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1. Introduction 

Predictive control is a model-based strategy used to calculate the optimal control action, by 
solving an optimization problem at each sampling interval, in order to maintain the output 
of the controlled plant close to the desired reference. Model predictive control (MPC) based 
on linear models is an advanced control technique with many applications in the process 
industry (Rossiter, 2003). The next natural step is to extend the MPC concept to work with 
nonlinear models. The use of controllers that take into account the nonlinearities of the plant 
implies an improvement in the performance of the plant by reducing the impact of the 
disturbances and improving the tracking capabilities of the control system. 
In this chapter, Nonlinear Model Predictive Control (NMPC) is studied as a more applicable 
approach for optimal control of multivariable processes. In general, a wide range of 
industrial processes are inherently nonlinear. For such nonlinear systems it is necessary to 
apply NMPC. Recently, several researchers have developed NMPC algorithms (Martinsen et 
al., 2004) that work with different types of nonlinear models. Some of these models use 
empirical data, such as artificial neural networks and fuzzy logic models. The model 
accuracy is very important in order to provide an efficient and adequate control action. 
Accurate nonlinear models based on soft computing (fuzzy and neural) techniques, are 
increasingly being used in model-based control (Mollov et al., 2004). 
On the other hand, the mathematical model type, which the modelling algorithm relies on, 
should be selected. State-space models are usually preferred to transfer functions, because 
the number of coefficients is substantially reduced, which simplifies the computation; 
systems instability can be handled; there is no truncation error. Multi-input multi-output 
(MIMO) systems are modelled easily (Camacho et al., 2004) and numerical conditioning is 
less important.  
A state-space representation of a Takagi-Sugeno type fuzzy-neural model (Ahmed et al., 
2010; Petrov et al., 2008) is proposed in the Section 2. This type of models ensures easier 
description and direct computation of the gradient control vector during the optimization 
procedure. Identification procedure of the proposed model relies on a training algorithm, 
which is well-known in the field of artificial neural networks. 
Obtaining an accurate model is the first stage of the of the NMPC predictive control 
strategy. The second stage involves the computation of a future control actions sequence. In 
order to obtain the control actions, a previously defined optimization problem has to be 
solved. Different types of objective and optimization algorithms (Fletcher, 2000) can be used 
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in the optimization procedure. Two different approaches for NMPC are proposed in Section 
3. They consider the unconstrained and constrained model predictive control problem. Both 
of the approaches use the proposed Takagi-Sugeno fuzzy-neural predictive model. 
The proposed techniques of fuzzy-neural MPC are studied in Section 4, by experimental 
simulations in Matlab® environment in order to control the levels in a multi tank system 
(Inteco, 2009). The case study is capable to show how the proposed NMPC algorithms 
handle multivariable processes control problem.  

2. Multivariable fuzzy-neural predictive model 

The Takagi-Sugeno fuzzy-neural models are powerful modelling tools for a wide class of 
nonlinear systems. Fuzzy reasoning is capable of handling uncertain and imprecise 
information while neural networks can learn from samples. Fuzzy-neural networks combine 
the advantages of both artificial intelligent techniques and incorporate them in adaptive 
features. Those futures, based on a real time learning algorithm are the main advantage of 
the fuzzy-neural models. 
The importance of the used in MPC strategy models and their adaptive characteristics is 
obvious. The accuracy of the model determines the accuracy of the control action. The 
proposed fuzzy-neural model is implemented in a classical NMPC scheme (Fig. 1) as a 
predictor (Camacho et al., 2004). 
 

 
Fig. 1. Basic structure of the proposed Fuzzy-Neural NMPC 

In this chapter a nonlinear discrete time state-space implementation is considered to 
represent the system dynamic: 

  
1 ,

,
x

y

x(k )  f (x(k) u(k))

y(k)  f (x(k) u(k))

+ =

=
 (1) 

where x(k) ∈ nℜ , u(k) ∈ mℜ and y(k) ∈ qℜ  are state, control and output variables of the 
system, respectively. The unknown nonlinear functions fx and fy can be approximated by 
Takagi-Sugeno type fuzzy rules in the next form: 
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1 1: ( ) ( ) ( )

( 1) ( ) ( )

( ) ( ) ( )

l l i li p lp

l l l

l l l

R if z k is M and and z k is M and z k is M

x k A x k B u k
then

y k C x k D u k

+ = +


= +

 

 (2) 

where Rl  is the l-th rule of the rule base. Each rule is represented by an if-then conception. 
The antecedent part of the rules has the following form “zi(k) is Mli” where zi(k) is an i-th 

linguistic variable (i-th model input) and Mli is a membership function defined by a fuzzy set 

of the universe of discourse of the input zi. Note that the input regression vector z(k) ∈ pℜ in 
this chapter contains the system states and inputs z(k)=[x(k) u(k)]T. The consequent part of 
the rules is a mathematical function of the model inputs and states. A state-space 

implementation is used in the consequent part of Rl, where Al ∈
n n×ℜ , Bl ∈ n m×ℜ , Cl ∈ q n×ℜ  

and Dl ∈ q m×ℜ  are the state-space matrices of the model (Ahmed et al., 2009). 
The states in the next sampling time ˆ( 1)x k + and the system output ˆ( )y k can be obtained by 
taking the weighted sum of the activated fuzzy rules, using 

 1

1

ˆ( 1) ( )( ( ) ( ))

