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1. Introduction 

The industrial processes are governed generally by general principles of the physics and 
chemistry. With the aid of data acquisition systems supported in microprocessor it is 
possible to obtain real data of the industrial process, that it characterizes in detail his 
dynamics and input-output dependency. Several methods of identification allow, from these 
data, to obtain linear and nonlinear models of these processes (Rossiter, 2003; Morari, 1994); 
which are the base to predict the process behaviour within all the family of the model based 
predictive controllers (MPC).  
Diverse algorithms MPC have demonstrated its effectiveness in those control loops 
characterized by strong nonlinearities, difficult dynamic, inverse answers and great delay; 
that they are generally those of greater influence in the final product quality and the process 
efficiency (Allgöwer et al., 2004; Qin & Badgwell 2003). 
One of the most important steps in the implementation of a MPC is just the obtaining of the 
model that can predict with reliability the future behaviour of the controlled variable, like 
answer to a predefined optimized control action (Rawlings 2000). This work applies two 
kind of MPC: (i) Classical Model-Based Predictive Control and (ii) Neural Network Model 
Predictive Control (NNMPC).  
The classical MPC strategy uses a discrete model obtained from general phenomenological 
model of the feed-batch crystallization process, consisting of mass, energy and population 
balance. The NNMPC strategy uses to obtain a neural network, the training algorithms 
proposed in the Neural Network Toolbox of MatLab (version 7.04) (Bemporad et al., 2005). 
In this particular case it is analyzed a fed-batch sugar crystallization process, in this process 
there is abundant information, detailed mathematical models and real industrial data. 
(Chorão, 1995; Feyo de Azevedo & Gonçalves 1988; Georgieva et al., 2003). This fact 
motivated the use of the neural networks to model the process and to propose a neural 
network MPC (NNMPC) that considers the process like a gray box, of which has input-
output information and the historical experience of he process behaviour. 

2. Batch sugar crystallization process 

2.1 General description 
The operation of crystallization is applied in the sugar industry to obtain the sucrose 
dissolved in the extracted juice of the sugar cane or the sugar beet basically.  
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Typical industrial fed-batch evaporative sugar crystallization is performed in a vacuum pan 
crystallizer. The reactor has a cylindrical form with volume that can vary between 20-60 m3. 
The feed system is usually equipped with an extra water input to dilute the sugar solution if 
necessary. The heat transfer system is a calandria type, to permit the heat interchange 
between steam and suspension. The vacuum pressure in the pan is generated by the contact 
barometric condenser and the pan is equipped with a mechanical agitator to keep the 
suspension homogeneous. The operation is conducted in a fed-batch mode with an average 
duration of a cycle about 90 minutes.  
Sugar crystallization occurs through the mechanisms of nucleation, growth and 
agglomeration. In the course of production, the crystallization phenomenon is driven by two 
mechanisms (Jancic & Grootscholten, 1984): i) mass transfer from dissolved sucrose to 
crystal surface and ii) heat transfer in the calandria. Shortly before the grain setting and 
continuing during the beginning of the crystallization phase, the available crystalline surface 
to deposit the molecule of sucrose is much smaller than the mass of dissolved sucrose. 
During this period the evaporation rate is high, the crystal area/mass of crystallized sucrose 
rate is very low, therefore the process is driven by the mass transfer. The supersaturation 
tends to increase and if not controlled, it often achieves the undesirable zone of secondary 
crystal nucleation. Later on, when the total crystal area and the crystallization capacity 
increases, the crystal area/mass of crystallized sucrose rate gets high and the process is 
driven by the heat transfer. 
The process objectives are to maximize the speed of crystal growth, keeping high the 

produced sugar quality and minimizing the costs and losses. These objectives must be 

fulfilled without occurrence of secondary nucleation or agglomeration.  The sugar quality is 

evaluated by the particle size distribution (PSD) at the end of the process which is quantified 

by two parameters - the final average (in mass) particle size (MA) and the final coefficient of 

particle variation (CV). The main challenge of the sugar production is the large batch to 

batch variation of the final PSD. This lack of process repeatability is caused mainly by 

improper control policy and results in product recycling and loss increase. The sugar 

production is heuristically operated, and while the traditionally applied PI(D) controllers 

are still the preferred solutions they usually lead to energy and material loss that can easily 

be reduced if an optimized operation policy is implemented. These problems constitute the 

main motivation for the operation strategy formulated in the next section. 

2.2 Crystallization model 
The general phenomenological model of the fed-batch crystallization process consists of 

mass, energy and population balances, including the relevant kinetic rates for nucleation, 

linear growth and agglomeration (Simoglou et al., 2005). While the mass and energy 

balances are common expressions in many chemical process models, the population balance 

is related with the crystallization phenomenon, which is still an open modelling problem. 

The Appendix A shows a detailed phenomenological model for crystallization process.  

