is a nonlinear programming (NLP) which can be solved at 
each time t. Even though the input trajectory was calculated until M-1 sampling times into 
the future, only the first computed move was implemented for one sampling interval and 
the above optimization was repeated at the next sampling time. The structure of the 
proposed NARX-MPC is shown in Fig. 5.  
In this work, the optimization problem was solved using constrained nonlinear optimization 
programming (fmincon) function in the MATLAB. A lower flowrate limit of 0 L/min and an 
upper limit of 0.2 L/min and a lower temperature limit of 300K and upper limit of 320K 
were chosen for the input and output variables respectively. In order to evaluate the 
performance of NARX-MPC controller, the NARX-MPC has been used to track the 
temperature set-point at 310K. For the set-point change, a step change from 310K to 315K 
was introduced to the process at t=25 min. For load change, a disturbance was implemented 
with a step change (+10%) for the jacket temperature from 294K to 309K.  Finally, the 
performance of NARX-MPC is compared with the performance of PID controller. The 
parameters of PID controller have been estimated using the internal model based controller. 
The details of the implementation of IMC-PID controller can be found in Zulkeflee & Aziz 
(2009). 
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Fig. 5. The structure of the NARX-MPC 

5. Results 

5.1 NARX model identification 
The input and output data for the identification of a NARX model have been generated from 
the validated first principle model. The input and output data used for nonlinear 
identification are shown in Fig. 6. The minimum-maximum  range  input  (0 to 0.2 L/min) 
under  the  amplitude  constraint  was selected  in order  to  achieve  the most  accurate  
parameter to determine the ratio of the output parameter. For training data, the inputs 
signal for jacket flowrate was chosen as multilevel signal. Different orders of NARX models 
which was a mapping of past inputs (nu) and output (ny) terms to future outputs were tested 
and the best one was selected according to the MSE and SSE criterion. Results have been 
summarized in Table 2. From the results, the MSE and SSE value decreased by increasing 
the model order until the NARX model with nu =1 and ny= 2. Therefore, the NARX model 
with nu =1 and ny= 2 was selected as the optimum model with MSE and SSE equal to 0.0025 
and 0.7152 respectively. The respective graphical error of identification for training and 
validation of estimated NARX model is depicted in Fig. 7.  

5.2 NARX-MPC 
The identified NARX model of the process has been implemented in the MPC algorithm. 
Agachi et al., (2007) proposed some criteria to select the significant tuning parameters 
(prediction horizon, P; control horizon, M; penalty weight matrices wk and rk) for the MPC 
controller. In many cases, the prediction (P) and control horizons (M) are introduced as P>M>1 
due to the fact that it allows consequent control over the variables for the next future cycles. 
The value of weighting (wk and rk) of the controlled variables must be large enough to 
minimize the constraint violations in objective function. Tuning parameters and SSE values of 
the NARX-MPC controller are shown in Table 3. Based on these results, the effect of changing 
the control horizon, M for M: 2, 3, 4 and 5 indicated that M=2 gave the smallest error of output 
response with SSE value=424.04. From the influence of prediction horizon, P results, the SSE 
value was found to decrease by increasing the number of prediction horizon until P=11 with 
the smallest SSE value = 404.94. SSE values shown in Table 3 demonstrate that adjusting the 
elements of the wk and rk weighting matrix can improve the control performance. The value of 
wk= 0.1 and rk = 1 had resulted in the smallest error with SSE=386.45. Therefore, the best tuning 
parameters for the NARX-MPC controller were P=11; M=2; wk = 0.1 and rk= 1.  
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Fig. 6. Input output data for NARX model identification 

 