ˆ ˆ( ) ( )( ( ) ( ))

L

yl l l
l

L

yl l l
l

x k k A x k B u k

y k k C x k D u k

µ

µ

=

=

+ = +

= +




 (3) 

On the other hand the state-space matrices A, B, C, and D for the global state-space plant 
model could be calculated as a weighted sum of the local matrices Al, Bl, Cl, and Dl from the 
activated fuzzy rules (2): 

 1 1

1 1

( ) ( )      B( ) ( )

( ) ( )      D( ) ( )

L L

l yl l yl
l l

L L

l yl l yl
l l

A k A k k B k

C k C k k D k

µ µ

µ µ

= =

= =

= =

= =

 

 
 (4) 

where 
1

L

yl yl yl
l

µ µ µ
=

=  is the normalized value of the membership function degree ┤yl upon 

the l-th activated fuzzy rule and L is the number of the activated rules at the moment k.  
 

 
Fig. 2. Gaussian membership functions of the i-th input 

Fuzzy implication in the l-th rule (2) can be realized by means of a product composition 
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1

p

yl ij
i

µ µ
=

= ∏  (5) 

where ┤ij specifies the membership degree (Fig. 2) upon the activated j-th fuzzy set of the 
corresponded i-th input signal and it is calculated according to the chosen here Gaussian 
membership function (6) for the l-th activated rule: 

 
2

2

( )
( ) exp

2
i Gij

ij i
ij

z c
zµ

σ

−
= −  (6) 

where zi is the current input value of the i-th model input, cGij is the centre (position) and σij is 
the standard deviation (wide) of the j-th membership function (j=1, 2, .., s) (Fig.2).  

2.1 Identification procedure for the fuzzy–neural model 
The proposed identification procedure determines the unknown parameters in the Takagi-
Sugeno fuzzy model, i.e. the parameters of membership functions, according to their shape 
and the parameters of the functions fx and fy in the consequent part of the rules (2). It is 
realised by a five-layer fuzzy-neural network (Fig. 3). Each of the layers performs typical 
fuzzy logic strategy operations: 
 

 
Fig. 3. The structure of the proposed fuzzy - neural model 

Layer 1. The first layer represents the model inputs through its own input nodes Z1, Z2, …, 
Zp. The network synaptic weights are set to one, so the model inputs are directly passed 
through the nodes to the next layer. Neurons here are represented by the elements of the 
regression vector z(k).  
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Layer 2. The fuzzification procedure of the input variables is performed in the second layer. 
The weights in this layer are the parameters of the chosen membership functions. Their 
number depends on the type and the number of the applied functions. All these parameters 
ij are adjustable and take part in the premise term of the Takagi-Sugeno type fuzzy rule 
base (2). In that section the membership functions for each model input variable are 
represented by Gaussian functions (Fig. 2). Hence, the adjustable parameters ij are the 
centres cGij and standard deviations σij of the Gaussian functions (6). The nodes in the second 
layer of the fuzzy-neural architecture represent the membership degrees ┤ij(zi) of the 
activated membership functions for each model input zi(k) according to (6). The number of 
the neurons depends on the number of the model inputs p and the number of the 
membership functions s in corresponding fuzzy sets. It is calculated as p s× .  
Layer 3. The third layer of the network interprets the fuzzy rule base (2). Each neuron in the 
third layer has as many inputs as the input regression vector size p. They are the corresponding 
membership degrees for the activated membership functions calculated in the previous layer. 
Therefore, each node in the third layer represents a fuzzy rule Rl, defined by Takagi-Sugeno 
fuzzy model. The outputs of the neurons are the results of the applied fuzzy rule base.  
Layer 4. The fourth layer implements the fuzzy implication (5). Weights in this layer are set 
to one, in case the rule Rl  from the third layer is activated, otherwise weights are zeros. 
Layer 5. The last layer (one node layer) represents the defuzzyfication procedure and forms 
the output of the fuzzy-neural network (3). This layer also contains a set of adjustable 
parameters – βl. These are the parameters in the consequent part of Takagi-Sugeno fuzzy 
model (2).  The single node in this layer computes the overall model output signal as the 
summation of all signals coming from the previous layer. 

 5
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L

yl yl
l

I f µ
=

=  or 5

1

L

xl yl
l

I f µ
=

=  5 1

1
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yl yl
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yl
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=

=

=
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1

L

xl yl
l

L

yl
l

f

O

µ

µ

=

=

=



 (7) 

where  ( ) ( )xl l lf A x k B u k= +  and ( ) ( )yl l lf C x k D u k= + . 

2.2 Learning algorithm of the fuzzy–neural model 
Two-step gradient learning procedure is used as a learning algorithm of the internal fuzzy-
neural model. It is based on minimization of an instant error function EFNN. At time k the 
function is obtained from the following equation 

 2( ) ( ) / 2FNNE k kε=  (8) 

where the error ┝(k) is calculated as a difference between the controlled process output y(k) 
and the fuzzy-neural model output ŷ(k): 

 ˆ( ) ( ) ( )k y k y kε = −  (9) 

During step one of the procedure, the consequent parameters of Takagi-Sugeno fuzzy rules 
are calculated according to summary expression (10) (Petrov et al., 2002). 