2.3 Problem formulation 
The final values of the crystal size distribution function (CSD) parameters: mass averaged 
crystal size (MA) and coefficient of variation (CV) are the best indicators of the quality and 
efficiency of the crystallization process. The direct measurement and control of these 
parameters are very difficult to make actually, in fact there are no references of its industrial 
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implementation. The most used solution in the sugar industry consists of establishing a 
strategy that manipulate other variables; which allows to arrive at the end of the process 
with acceptable values in the CSD parameters.  
The batch operation imposes to the process frequent operational changes that depend of: the 
quality of the raw material, disturbances in the work conditions and market demand 
changes. The previous problem, the nonlinearities and the restrictions imposed to the 
process motivated the use a nonlinear MPC (NMPC).  
When a NMPC algorithm is applied, the first challenge consists of obtaining the model to 
use, which must be viable and trustworthy. Although the sugar crystallization process has 
been studied in depth and efficient mathematical models exist to represent it, these must be 
validated and be fit before its application in a NMPC algorithm, which will cause frequent 
updates if the process is batch.  
Like an alternative, in this work it is tried to demonstrate the efficiency that has the use of 
the neuronal networks in a NMPC, where the neural networks could be trained from 
industrial data with the input-output answer of the process. 

3. Problem solution 

Sugar production is characterized by strongly non-linear and non-stationary dynamics and 

goes naturally through a sequence of relatively independent stages: charging, concentration, 

seeding, setting the grain, crystallization (the main phase), tightening and discharge 

(Georgieva et al., 2003). Therefore the operation strategy is formulated as a cascade of 

individual control loops for each of the stages (Fig. 1). The feedback control policy is based 

on measurements of the flowrate, the temperature, the pressure, the stirrer power and the 

supersaturation (by a refractometer).  Measurements of these variables are usually available 

for a conventional crystallizer. 

3.1 Operation strategy 
Sugar production is still a very heuristically operated process, with classical proportional 

integral and eventually derivative (PID) controllers being the most typical solution. The 

different phases of the sugar production are comparatively independent and moved by 

distinct driving forces, thus a single controller can hardly be effective for the complete 

process. Instead, individual controllers for each stage where it seems appropriate, was the 

adopted framework (Fig. 1).  See Table 1 for more details on the formulated operation 

strategy. 

In the present study, the control actions are performed by manipulating the valves of the 

liquor/syrup feed flowrates (Ff) and the steam flowrate (Fs),  while the volume of massecuite 

(Vm), the supersaturation (S) and the current of the agitator (IA) are the controlled variables. 

This choice is completely inspired by the industrial practice in several refineries.  

Charging (stage 1): During the first stage the crystallizer is fed with liquor until it covers 

approximately 40 % of the vessel height. The process starts with vacuum pressure of around 

1 bar (equal to the atmospheric pressure) and reduces it up to 0.23 bar. When the vacuum 

pressure reaches 0.5 bar, the feed valve is completely open such that the feed flowrate is 

kept at its maximum value. When the liquor covers 40 % of the vessel height, the feed valve 

is closed and the vacuum pressure needs some time to stabilize around the value of 0.23 bar 

before the concentration stage starts. 
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Fig. 1. Cascade MPC control - strategy 

Concentration (stage 2): Once the vacuum pressure stabilizes, the stirrer is switched on and 
the concentration begins. In order to guarantee unperturbed operation of the barometric 
condenser and the steam production boiler, the steam flowrate must increase slowly (from 0 
to 2 kg/s, in two minutes approximately). The concentration of the dissolved sucrose by 
evaporation under vacuum results in volume reduction. However, for technological reasons, 
the minimum suspension level of the pan must be above the calandria. Therefore a feed 
flowrate action is required to control the level (the volume) of the pan and this constitutes 
the first control loop. In this stage, the supersaturation increases rapidly (at about a rate of 
0.025 per min.). When it reaches a value of 1.06, the feeding is stopped and the steam 
flowrate is reduced slowly to 1.4 kg/s, with the same speed as it was increased. The 
concentration stage is over when the supersaturation reaches the value of 1.11.  
Seeding (stage 3): At this moment seed crystals are introduced into the pan to provoke 
crystallization. This stage is rather unstable and to prevent seed crystals from dissolution in 
the liquor, the feed valve must be closed and the steam flowrate kept at its minimum for a 
short period (about 2 min.). Keeping these conditions unchanged contributes to the 
formation of the grain and is also important for the final crystal size distribution. The 
supersaturation continues naturally to increase but usually no control action is required.  
Crystallization with liquor (stage 4): During this stage the supersaturation is first 
controlled by a proper feeding to be around a set point of 1.15. This constitutes the second 
control loop.  At the beginning of this stage, the mass transfer is the driving crystallization 
force, the crystallization rate increases and the controller usually reduces the feed flowrate 
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Stage Action Control 

Charge 

The steam valve is closed and the stirrer is off.  
The vacuum pressure changes from 1 to 0.23 bar. 
The vacuum pressure reaches 0.5 bar, feeding 
starts with max rate. 
Liquor covers 40 % of the vessel height. 

No control 
The feed valve is 
completely open 

Concentration 

The vacuum pressure stabilizes around 0.23 bar. 
The stirrer is on. 
The volume is kept constant.  
The steam flowrate increases to 2 kg/s  
The supersaturation reaches 1.06, the feeding is 
closed, the steam flowrate is reduced to 1.4 kg/s 

Control loop 1  
Controlled 
variable: Volume; 
Manipulated 
variable: liquor 
feed flowrate   

Seeding and 
setting the 
grain 

The supersaturation reaches 1.11. 
Seed crystals are introduced. 
The steam flowrate is kept at the minimum for 
two minutes. 