Model Training Validation1 Validation2 

(nu,ny) mse sse mse sse mse sse 

0,1 
1,1 
2,1 
1,2 
2,2 
3,2 
2,3 

0.0205 
0.0202 
0.0194 
0.0025 
0.0026 
0.0024 
0.0024 

6.1654 
6.0663 
5.8419 
0.7512 
0.7759 
0.7289 
0.7143 

0.0285 
0.0307 
0.0392 
0.0034 
0.0029 
0.0035 
0.0033 

8.5909 
9.2556 
11.8036 
1.0114 
0.8639 
1.0625 
0.9930 

0.0254 
0.0251 
0.0266 
0.0059 
0.0038 
0.0097 
0.0064 

7.6357 
7.5405 
8.0157 
1.7780 
1.1566 
2.9141 
1.9212 

Table 2. MSE and SSE values of NARX model for different number of nu and ny 
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Fig. 7. Graphical error of identification for the training and validation of estimated NARX 
model 

 

Tuning Parameter SSE Tuning Parameter SSE 

M=2 

M=3 

M =4 

M=5 
 

with P= 7; wk= 1; rk= 1 

424.04 

511.35 

505.26 

509.95 

wk= 10 

wk= 1 

wk= 0.1 

wk= 0.01 
 

with P= 11; M= 2; rk = 1 

410.13 

404.94 

386.45 

439.37 

P =7  

P =10  

P =11  

P =12 
 

with M= 2; wk= 1; rk= 1 

424.04 

405.31 

404.94 

406.06 

 

rk = 10 

rk = 1 

rk= 0.1 

rk = 0.01 
 

with P =11; M=2; wk=0.1 

439.23 

386.45 

407.18 

410.02 

Table 3. Tuning parameters and SSE criteria for applied controllers in set-point tracking 
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The responses obtained from the NARX-MPC and the IMC-PID controllers with parameter 
tuning, Kc=8.3; TI=10.2; TD=2.55 (Zulkeflee & Aziz, 2009) during the set-point tracking are 
shown in Fig. 8. The results show that the NARX-MPC controller had driven the process 
output to the desired set-point with a fast response time (10 minutes) and no overshoot or 
oscillatory response with SSE value = 386.45. In comparison, the output response for the 
unconstrained IMC-PID controller only reached the set-point after 25 minutes and had 
shown smooth and no overshoot response with SSE value = 402.24. However, in terms of 
input variable, the output response for the IMC-PID controller has shown large deviations 
as compared to the NARX-MPC. Normally, actuator saturation is among the most conventional 
and notable problem in control system designs and the IMC-PID controller did not take this into 
consideration. Concerning to this matter, an alternative to set a constraint value for the IMC-
PID manipulated variable has been developed. As a result, the new IMC-PID control 
variable with constraint had resulted in higher overshoot with a settling time of about 18 
minutes with SSE=457.12.  
 

 

Fig. 8. Control response of NARX-MPC and IMC-PID controllers for set-point tracking with 
their respective manipulated variable action. 
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With respect to the conversion of ester, the implementation of the NARX-MPC controller led 

to a higher conversion of Citronellyl laurate (95% conversion) as compared to the IMC-PID, 

with 90% at time=150min (see Fig. 9). Hence, it has been proven that the NARX-MPC is far 

better than the IMC-PID control scheme. 

 
 
 
 
 

 
 
 
 

Fig. 9. Profile of ester conversion for NARX-MPC, IMC-PID-Unconstraint and IMC-PIC 
controllers. 

With a view to set-point changing (see Fig. 10), the responses of the NARX-MPC and IMC-

PID for set-point change have been varied from 310K to 315K at t=25min. The NARX-MPC 

was found to drive the output response faster than the IMC-PID controller with settling 

time, t= 45min and had shown no overshoot response with SSE value = 352.17. On the other 

hand, the limitation of input constraints for IMC-PID was evidenced in the poor output 

response with some overshoot and longer settling time, t= 60min (SSE=391.78). These results 

showed that NARX-MPC response controller had managed to cope with the set-point 

change better than the IMC-PID controllers. 