 ( 1) ( ) FNN
l l

l

E
k kβ β η

∂β

 ∂
+ = + − 

 
 (10) 
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where η is a learning rate and βl represents an adjustable coefficient aij, bij, cij, dij  (11) for the 
activated fuzzy rule Rl (2). The coefficients take part in the state matrix Al, control matrix Bl  
and output matrices Cl and Dl of the l-th activated rule (Ahmed et al., 2009). The matrices 

approximate the unknown nonlinear functions fx and fy according to defined fuzzy rule 
model (2). The matrix dimensions are specified by the system parameters – numbers of 
inputs m, outputs q and states n of the system. 

 
11 1 11 1 11 1 11 1

1 1 1 1

n m n m

l l l l

n nn n nm q qn q qm

a a b b c c d d

A B C D

a a b b c c d d

      
      = = = =      
             

   
        

   
 (11) 

In order to find a weight correction for the parameters in the last layer of the proposed 

fuzzy-neural network the derivative FNN

l

E

∂β

∂
 of the instant error should be determined. 

Following the chain rule, the derivative is calculated considering the expressions (7) and (8) 

 
5

5

ˆ
ˆ

FNN FNN

l l

yE E I

y I

∂∂ ∂ ∂

∂β ∂ ∂β∂
= ⋅ ⋅  (12) 

After the calculation of the partial derivatives, the matrix elements for each matrix of the 
state-space equations corresponding to the l-th activated rule (2) are obtained according to 
the summary expression (12) (Petrov et al., 2002; Ahmed et al., 2010): 

 

( 1) ( ) ( ) ( ) ( )         1

( 1) ( ) ( ) ( ) ( )         1 , 1

( 1) ( ) ( ) ( ) ( )         1 , 1

( 1) ( ) ( ) ( ) ( )        1 ,

ij ij yl i

ij ij yl j

ij ij yl j

ij ij yl j

a k a k k k x k i j n

b k b k k k u k i n j m

c k c k k k x k i q j n

d k d k k k u k i q j

ηε µ

ηε µ

ηε µ

ηε µ

+ = + = = ÷

+ = + = ÷ = ÷

+ = + = ÷ = ÷

+ = + = ÷ = 1 m÷

 (13) 

The proposed fuzzy-neural architecture allows the use of the previously calculated output 
error (8) in the next step of the parameters update procedure. The output error EFNN is 
propagated back directly to the second layer, where the second group of adjustable 
parameters are situated (Fig. 3). Depending on network architecture, the membership 
degrees calculated in the fourth and the second network layer are related as ┤yl → ┤ij. 
Therefore, the learning rule for the second group adjustable parameters can be done in 
similar expression as (10):  

 ( 1) ( ) FNN
ij ij

ij

E
k kα α η

∂α

 ∂
 + = + −
 
 

 (14) 

where the derivative of the output error EFNN is calculated by the separate partial 
derivatives: 

 
ˆ

ˆ
ijFNN FNN

ij ij ij

yE E

y

∂µ∂∂ ∂

∂α ∂ ∂µ ∂α
= ⋅ ⋅  (15) 
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The adjustable premise parameters of the fuzzy-neural model are the centre cGij and the 
deviation σij of the Gaussian membership function (6). They are combined in the 
representative parameter ij, which corresponds to the i-th model input and its j-th activated 
fuzzy set. Following the expressions (14) and (15) the parameters are calculated as follows 
(Petrov et al., 2002; Ahmed et al., 2010): 

 2

[ ( ) ( )]
( 1) ( ) ( ) ( )[ ( )]

( )
i Gij

Gij Gij yl yl
ij

z k c k
c k c k k k f y k

k
ηε µ

σ

−
+ = + −

  (16) 

 
2

3

[ ( ) ( )]
( 1) ( ) ( ) ( )[ ( )]

( )
i Gij

ij ij yl yl
ij

z k c k
k k k k f y k

k
σ σ ηε µ

σ

−
+ = + −

  (17) 

The proposed identification procedure for the fuzzy-neural model could be summarized in 
the following steps (Table 1). 
 
Step 1. Initialize the membership functions – number, shape, parameters; 
Step 2. Assign initial values for the network inputs; 
Step 3. Start the algorithm at the current moment k; 
Step 4. Fuzzify the network inputs and calculate the membership degrees upon the 

activated fuzzy set of the membership functions according to (6); 
Step 5. Perform fuzzy implication according to (5); 
Step 6. Calculate the fuzzy-neural network output, which is represented by state-space 

description of the modelled system – (3) and (4); 
Step 7. Calculate the instant error according to (8) and (9); 
Step 8. Start training procedure for fuzzy-neural network; 
Step 9. Adjust the consequent parameters according to (13); 
Step 10. Adjust the premise parameters according to (16) and (17). 
Repeat the algorithm from Step 3 for each sampling time. 