No control  
The feed valve is 
closed 

Crystallization 
with liquor 
(phase 1) 

The steam flowrate is kept around 1.4 kg/s.  
The supersaturation is controlled at the set point 
1.15. 

Control loop 2 
Controlled 
variable: 
supersaturation 
Manipulated 
variable: liquor 
feed flowrate 

Crystallization 
with liquor  
(phase 2) 

The volume of crystallizer reaches ≈ 22 m3. 
The feed valve is closed. 
The supersaturation is controlled at the set point 
1.15. 
The stirrer power reaches 20.5 A. 

Control loop 3 
Controlled 
variable: 
supersaturation 
Manipulated 
variable: steam 
flowrate 

Crystallization 
with syrup 

The steam flowrate is kept around the maximum 
of 2.75 kg/s. (hard constraint).  
The volume fraction of crystals is kept at the set 
point 0.45.   
The volume reaches its maximum value (30 m3)  
The feed valve is close. 

Control loop 4 
Controlled 
variable: volume 
fraction of crystals. 
Manipulated 
variable: syrup 
feed flowrate 

Tightening 

The stirrer power reaches the maximum value of 
50 A (hard constraint). 
The steam valve is closed.  
The stirrer and the barometric condenser are 
stopped. 

No control  

Table 1. Summary of the sugar crystallization operation strategy. 
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to maintain the reference value of the supersaturation. When all liquor quantity is 
introduced, the feeding is stopped and the supersaturation is now kept at the same set point 
of 1.15 by the steam flowrate as the manipulated variable. This constitutes the third  control 
loop. The heat transfer is now the driving crystallization force. A typical problem of this 
control loop is that at the end of this stage the steam flowrate achieves its maximum value of 
2.75 kg/s but it is not sufficient to keep the supersaturation at the same reference value 
therefore a reduction of the set point is required. The stage is over when the stirrer power 
reaches the value 20.5 A. 
Crystallization with syrup (stage 5): A stirrer power of 20.5A corresponds to a volume 
fraction of crystals equal to 0.4. At this moment the feed valve is reopened, but now a juice 
with less purity (termed syrup) is introduced into the pan until the maximum volume (30 
m3) is reached. The control objective is to maintain the volume fraction of crystals around the 
set point of 0.45 by a proper syrup feeding. This constitutes the fourth control loop.    
Tightening (stage 6): Once the pan is full the feeding is closed. The tightening stage consists 
principally in waiting until the suspension reaches the reference consistency, which 
corresponds to a volume fraction of crystals equal to 0.5. The supersaturation is not a 
controlled variable at this stage because due to the current conditions in the crystallizer, the 
crystallization rate is high and it prevents the supersaturation of going out of the metastable 
zone.  The stage is over when the stirrer power reaches the maximum value of 50 A. The 
steam valve is closed, the water pump of the barometric condenser and the stirrer are turned 
off. Now the suspension is ready to be unloaded and centrifuged. 

4. Model based predictive control 

The term model-based predictive control (MPC) does not refer to a particular control method, 
instead it corresponds to a general control approach (Rossiter, 2003). The MPC concept, 
introduced in late seventies, nowadays has evolved to a mature level and became an attractive 
control strategy implemented in a variety of process industries (Camacho & Bordons, 2004). 
The main difference between the MPC configurations is the model used to predict the future 
behavior of the process or the implemented optimization procedure. First the MPC based on 
linear models gained popularity (Morari, 1994) as an industrial alternative to the classical 
proportional-integral-derivative (PID) control and later on nonlinear cases as reactive 
distillation columns (Balasubramhanya & Doyle, 2000) and polymerization reactors (Seki et al., 
2001) were reported as successfully MPC controlled processes. 

4.1 Classical model based predictive control 
The main difference between MPC configurations is the model used to predict the future 
behaviour of the process and the optimization procedure. Nonlinear model predictive 
control (NMPC) is an optimisation-based multivariable constrained control technique that 
uses a nonlinear dynamic model for the prediction of the process outputs (Qin & Badgwell, 
2003). At each sampling time k the model predicts future process responses to potential 
control signals over the prediction horizon (Hp). The predictions are supplied to an 
optimization procedure, to determine the values of the control action over a specified 
control horizon (Hc) that minimizes the following performance index: 

 
[ ]

( ) ( )
min max

2 2
1 2

( ), ( 1),..... ( )
1 1

ˆmin ( ) ( ) ( 1) ( 2)
p c

c c c c

H H

r c c
u u k u k u H u

k k

J y k y k u k u kλ λ
≤ + ≤

= =

= − − − − −    (1) 
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Subject to the following constrains 

 min maxcu u u≤ ≤  (2) 

 min maxu u uΔ ≤ Δ ≤ Δ  (3) 

 min maxpy y y≤ ≤  (4) 

Where minu and maxu  are the limits of the control inputs, minuΔ and maxuΔ  are the 

minimum and the maximum values of the rate-of-change of the inputs and miny and maxy  

are the minimum and maximum values of the process outputs.  