Fig. 11 shows the NARX-MPC and the IMC-PID responses for 10% load change (jacket 

temperature) from the nominal value at t=25min. The NARX-MPC was found to drive the 

output response faster than the IMC-PID controller. As can be seen in the lower axes of Fig 

9, the input variable response for the IMC-PID had varied extremely as compared to the 

input variable from NARX-MPC. From the results, it was concluded that the NARX-MPC 

controller with SSE=10.80 was able to reject the effect of disturbance better than the IMC-

PID with SSE=32.94.  
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Fig. 10. Control response of NARX-MPC and IMC-PID controllers for set-point changing 
with their respective manipulated variable action. 

The performance of the NARX-MPC and the IMC-PID controllers was also evaluated under 

a robustness test associated with a model parameter mismatch condition. The tests were;  

• Test 1: A 30% increase for the heat of reaction, from 16.73 KJ to 21.75 KJ. It represented a 

change in the operating conditions that could be caused by a behavioral phase of the 

system. 

• Test 2: Reduction of heat transfer coefficient from 2.857 J/s m2 K to 2.143 J/s m2 K, 

which was a 25 % decrease. This test simulated a change in heat transfer that could be 

expected due to the fouling of the heat transfer surfaces. 

• Test 3: A 50% decrease of the inhibition activation energy, from 249.94 J mol/K to 

124.97 J mol/K. This test represented a change in the rate of reaction that could be 

expected due to the deactivation of catalyst. 

• Test 4: Simultaneous changes in heat of reaction, heat transfer coefficient and inhibition 

activation energy based on previous tests. This test represented the realistic operation of 

an actual reactive batch reactor process which would involve more than one input 

variable changes at one time. 
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Fig. 11. Control response of NARX-MPC and IMC-PID controllers for load change with their 
respective manipulated variable action. 

Fig.12- Fig.15 have shown the comparison of both IMC-PID and NARX-MPC control 
scheme’s response for the reactor temperature and their respective manipulated variable 
action for robustness test 1 to test 4 severally. As can be seen in Fig. 12- Fig. 15, in all tests, 
the time required for the IMC-PID controllers to track the set-point is greater compared to 
the NARX-MPC controller. Nevertheless, NARX-MPC still shows good profile of 
manipulated variable, maintaining its good performance. The SSE values for the entire 
robustness test are summarized in Table 4. These SSE values shows that both controllers 
manage to compensate with the robustness. However, the error values indicated that the 
NARX-MPC still gives better performance compared to the both IMC-PID controllers. 
 

Controller Test 1 Test 2 Test 3 Test 4 

NARX-MPC 415.89 405.37 457.21 481.72 

IMC-PID 546.64 521.47 547.13 593.46 

Table 4. SSE value of NARX-MPC and IMC-PID for robustness test 
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Fig. 12. Control response of NARX-MPC and IMC-PID controllers for robustness Test 1 with 
their respective manipulated variable action. 
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Fig. 13. Control response of NARX-MPC and IMC-PID controllers for robustness Test 2 with 
their respective manipulated variable action. 
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Fig. 14. Control response of NARX-MPC and IMC-PID controllers for robustness Test 3 with 
their respective manipulated variable action. 
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Fig. 15. Control response of NARX-MPC and IMC-PID controllers for robustness Test 4 with 
their respective manipulated variable action. 
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6. Conclusion 

In this work, the NARX-MPC controller for the Batch Citronellyl Laurate Esterification 
Reactor has been developed. The validated first principle model was used as a process 
model to generate data required for NARX model identification. The NARX model with nu 
=1 and ny= 2 was chosen since it gave the best performance with MSE and SSE equal to 
0.0025 and 0.7152 respectively. Finally, the performances of the NARX-MPC controller were 
evaluated for set-point tracking, set-point change, load change and robustness test. For all 
cases, the developed controller strategy (NARX-MPC) has been proven to perform well in 
controlling the temperature of the batch esterification reactor, as compared to the IMC-PID 
controllers. 
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