Table 1. Fuzzy-neural model identification procedure 

3. Optimization algorithm of multivariable model predictive control strategy 

The model provided by the Takagi-Sugeno type fuzzy-neural network is used to formulate 
the objective function for the optimization algorithm and to calculate the future control 
actions. The second stage of the predictive control strategy includes an optimization 
procedure. It utilizes the obtained results during the first (modelling) stage predictive model 
of the system. Using the Takagi-Sugeno fuzzy-neural model (3), the optimization algorithm 
computes the future control actions at each sampling period, by minimizing the typical for 
MPC strategy (Generalized Predictive Control – GPC) cost function (Akesson, 2006): 

 
1 1

2 2

0

ˆ( ) ( ) ( ) ( )
p w u

w

H H H

RQ
i H i

J k y k i r k i u k i

+ − −

= =

= + − + + Δ +    (18) 

where ŷ(k), r(k) and ∆u(k) are the predicted outputs, the reference trajectories, and the 
predicted control increments at time k, respectively. The length of the prediction horizon is 
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Hp, and the first sample to be included in the horizon is Hw. The control horizon is given by 

Hu. Q ≥0 and R >0 are weighting matrices representing the relative importance of each 
controlled and manipulated variable and they are assumed to be constant over the Hp.  
The cost function (18) may be rewritten in a matrix form as follows 

 2 2( ) ( ) ( ) ( )
Q R

J k Y k T k U k= − + Δ  (19)  

where Y(k), T(k), ∆U(k), Q and R are predicted output, system reference, control variable 
increment and weighting matrices, respectively, 

ˆ( | ) ( | ) ( | )
( ) ,  ( ) ,  ( )

ˆ( - 1| ) ( - 1| ) ( - 1| )p p u

y k k r k k u k k

Y k T k U k

y k H k r k H k u k H k

    Δ 
     = = Δ =     
     + + Δ +    

    

(1) 0

0 ( )
p

Q

Q

Q H

 
 
 =
 
  

 
  


 

(1) 0

0 ( )u

R

R

R H

 
 

=  
 
 

 
  


 

The linear state-space model used for Takagi-Sugeno fuzzy rules (2) could be represented in 
the following form: 

 
ˆ( 1) ( ) ( 1) ( )

ˆ ˆ( ) ( ) ( 1) ( )
x k Ax k Bu k B u k

y k Cx k Du k D u k

+ = + − + Δ

= + − + Δ
 (20) 

Based on the state-space matrices A, B, C and D (4), the future state variables are calculated 
sequentially using the set of future control parameters: 

2

3 2 2

ˆ( 1) ( ) ( 1) ( )

ˆ( 2) ( ) ( ) ( 1) ( ) ( ) ( 1)

ˆ( 3) ( ) ( ) ( 1) ( ) ( ) ( ) ( 1) ( 2)
......................................................

x k Ax k Bu k B u k

x k A x k AB B u k AB B u k B u k

x k A x k A B AB B u k A B AB B u k AB B u k B u k

+ = + − + Δ

+ = + + − + + Δ + Δ +

+ = + + + − + + + Δ + + Δ + + Δ +

1 1 1

0 0 0

...............................................................

ˆ( ) ( ) ( 1) ( )

...............................................................................

j j j i
j i i

i i m

x k j A x k A Bu k A B u k m
− − − −

= = =

+ = + − + Δ +  

1 1 2

0 0 0

......................................

ˆ( ) ( ) ( 1) ( ) ( 1) ( 1)
p p p

p p u

H H H
H H Hi i i

p u
i i i

x k H A x k A Bu k A B u k A B u k A B u k H

− − −
−

= = =

+ = + − + Δ + Δ + + + Δ + −   

 

 

The predictions of the output ŷ  for j steps ahead could be calculated as follows 

2

ˆ( 1) ( 1) ( 1) ( ) ( ) ( 1) ( ) ( ) ( 1)

ˆ( 2) ( ) ( ) ( 1) ( ) ( ) ( ) ( 1) ( 2)
.................................................................

y k Cx k Du k CAx k CB D u k CB D u k D u k

y k CA x k CAB CB D u k CAB CB D u k CB D u k D u k

+ = + + + = + + − + + Δ + Δ +

+ = + + + − + + + Δ + + Δ + + Δ +

.......................................................................................................
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1 1

0 0

ˆ( ) ( ) ( 1) ( ) ( ) ( 1) ( )

.........................................................................................................

j j
j i i

i i

y k j CA x k C A B D u k C A B D u k CB D u k j D u k j
− −

= =

   
+ = + + − + + Δ + + Δ + − + Δ +      

   
 

2 2
1

0 0

3 1

0 0

...............................................................

ˆ( 1) ( ) ( 1) ( )

( 1)

p p

p

p p u

H H
H i i

p
i i

H H H
i i

i i

y k H CA x k C A B D u k C A B D u k

C A B D u k C A B D

− −
−

= =

− − −

= =

   
   + − = + + − + + Δ +
   
   

   
   + + Δ + + + +
   
   

 

  ( 1)uu k HΔ + −

 

The recurrent equation for the output predictions ˆ( )py k j+ , where jp= 1, 2,..., Hp –1, is in the 
next form: 

 .

1

1
0 0

110

0 0

( ),

ˆ( ) ( ) ( 1)

( ),

p p

p

p

pu

j j
j

p uj
i jj i

p j iHi j
p u

i j

C A B D u k i j H

y k j CA x k C A B D u k

C A B D u k i j H

−

−
= =

− −−=

= =

  
  + Δ + <

      + = + + − +       + Δ + >    

 


 

.  (21) 

The prediction model defined in (21) can be generalized by the following matrix equality  

 ( )  ( )  (  - 1)  ( )Y k x k u k U k= Ψ + Γ + ΘΔ  (22) 

where 

 2

1Hp

C

CA

CA

CA −

 
 
 
 Ψ =  
 
 
  


   