Hp is the number of time steps over which the prediction errors are minimized and the 

control horizon Hc is the number of time steps over which the control increments are 

minimized, ry is the desired response (the reference) and ŷ  is the predicted process output 

(Diehl et al., 2002). ( ), ( 1), ( )c c c cu k u k u H+ are tentative future values of the control input, 

which are parameterized as peace wise constant. The length of the prediction horizon is 

crucial for achieving tracking and stability. For small values of Hp the tracking deteriorates 

but for high Hp values the bang-bang behavior of the process input may be a real problem. 

The MPC controller requires a significant amount of on-line computation, since the 

optimization (1) is performed at each sample time to compute the optimal control input. At 

each step only the first control action is implemented to the process, the prediction horizon 

is shifted or shrunk by usually one sampling time into the future, and the previous steps are 

repeated (Rossiter, 2003). 1λ  and 2λ are the output and the input  weights respectively, 

which determine the contribution of each of the components of the performance index (1).  

4.2 Neural network model predictive control 
The need for neural networks arises when dealing with non-linear systems for which the 
linear controllers and models do not satisfy. Two main achievements contributed to the 
increasing popularity of the NNs: (i) The proof of their universal approximation properties 
and the development of suitable algorithms for NN training as the backpropagation and (ii) 
The adaptation of the Levenberg-Marquard algorithm for NN optimization.   
The most used NN structures are Feedforward networks (FFNN) and Recurrent (RNN) 
ones. The RNNs offer a better suited tool for nonlinear system modelling and is 
implemented in this work (Fig.2). The Levenberg-Marquard (LM) algorithm was preferred 
as the training method due to its advantages in terms of execution time and robustness. 
Since the LM algorithm requires a lot of memory, a powerful (in terms of memory) 
computer is the main condition for successful training. In order to solve the problem of 
several local minima, that is typical for all derivative based optimization algorithms 
(including the LM method), we have repeated several time the optimization specifying 
different starting points. 
The individual stages of the crystallization process are approximated by different RNNs of 
the type shown in Fig. 2. Tangent sigmoid hyperbolic activation functions are the hidden 
computational nodes (Layer 1) and a linear function is located at the output (Layer 2). Each 
NN has two vector inputs (r and p) formed by past values of the process input and the NN 
output respectively. The architecture of the NN models trained to represent different 
process stages is summarized as follows: 
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Fig. 2. Neural network architecture 

 [ ] [ ], ( 1), ( 2), ( 1), ( 2)NN c c NN NNu r p u k u k y k y k= = − − − −  (5) 

 11 12 1x W r W p b= + +  (6) 

 ( ) ( )1 /x x x xn e e e e− −= − +  (7) 

 2 21 1 2n w n b= +  (8) 

Where 2
11

mW R ×∈ , 2
12

mW R ×∈ , 1
21

mw R ×∈ , 1
1

mb R ×∈ , 2b R∈ are the network weights (in 

matrix form) to be adjusted during the NN training, m is the number of nodes in the hidden 
layer.  
Since the objective is to study the influence of the NNs on the controller performance, a 
number of NN models is considered based on different training data sheets. 

• Case 1 (Generated data): Randomly generated bounded inputs ( iu ) are introduced to a 

simulator of a general evaporative sugar crystallization process introduced in  

Georgieva et al., 2003. It is a system of nonlinear differential equations for the mass and 

energy balances with the operation parameters computed based on empirical relations 

(for no stationary parameters) or keeping constant values (for stationary parameters). 

The simulator responses are recorded ( iy ) and the respective mean values are 

computed ( i,meanu , i,meany ). Then the NN is trained supplying as inputs i i,meanu u−  and 

as target outputs i i,meany y− . 

• Case 2: Industrial data: The NN is trained with real industrial data.  In order to extract 
the underlying nonlinear process dynamics a prepossessing of the initial industrial data 
was performed. From the complete time series corresponding to the input signal of one 
stage only the portion that really excites the process output of the same stage is 
extracted. Hence, long periods of constant (steady-state) behavior are discarded. Since, 
the steady-state periods for normal operation are usually preceded by transient 
intervals, the data base constructed consists (in average) of 60-70% of transient period 
data. A number of sub cases are considered.  

• Case 2.1: Industrial data of two batches is used for NN training.  

• Case 2.2: Industrial data of four batches is used for NN training.  

• Case 2.3: Industrial data of six batches is used for NN training.  
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Fig. 3. Case1: NN data generation 

4.3 Selection of MPC parameters: Hp, Hc, λ2 

The choice of pH  is related with the sampling period ( tΔ ) of the digital control 

implementation, which in its turn is a function of the settling time ts (the time before 

entering into the 5% around the set-point) of the closed loop system. As a rule of thumb, it is 

suggested tΔ  to be chosen at least 10 times smaller than ts, (Soeterboek, 1992). Hence, the 

prediction horizon can be chosen as pH = round-to-integer(ts/ tΔ ). It is well known that the 

smaller the sampling time, the better can a reference trajectory be tracked or a disturbance 

rejected. However, choosing a small sampling time yields a large prediction horizon. In 

order to compute the optimal control input, the optimization (1) is performed at each 

sampling time, therefore MPC controller requires a significant amount of on-line 

computation. This can cause problems related with large amount of computer memory 

required and additional numerical problems due to the large prediction horizon. The 

introduction of the ET MPC as in (7) serves as a compromise between these conflicting 

issues and reduces significantly the computational efforts.  