2

0

pH
i

i

D

CB D

CAB CB D

C A B D
−

=

 
 + 
 + +

Γ =  
 
 
 +
  


   2

0

2 1

0 0

0 0

0
u

p p u

H
i

i

H H H
i i

i i

D

CB D D

CAB CB D CB D

C A B D D

C A B D C A B D

−

=

− − −

= =

 
 + 
 + + +
 
 
 Θ =
 +
 
 
 
 

+ +  
 


 
 

 



  



 

All matrices, which take part in the equations above, are derived by the Takagi-Sugeno 
fuzzy-neural predictive model (4).  
It is also possible to define the vector  

 ( )  ( ) -  (  - 1) -  ( )E k T k u k U k= Γ ΘΔ  (23) 

This vector can be thought as a tracking error, in the sense that it is the difference between the 
future target trajectory and the free response of the system, namely the response that would 
occur over the prediction horizon if no input changes were made, i.e. ∆U(k)=0. Hence, the 
quantity of the so called free response F(k) is defined as follows 

 ( )  ( ) (  -  1)F k x k u k= Ψ + Γ  (24) 
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3.1 Unconstrained model predictive control 
In this section, the study is focused on the optimization problem of the unconstrained 
nonlinear predictive control with the quadratic cost function (18). The section presents an 
approximate solution of the problem where the information given by the obtained fuzzy-
neural model is used to solve the problem. 
The unconstrained optimization problem can be formulated in a matrix form. First, the 
predictor can be constructed as follows 

 ( ) ( ) ( )Y k U k F k= ΘΔ +  (25) 

Second, the cost function (19) can be rewritten as 

 ( ) ( ) ( )T TJ U T Y Q T Y U R UΔ = − − + Δ Δ  (26) 

Hence, substituting the predictive model (25) into expression (26), the cost function of the 
model predictive optimization problem can be specified as follows: 

 ( ) ( ) 2( ) ( ) ( )T T T TJ U U Q R U F T Q U T F Q T FΔ = Δ Θ Θ+ Δ + − ΘΔ + − −  (27) 

The minimum of the function J(∆U) can be obtained by calculating the input sequence ΔU so 
that ∂J/∂ΔU = 0: 

 ( ) ( ) 2( ) ( ) ( ) 0T T T TJ U U Q R U F T Q U F T Q F T
U U

∂ ∂  Δ = Δ Θ Θ+ Δ + − ΘΔ + − − = ∂Δ ∂Δ
 (28) 

Then the optimal sequence ΔU* is  

 * 1( ) ( )T TU Q R Q T F−Δ = Θ Θ+ Θ −  (29) 

The input applied to the controlled plant at time k is computed according to the receding 
horizon principle, i.e. the first element from the control sequence Δu*(k) of the vector ΔU* is 
taken. Then, control signal is calculated from: 

 *( ) ( - 1) ( )u k u k u k= + Δ   (30) 

It is evident that the expression given by the matrix equation (29) is the same as expression 
obtained for the generalized predictive control. However, in the GPC formulation the 
components involved in the calculation of the formula (29) are obtained from a linear model. 
In the present case the components introduced in this expression are generated by the 
designed nonlinear fuzzy-neural model. A more rigorous formulation of (29) will be 
representation of the components as time-variant matrices, as they are shown in the 
expression (22). In this case the matrix Θ(k) and the vectors Ψ(k), T(k) are being reconstructed 
at each sampling time. The vector Ψ(k) is obtained by simulating the fuzzy model with the 
current input u(k); the matrix Θ(k) is also rebuilt using a method described below. 

 [ ]
1*( ) ( ) ( ) ( ) ( ) ( )T TU k k Q k R k Q T k F k

−
 Δ = Θ Θ + Θ − 

 (31) 

The proposed method solves the problem of unconstrained MPC. A system of equations is 
solved at each sampling time k. The proposed approach decreases computational burden 
avoiding the necessity to inverse the gain matrix in (31) at each sampling time k.   
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Applying this method, minimization of the GPC criterion (18) is based on a calculation of 
the gradient vector of the criterion cost function J at the moment k subject to the predicted 
control actions: 

 
( ) ( ) ( )

( ) , , ,
( ) ( 1) ( 1)u

T
J k J k J k

J k
u k u k u k H

 ∂ ∂ ∂
∇ =  

∂Δ ∂Δ + ∂Δ + − 
  (32) 

Each element of this gradient vector (32) can be calculated using the following derivative 
matrix equation: 

 [ ]
( ) ( )

2 ( ) ( ) 2 ( )
( ) ( ) ( )

( ) T TY k U k
T k Y k Q U k R

U k U k U k

J k  ∂ ∂ ∂Δ
= − + Δ 

∂Δ ∂Δ ∂Δ 
  (33) 

From the above expression (33) it can be seen that it is necessary to obtain two groups of 

partial derivatives. The first one is  
( )
( )

Y k

U k

 ∂
 
∂Δ 

, and the second one is  
( )
( )

U k

U k

 ∂Δ
 
∂Δ 

. The first 

partial derivatives in (33) have the following matrix form: 

 

ˆ ˆ( ) ( )
( ) ( 1)

( )
( ) ˆ ˆ( 1) ( 1)

( ) ( 1)

w w

u

p w p w

u

y k H y k H

u k u k H
Y k

U k
y k H H y k H H

u k u k H

 ∂ + ∂ +
 

∂ Δ ∂ Δ + − 
∂  =

 ∂Δ
∂ + + − ∂ + + − 
 

∂ Δ ∂ Δ + − 



 



 (34) 

For computational simplicity assume that Hw=0 (18). Then each element of the matrix (34)  
is calculated by the expressed equations according to the Takagi-Sugeno rules consequents (2). 
For example the derivatives from first column of the matrix (34) have the following form: 

 
1

ˆ( )
( )

( )

L

l yl
l

y k
D k

u k
µ

=

∂
=

∂Δ
  (35) 

 ( )
1

ˆ( 1)
( 1)

( )

L

l l l yl
l

y k
C B D k

u k
µ

=

∂ +
= + +

∂Δ
  (36) 

  ( )
1

ˆ( 2)
( 2)

( )

L

l l l l l l yl
l

y k
C A B C B D k

u k
µ

=

∂ +
= + + +

∂Δ
   (37) 

…………………………………………….. 