Parameters 1λ  and 2λ  determine the contribution (the weight) of each term of the 

performance index, the output error (e) and the control increments ( uΔ ). In this work the 

parameter 1λ  is set to the normalized value of 1, while the choice of 2λ  is based on the 

following empirical expression: 

 ( )2
max min 2 max 100u u e Pλ− ⋅ = ⋅  (9) 

where P defines the desired contribution  of the second term in (1) (0% ≤ P ≤100%) and 

 ( ) ( )( )2 2
max max minmax ,e ref y ref y= − −  (10) 

The intuition behind (9-10) is to make the two terms of (1) compatible when they are not 

normalized and to overcome the problem of different numerical ranges for the two terms. 

Table 2 summarize the set of MPC parameters used in the four control loops define in the 

section 3. 
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Control 
loop (CL) 

ts (s) 
settling

time 

tΔ (s) 

sampling
period 

Hp 
prediction

horizon 

Hc  
control
horizon

2λ  

weight

Controlled 
variable 

Set-point 

CL1 40 4 10 2 1000 Volume 12.15 

CL2 40 4 10 2 0.1 Supersaturation 1.15 

CL3 60 4 15 2 0.01 Supersaturation 1.15 

CL4 80 4 20 2 10000
Fraction 

of crystals 
0.43 

Table 2. MPC design parameters for the control loops define in Table 1 

5. PID controllers 

The PID parameters were tuned, where pk , iτ , dτ  are related with the general PID 

terminology as follows (Aström & Hägglund, 1995): 

 ( )
0

( ) ( ) ( ) ( ) ( 1)
k

d
p

i i

t
u t k K e t k e t i e t k e t k

t

τ

τ =

 Δ
+ = + + ⋅ + + ⋅ + − + − 

Δ 
   (11) 

Since the process is nonlinear, classical (linear) tuning procedures were substituted by a 
numerical optimization of the integral (or sum in the discrete version) of the absolute error 
(IAE): 

 
1

( ) ( )
N

p
k

IAE ref t k y t k
=

= + − +  (12) 

Equation (12) was minimized in a closed loop framework between the discrete process 
model and the PID controller. For each parameter an interval of possible values was defined 
based on empirical knowledge and the process operator expertise. A number of gradient 
(Newton-like) optimization methods were employed to compute the final values of each 
controllers summarized in Table 1. All methods concluded that the derivative part of the 
controller is not necessary. Hence, PI controllers were analyzed in the next tests.  
 

 Control loop 1 Control loop 2 Control loop 3 Control loop 4 

pk  0.05 -0.5 20 -0.01 

iτ  30 40 10 70 

dτ  0 0 0 0 

Table 3. Optimized PID parameters for the control loops define in Table 1 

6. Discussion of results 

The operation strategy, summarized in Table 1 and implemented by a sequence of Classical- 
MPC, NNMPC or PI controllers is comparatively tested in Matlab environment. The output 
predictions are provided either by a simplified discrete model (with the main operation 
parameters kept constant) or by a trained ANN model (5-8). A process simulator was 
developed based on a detailed phenomenological model (Georgieva et al., 2003). Realistic 
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disturbances and noise are introduced substituting the analytical expressions for the 
vacuum pressure, brix and temperature of the feed flow, pressure and temperature of the 
steam with original industrial data (without any preprocessing(Scenario-2)).  The test is 
implemented for two different scenarios of work.  

• Scenario - 1: The simulation uses, like process, the set of equations differentials  
proposed in (Georgieva et al. 2003) with empirical operation parameters.   

• Scenario - 2: The simulation uses, like process, the set of equations differentials  
proposed in (Georgieva et al. 2003), but are used like operation parameter e real 
industrial data batch not used in neural network training. 

Time trajectories of the controlled and the manipulated variables for the control loop 1, 2 
and 4 of one batch (Batch 1) are depicted in Figs. 4-6. The three controllers guarantee good 
set point tracking.  However, the quality of the produced sugar is evaluated only at the 
process end by the crystal size distribution (CSD) parameters, namely AM and CV. The 
results are summarized in Table 4 and both classical and NNPMC outperform the PI. Our 
general conclusion is that the main benefits of the MPC strategy are with respect to the batch 
end point performance.  
 
 
 
 
 
 

 
 
 

Fig. 4. Controlled (Volume of massecuite) and control variables (Ff- feed flowrate) over time 
for the 1st control loop. 
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Fig. 5. Controlled (Supersaturation) and control variables (Ff- feed flowrate) over time for 
the 2nd control loop. 

 

 

Fig. 6. Controlled (Volume fraction of crystals) and control variables (Ff- feed flowrate) over 
time for the 4th control loop. 
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Performance  measures Classical MPC NN-MPC PI 

AM (mm)  (reference 0.56) 0.586 0.584 0.590

CV (%) 32.17 31.13 32.96

Table 4-1. Batch end point performance measures  (Batch - 1) 

 

Performance  measures 
Classical 

MPC 
NN-
MPC 

PI 

AM (mm)  (reference 0.56) 0.615 0.609 0.613 

CV (%) 29.39 30.28 31.14 

Table 4-2. Batch end point performance measures  (Batch - 2) 

 

Performance  measures 
Classical 

MPC 
NN-
MPC 

PI 

AM (mm)  (reference 0.56) 0.636 0.631 0.639 

CV (%) 28.74 29.42 29.23 

Table 4-3. Batch end point performance measures  (Batch - 3) 

7. Conclusion 

With the results obtained in this work it has been demonstrated that algorithm NNMPC is a 
viable solution to control nonlinear complexes processes, still in the case that only exists 
input-output information of the process.  
An aspect very important to obtain successful results with NNMPC is the representative 
quality of the available data, which was demonstrated with the results obtained in the third 
control loop analyzed.  