 
2

1 0

ˆ( 1)
( 1)

( )

pHL
p j

l l l yl pl
l j

y k H
C A B D k H

u k
µ

−

= =

 ∂ + −
 = + + −
 ∂Δ  

   (38) 

The second group partial derivatives  in (33) has the following matrix form: 
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( ) ( )
....

( ) ( 1)

( )
( )

( 1) ( 1)
....

( ) ( 1)

u

u u

u

u k u k

u k u k H

U k

U k

u k H u k H

u k u k H

Δ

Δ

∂ Δ ∂ Δ 
 ∂ ∂ Δ + − 
 ∂ Δ

= 
∂Δ  

 ∂ Δ + − ∂ Δ + −
 

∂ ∂ Δ + −  

   (39) 

Since ( ) ( ) ( 1)u k u k u kΔ = − − , the matrix  (39) has the following form: 

 

1 0 0
1 1

( )
1

( )
1 1
1 1 1

U k

U k

 
 − ∂Δ  −=

∂ Δ  
 
 − − 



  
 



 (40) 

Following this procedure it is possible to calculate the rest column elements of the matrix 
(34) which belongs to the next gradient vector elements (32). Finally, each element of the 
gradient-vector (32) could be obtained by the following system of equations: 

 

ˆ( )ˆ( 1)( ) ˆ ˆ2 ( 1) (1) ... 2 ( ) ( )
( 1) ( ) ( )

2 (1) ( ) 2 (2) ( 1) ... 2 ( ) ( 1) 0
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y k Hy kJ k
e k Q e k H Q H
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R u k R u k R H u k H

∂ +∂ +∂
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 (41) 
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u u
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u k u k u k

R u k R u k R H u k H
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ˆ( )ˆ( 1)( ) ˆ ˆ2 ( 1) (1) ... 2 ( ) ( )
( 1) ( 1) ( 1)

2 ( ) ( 1) 0

p
p p

u u u

u u

y k Hy kJ k
e k Q e k H Q H

u k H u k H u k H

R H u k H

∂ +∂ +∂
= + + + + +

∂Δ + − ∂Δ + − ∂Δ + −

+ Δ + − =

 


 (44) 

where  ˆ ˆ( ) ( ) ( ), 1,2, ,Hpe k j r k j y k j j+ = + − + =   is the predicted system error. 

The obtained system of equations (41)-(44) can be solved very easily, starting from the last 
equation (44) and calculating the last control action u(k+Hu-1) first. Then, the procedure can 
continue with finding the previous control action u(k+Hu-2) from (43). The calculations 
continue until the whole number of the control actions over the horizon Hu is obtained. The 
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calculation order of the control actions is very important, since the calculations should 
contain only known quantities. After that, only the first control action u(k) (30) will be used 
at the moment k as an input to the controlled process. The software implementation of the 
proposed algorithm is realized easily according to the following equations: 

1
ˆ( )ˆ( 1)ˆ ˆ( 1) ( ) ( 1) (1) ( ) ( )

( 1) ( 1)
p

u u p p
u u

y ky k
u k H R H e k Q e k Q

u k H u k H

H
H H−

∂ +∂ +
Δ + − = + + + +

∂Δ + − ∂Δ + −

 
 
 

    (45) 
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+ + + + +

∂Δ + − ∂Δ + −
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 1(1) (1) (
ˆ( )ˆ( 1)ˆ ˆ( ) ( 1) ( 1) ( ) )

( ) ( )
p

p pR Q Q
y k Hy k

u k u k e k e k H H
u k u k

−

Δ Δ

∂ + ∂ +
Δ =Δ + + + + + + 

∂ ∂ 
    (48) 

The proposed unconstrained predictive control algorithm could be summarized in the 
following steps (Table 2). 
 
Step 1. Initial identification of the Takagi-Sugeno fuzzy-neural predictive model; 
Step 2. Start the algorithm at the sample k with the initial parameters; 
Step 3. Calculate the predicted model output ŷ(k+j) using the tuned fuzzy-neural model (2); 
Step 4. Calculate the derivatives for the matrix (34) according to the equations (35)-(38); 
Step 5. Calculate predicted control actions according to (45)-(48) and update the sequence; 
Step 6. Apply the first optimal control action u(k); 
Step 7. Modify the model parameters into the rule (3) and update them for the next step 3 