The weighting factor 2λ   has a crucial paper in the good NNMPC performance. A constrain 

very hard can impose that the control signal can not follow the dynamics of the process, but a 

very soft constrain can cause instability in the control signal, when the model is not precise. 
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9. Appendix A. Crystallization model 

Sugar crystallization occurs through the mechanisms of nucleation, growth and 
agglomeration. The general phenomenological model of the fed-batch crystallization process 
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consists of mass, energy and population balances, including the relevant kinetic rates for 
nucleation, linear growth and agglomeration [Ilchmann, et al., 1994]. While the mass and 
energy balances are common expressions in many chemical process models, the population 
balance is related with the crystallization phenomenon, which is still an open modeling 
problem.  

Mass balance 

The mass of all participating solid and dissolved substances are included in a set of 

conservation mass balance equations:  

 1 1 0 0( ( ), ( ), ( )), , (0)fM f M t F t S t t t t M M= ≤ ≤ =  (A-1) 

where ( ) qM t ∈ℜ  and ( ) mF t ∈ℜ  are the mass and the flow rate vectors, with q and m 

dimensions respectively, and ft is the final batch time. 1
1( ) rS t ∈ℜ  is the vector of physical 

time dependent parameters as density, viscosity, purity, etc. For the process in hand, the 

detailed form of the macro-model (A1) is as follows  

 sol a i wM M M M= + +   (A-2) 

 m sol cM M M= +   (A-3) 

 1
dMw F ρ B F ρ Jf f f w w vapdt

 = − + − 
 

  (A-4) 

 ( )1i
f f f f

dM
F B Pur

dt
ρ= ⋅ ⋅ ⋅ −   (A-5) 

 
a

f f f f cris

dM
F B Pur J

dt
ρ= ⋅ ⋅ ⋅ −   (A-6) 

 
c

cris

dM
J

dt
=   (A-7) 

 
c sol

m
sol

M M
V

ρ

+
=   (A-8) 

 ( )( )vap vap m w vac
vap

W Q
J K T T BPE

λ

+
= + ⋅ − −    (A-9) 

Energy balance 

The general energy balance model is 

 
m

cris f vap

dT
aJ bF cJ d

dt
= + + +   (A-10) 
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where parameters a, b, c and d incorporate the enthalpy terms and specific heat capacities 
derived as time dependent functions of physical and thermodynamic properties as 
follows 

 

1
(1 ) sol sol sol

sol c sol
sol sol sol

sol sol c c

dH Pur dH
H H B

dB B dPur
a

M Cp M Cp

−
− + − + ⋅

=
⋅ + ⋅

 (A-11) 

 

( )
( )

f f solsol sol
f f sol f sol

sol sol sol

sol sol c c

B Pur PurdH dH
H H B B

dB B dPur
b

M Cp M Cp

ρ
 −
 − + − + ⋅
 
 =

⋅ + ⋅
 (A-12) 

 

sol
sol vap sol

sol

sol sol c c

dH
H H B

dB
c

M Cp M Cp

− − ⋅

=
⋅ + ⋅

  (A-13) 

 

( ) sol
w w w sol sol

sol

sol sol c c

dH
W Q F H H B

dB
d

M Cp M Cp

ρ+ + − +

=
⋅ + ⋅

  (A-14) 

 
229.7 4.6 0.075sol

m sol m m
sol

dH
T Pur T T

dB
= − + +   (A-15) 

 4.61sol
sol m

sol

dH
Bx T

dPur
=   (A-16) 

Population balance 

Mathematical representation of the crystallization rate can be achieved through basic mass 

transfer considerations or by writing a population balance represented by its moment 

equations. Employing a population balance is generally preferred since it allows to take into 

account initial experimental distributions and, most significantly, to consider complex 

mechanisms such as those of size dispersion and/or particle agglomeration/aggregation. 

The basic moments of the number-volume distribution function are 

 20
0 0

1
'

2

d
B

dt

µ
β µ= − ⋅ ⋅

     (A-17) 

 1
0v

d
G

dt

µ
µ= ⋅

    (A3-18) 

 22
1 12 'v

d
G

dt

µ
µ β µ= ⋅ ⋅ + ⋅

     (A3-19) 
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 23
2 23 3 'v

d
G

dt

µ
µ β µ= ⋅ ⋅ + ⋅ ⋅

     (A3-20) 

 1
cris c

d
J

dt

µ
ρ= ⋅


,  (A3-21) 

 

where 0B , G and 'β  are the kinetic variables nucleation rate, linear growth rate and the 

agglomeration kernel, respectively with the following mathematical descriptions  

 

0.53

12 0.51 1
0 2.894 10n m

v m

B K G V
k V

µ 
= ⋅ ⋅ ⋅ ⋅ 

⋅ 

   (A-22) 