for the next sample k 

Table 2. Basic fuzzy-neural model unconstrained predictive control algorithm 

3.2 Constrained model predictive control 
The constrained nonlinear predictive control problem can be described as a problem of 
finding the “optimal” input sequence to move a dynamic system to a desired state, taking 
into account the constraints on the inputs and the outputs of the control systems. This 
section reveals the formulation of the constrained control problem for MPC uses. 
Essentially, the problem becomes a quadratic programming problem with linear inequality 
constraints (LICQP). It follows by the nature of the operational constraints, which are 
usually described by linear inequalities of the control and plant variables.  
The problem of nonlinear constrained predictive control is formulated as a nonlinear 
quadratic optimization problem. By means of local linearization (20) the problem can be 
solved using QP. That way the solution to the linear constrained predictive control problem 
is obtained. At each sampling time the LICQP is solved with new parameters, which are 
obtained by the Takagi-Sugeno fuzzy-neural model. An active set method is used for 
solving the constructed quadratic programming problem.  
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3.2.1 Constraint types in model predictive control 
The operational constraints may be classified in three major types according to the type of 
the system variables, which they are imposed on. The first two types of constraints deal with 
the control variable incremental variation ∆u(k) and control variable u(k). The third type is 
concerned with output y(k) or state variable x(k) constraints.  
Related to the origin model predictive control problem, the constraints are expressed in a set 
of linear equations. All types of constraints are taken into consideration for each moving 
horizon window.  
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Therefore, for multi-input case the number of the constraints for the change of the control 
variable ∆u(k) is m×Nu. Similarly, the number of the constraints for the control variable 
amplitude is also m×Nu and for the output constraints it is q×Np.   

3.2.2 Quadratic programming in use of constrained MPC 
Since the cost function J(k) (19) is quadratic and the constraints are linear inequalities, the 
problem of finding an optimal predictive control becomes one of finding an optimal solution 
to a standard quadratic programming problem with linear inequality constraints 
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= +

≤

T T1
minJ x x Hx f x

2
subject to Ax b

( )
 (50) 

where H and f are the Hessian and the gradient of the Lagrange function, x is the decision 
variable. Constraints on the QP problem (50) are specified by Ax ≤ b according to (49). 
The Lagrange function is defined as follows 

 
1

( , ) ( ) , 1,2,
N

i i
i

L x J x a i Nλ λ
=

= + = … , (51) 

where ┣i are the Lagrange multipliers, ai are the constraints on the decision variable x, N is 
the number of the constraints considered in the optimization problem.  
Several algorithms for constrained optimization are described in (Fletcher, 2000). In this 
chapter a primal active set method is used. The idea of active set method is to define a set S 

of constraints at each step of algorithm. The constraints in this active set are regarded as 
equalities whilst the rest are temporarily disregarded and the method adjusts the set in 
order to identify the correct active constraints on the solution to (52)   

 

1
min ( )

2
  

T T

i i

i i

J x x Hx f x

subject to a x b

a x b

= +

=

≤

 (52) 

 

At iteration k a feasible point x(k) is known which satisfies the active constraints as 
equalities. Each iteration attempts to locate a solution to an equality problem (EP) in which 
only the active constraints occur. This is most conveniently performed by shifting the origin 
to x(k) and looking for a correction ├(k) which solves 

 
1

min
2
  0

T T

i i

Hx f

subject to a a S

δ
δ δ

δ

 
+ 

 
= ∈

 (53) 

 

where f(k)  is defined by f(k) =f + Hx(k) and is ( )( )J x k∇  for the function defined by (52). If 

δ(k)  is feasible with regard to the constraints not included in S, then the feasible point in 
next iteration is taken as x(k+ 1) = x(k) + ├(k). If not, a line search is made in the direction of 
δ(k) to find the best feasible point. A constraint is active if the Lagrange multipliers ┣i ≥ 0, i.e. 
it is at the boundary of the feasible region defined by the constraints. On the other hand, if 
there exist ┣i < 0, the constraint is not active. In this case the constraint is relaxed from the 
active constraints set S and the algorithm continues as before by solving the resulting 
equality constraint problem (53). If there is more than one constraint with corresponding 
┣i < 0, then the min ( )i

i S
kλ

∈
is selected (Fletcher, 2000).  

The QP, described in that way, is used to provide numerical solutions in constrained MPC 
problem.  
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3.2.3 Design the constrained model predictive problem 
The fuzzy-neural identification procedure from the Section 2 provides the state-space matrices, 
which are needed to construct the constrained model predictive control optimization problem.  
Similarly to the unconstrained model predictive control approach, the cost function (18) can 
be specified by the prediction expressions (22) and (23). 

[ ] [ ]

[ ] [ ]

T T

T T

T T T T T

J(k) = Ψx(k) + ポu(k -1) + Θ｠U(k)-T(k) Q Ψx(k) + ポu(k -1) + Θ｠U(k)-T(k) +｠U (k)R｠U(k)=

       = Θ｠U(k)-E(k) Q Θ｠U(k)-E(k) +｠U (k)R｠U(k)=

       = ｠U (k) Θ QΘ+R ｠U(k) + E (k)QE(k) - 2｠U (k)Θ QE(k) 
 

 

Assuming that 

   TH Q R= Θ Θ +  and  2 ( ),TQE kΦ = Θ  (54) 

the cost function for the model predictive optimization problem can be specified as follow 

 ( )  ( )  ( ) - ( ) ( ) ( )T T TJ k U k U k U k E k QE k= Δ Η Δ Δ Φ +  (55) 

The problem of minimizing the cost function (55) is a quadratic programming problem. If 
the Hessian matrix H is positive definite, the problem is convex (Fletcher, 2000). Then the 
solution is given by the closed form 