 
1

2
'

ag

m

K G

V

µ
β

⋅ ⋅
=


  (A3-23) 

 
( )

( ) ( )( )57000
exp 1 exp 13.863 1 1 2

273
g sol

m m

v
G K S P

R T V

   
= ⋅ − ⋅ − ⋅ − − ⋅ + ⋅    +   

 (A-24) 

 

2/3

0

3v v

v
G k G

µ

 
= ⋅ ⋅ 

 
.  (A-25) 

The crystallization quality is evaluated by the particle size distribution (PSD) at the end of 
the process which is quantified by two parameters - the final average (in mass) particle size 
(AM) and the final coefficient of particle variation (CV) with the following definitions: 

 AM L=   (A-26) 

 CV
L

σ
=   (A-28) 

Where σ  and L are computed from: 

 

1/3

3
2

1 3

L

L

η

σ

 
 
 =    + ⋅     

  (A-29) 

 ( ) ( )
6 4 2

2 2 2 2
3 3 6 3 6 3 615 45 9 15 6 0

L L L

σ σ σ
η η η η η η η

     
⋅ ⋅ + ⋅ − ⋅ + ⋅ − ⋅ + − =     

     
  (A-30) 

In (A-29, A-30), jη represent moments of mass-size distribution functions, that are related to 

the moments of the number-volume distribution functions ( jµ  by the following 

relationships: 
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 2
3

1vk

µ
η

µ
=

⋅
,  (A-31) 

and 

 3
6 2

1vk

µ
η

µ
=

⋅
  (A3-32) 

Correlations for physical properties 

 s s sQ F Hα= ⋅ ⋅ Δ   (A-33) 

 
( )200 20

1000 1 0.036
54 160

f f f
f

f

Bx Bx T

T
ρ

 ⋅ +  −   = + ⋅ − ⋅
   −  

 (A-34) 

 4186.8 29.7 4.61 0.075f f f f f fCp Bx Bx Pur Bx T= − ⋅ + ⋅ ⋅ + ⋅ ⋅   (A-35) 

 f f fH Cp T= ⋅   (A-36) 

 
( )* 200 20

1000 1 0.036
54 160

sol sol m
sol

m

Bx Bx T

T
ρ

 ⋅ +  −
= + ⋅ − ⋅     −  

  (A-37) 

( ) ( )( )* 6 2 41000 1 exp 6.927 10 1.164 10 1sol sol sol sol solBx Bx Purρ ρ − − = + ⋅ − + − ⋅ ⋅ − ⋅ ⋅ ⋅ −    (A-38) 

 4186.8 29.7 4.61 0.075sol sol sol sol sol mCp Bx Bx Pur Bx T= − ⋅ + ⋅ ⋅ + ⋅ ⋅  (A-39) 

 sol sol mH Cp T= ⋅   (A-40) 

 
( )

sol c
m

c c c solw

ρ ρ
ρ

ρ ρ ρ

⋅
=

− ⋅ −
  (A-41) 

 
a

sol
a i

M
Pur

M M
=

+
 (A-42) 

 
a i

sol
sol

M M
B

M

+
=   (A-43) 

 100sol solBx B= ⋅   (A-44) 

2 3 2 6 3 8 464.447 8.222 10 1.66169 10 1.558 10 4.63 10sat m m m mBx T T T T− − − −= + ⋅ ⋅ + ⋅ ⋅ − ⋅ ⋅ − ⋅ ⋅  (A-45) 
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 ( ) ( )( ) ( )2* 1.129 0.284 1 2.333 0.0709 60 1sol m solS Pur T Pur= − ⋅ − + − ⋅ − ⋅ −  (A-46) 

 
100

100

sol

sol

sat
sat

sat

Bx

Bx
S

Bx
C

Bx

−
=

⋅
−

  (A-47) 

 ( ) ( )0.1 1 0.4 0.6 exp 0.24 1
100 100

sol sol
sat sol sol

sol sol

Bx Bx
C Pur Pur

Bx Bx

 
= ⋅ ⋅ − + + ⋅ − ⋅ ⋅ − 

− − 
 (A-48) 

 
c

c

M
v

ρ
=   (A-49) 

 
c

c
c sol

M
w

M M
=

+
  (A-50) 

 1163.2 3.488c mCp T= + ⋅   (A-51) 

 c c wH Cp T= ⋅   (A-52) 

 1016.7 0.57w wTρ = − ⋅   (A-53) 

 ( ) ( )0.413
( ) 122.551 exp 0.246w vac vac vacT P P= ⋅ − ⋅ ⋅   (A-54) 

 ( ) ( )0.2882
( ) 100.884 exp 1.203 10w s s sT P P−= ⋅ − ⋅ ⋅ ⋅   (A-55) 

 ( )( ) 2263.28 58.21 lnw vac vacPλ = − ⋅   (A-56) 

 ( )2257.51 85.95 lns sPλ = − ⋅   (A-57) 

 22323.3 4106.7w w wH T T= + ⋅ +   (A-58) 

 2
( ) ( ) ( )2323.3 4106.7w s w s w sH T T= + ⋅ +   (A-59) 

 ( )2491860 13270 1946.5 37.9s s s sH P P T= − ⋅ + + ⋅ ⋅   (A-60) 

 ( )2499980 24186 1891.1 106.1vac vac vac mH P P T= − ⋅ + + ⋅ ⋅   (A-61) 

 ( )s s w sH H HΔ = +   (A-62) 
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 ( ) ( )( )0.03 0.018 84
100

sol
sol w vac

sol

Bx
BPE Pur T

Bx

 
= − ⋅ ⋅ + ⋅  

− 
  (A-63) 

For more detailed presentation of the process model, refer to [Georgieva et al., 2003]. 

10. References 

Allgöwer, F., Findeisen, R. & Nagy, Z. K. (2004). Nonlinear model predicitve control: From 

theory to application. Journal of Chinese Institute of Chemical Engineers, 35 (3), 

299-315. 

Aström, K. J., Hägglund, T. (1995). Pid controllers : theory, design, and tuning. North 

Carolina: Research Triangle Park, Instrument Society of America. 

Balasubramhanya, L. S., Doyle, F. J. (2000). Nonlinear model-based control of a batch 

reactive distillation column. Journal of Process Control, 10, 209-218. 

Bemporad, A., Morari, M. & Ricker, N. L. (2005). User's Guide: Model predictive control 

toolbox for use with MatLab: The MathWorks Inc. 

Camacho, E. F., Bordons, C. (2004). Model predictive control in the process industry. 

London: Springer-Verlag. 

Chorão, J. M. N. 1995. Operação assistida por comutador dum cristalizador industrial de 

açúcar, Ph. D. Tesis, Faculdade de Engenharia, Departamento de Eng. Química, 

Universidade de Porto, Porto 

Diehl, M., H. G. Booc, J. P. Schlder, R. Findeisen, A. Nagy, and F. Allgöwer. (2002). Real-time 

optimization and nonlinear model predictive control of processes governed by 

deferential algebraic equations. Jornal of Process Control 12:577–585. 

Feyo de Azevedo, S., and M. J. Gonçalves. (1988). Dynamic Modelling of a Batch 

Evaporative Crystallizer. Recent Progrés en Génie de Procedés, Lavoisier, Paris: Ed. 

S. Domenech, X. Joulia, B. Koehnet, 199-204. 

Georgieva, P., Meireles, M. J. & Feyo de Azevedo, S. (2003). Knowledge Based Hybrid 

Modeling of a Batch Crystallization When Accounting for Nucleation, Growth and 

Agglomeration Phenomena. Chemical Engineering Science, 58, 3699-3707. 

Jancic, S. J., and P. A. M. Grootscholten. (1984). Industrial Crystallization. Delft, Holland: Delft 

University Press. 

Morari, M. (1994). Advances in Model-Based Predictive Control. Oxford: Oxford University 

Press. 

Qin, S. J., and T. A. Badgwell. (2003). A survey of model predictive control technology. 

Control Engineering Practice 11 (7):733-764. 

Rawlings, J. (2000). Tutorial Overview of Model Predictive Control. IEEE Control Systems 

Magazine:38-52. 

Rossiter, J. A. (2003). Model based predictive control. A practical approach. New York: CRC 

Press. 

Seki, H., Ogawa, M., Ooyama, S., Akamatsu, K., Ohshima, M. & Yang, W. (2001). Industrial 

application of a nonlinear model predictive control to polymerization reactors. 

Control Engineering Practice, 9, 819-828. 

www.intechopen.com



  
Advanced Model Predictive Control 

 

244 

Simoglou, A., Georgieva, P., Martin, E. B., Morris, J. & Feyo de Azevedo, S. (2005). On-line 

Monitoring of a Sugar Crystallization Process. Computers & Chemical Engineering, 

29 (6), 1411-1422. 

Soeterboek, R. (1992). Predictive control. A unified approach. New York: Prentice Hall 

International. 

www.intechopen.com



Advanced Model Predictive Control

Edited by Dr. Tao ZHENG

ISBN 978-953-307-298-2

Hard cover, 418 pages

Publisher InTech

Published online 24, June, 2011

Published in print edition June, 2011

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

Model Predictive Control (MPC) refers to a class of control algorithms in which a dynamic process model is

used to predict and optimize process performance. From lower request of modeling accuracy and robustness

to complicated process plants, MPC has been widely accepted in many practical fields. As the guide for

researchers and engineers all over the world concerned with the latest developments of MPC, the purpose of

"Advanced Model Predictive Control" is to show the readers the recent achievements in this area. The first part

of this exciting book will help you comprehend the frontiers in theoretical research of MPC, such as Fast MPC,

Nonlinear MPC, Distributed MPC, Multi-Dimensional MPC and Fuzzy-Neural MPC. In the second part, several

excellent applications of MPC in modern industry are proposed and efficient commercial software for MPC is

introduced. Because of its special industrial origin, we believe that MPC will remain energetic in the future.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Luis Alberto Paz Suarez, Petia Georgieva and Sebastiao Feyo de Azevedo (2011). Model Predictive Control

Strategies for Batch Sugar Crystallization Process, Advanced Model Predictive Control, Dr. Tao ZHENG (Ed.),

ISBN: 978-953-307-298-2, InTech, Available from: http://www.intechopen.com/books/advanced-model-

predictive-control/model-predictive-control-strategies-for-batch-sugar-crystallization-process



© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.