 11
 

2
U H−Δ = Φ  (56) 

 

The constraints (49) on the cost function may be rewritten in terms of ∆U(k). 
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All types of constraints are combined in one expression as follows 
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where I u umN mN×∈ℜ  is an identity matrix. 
Finally, following the definition of the LIQP (50), the model predictive control in presence of 
constraints is proposed as finding the parameter vector ∆U that minimizes (55) subject to the 
inequality constraints (58).  

 
min  ( )   -   

  

T T TJ k U H U U E QE

subject to U ω

= Δ Δ Δ Φ +

ΩΔ ≤
 (59) 

In (59) the constraints expression (58) has been denoted by Ω∆U ≤ ω, where Ω is a matrix 
with number of rows equal to the dimension of ω and number of columns equal to the 
dimension of  ∆U. In case that the constraints are fully imposed, the dimension of ω is equal 
to 4×m×Nu + 2×q×Np,  where m  is the number of system inputs and q  is the number of 
outputs. In general, the total number of constraints is greater than the dimension of the ∆U. 
The dimension of ω represents the number of constraints.  
The proposed model predictive control algorithm can be summarized in the following steps 
(Table 3).  
 
At each sampling time: 
Step 1. Read the current states, inputs and outputs of the system;  
Step 2. Start identification of the fuzzy-neural predictive model following Algorithm 1; 
Step 3. With A(k), B(k), C(k), D(k) from Step 2 calculate the predicted output Y(k) according 

to (17); 
Step 4. Obtain the prediction error E(k) according to (23); 
Step 5. Construct the cost function (55) and the constraints (58) of the QP problem; 
Step 6. Solve the QP problem according to (59); 
Step 7. Apply only the first control action u(k). 

Table 3.  State-space implementation of fuzzy-neural model predictive control strategy 

At each sampling time, LIQP (59) is solved with new parameters. The Hessian and the 
Lagrangian are constructed by the state-space matrices A(k), B(k), C(k) and D(k) (4) obtained 
during the identification procedure (Table 1). The problem of nonlinear constrained 
predictive control is formulated as a nonlinear quadratic optimization problem. By means of 
local linearization a relaxation can be obtained and the problem can be solved using 
quadratic programming. This is the solution of the linear constrained predictive control 
problem (Espinosa et al., 2005). 

4. Fuzzy-neural model predictive control of a multi tank system. Case study 

The case study is implemented in MATLAB/Simulink® environment with Inteco® Multi 
tank system. The Inteco® Multi tank System (Fig. 4) comprises from three separate tanks 
fitted with drain valves (Inteco, 2009). The additional tank mounted in the base of the set-up 
acts as a water reservoir for the system. The top (first) tank has a constant cross section, 
while others are conical or spherical, so they are with variable cross sections. This causes the 
main nonlinearities in the system. A variable speed pump is used to fill the upper tank. The 
liquid outflows the tanks by the gravity. The tank valves act as flow resistors C1, C2, C3. The 
area ratio of the valves is controlled and can be used to vary the outflow characteristic. Each 
tank is equipped with a level sensor PS1, PS2, PS3 based on hydraulic pressure measurement. 
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Fig. 4. Controlled laboratory multi tank system 

The linearized dynamical model of the triple tank system could be described by the linear 
state-space equations (2) where the matrices A, B, C and D are as follow (Petrov et al., 2009): 
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1 0 0
0 1 0
0 0 1

0 0 0 0
0 0 0 0
0 0 0 0

C

D

 
 =  
  

 
 =  
  

 (60) 

The parameters 1, 2 and 3 are flow coefficients for each tank of the model. The described 
linearized state-space model is used as an initial model for the training process of the fuzzy-
neural model during the experiments.  

4.1 Description of the multi tank system as a multivariable controlled process 
Liquid levels Н1, Н2, Н3 in the tanks are the state variables of the system (Fig. 4). The Inteco 
Multi Tank system has four controlled inputs: liquid inflow q and valves settings C1, C2, C3. 
Therefore, several models of the tanks system can be analyzed (Fig. 5), classified as pump-
controlled system, valve-controlled system and pump/valve controlled system (Inteco, 2009). 
 

 
Fig. 5. Model of the Multi Tank system as a pump and valve-controlled system 

In this case study a multi-input multi-output (MIMO) configuration of the Inteco Multi Tank 
system is used (Fig. 5). This corresponds to the linearized state-space model (60). Several 
issues have been recognized as causes of additional nonlinearities in plant dynamics: 
• nonlinearities (smooth and nonsmooth) caused by shapes of tanks; 
• saturation-type nonlinearities, introduced by maximum or minimum level allowed in 

tanks; 
• nonlinearities introduced by valve geometry and flow dynamics; 
• nonlinearities introduced by pump and valves input/output characteristic curve. 
The simulation results have been obtained with random generated set points and following 
initial conditions (Table 4): 
 

Model predictive 
controller parameters 

Prediction horizon Hp=10
First included sample of the prediction horizon Hw=1 
Control horizon Hu=3 

Inteco Multi tank 
system parameters 

Flow coefficients for each tank
1=0.29; 2=0.2256; 3=0.2487

Operational constraints 
on the system 

Constraints on valve cross section ratio 0 ≤ Ci ≤ 2e-04, i=1,2,3 
Constraint on liquid inflow 0 ≤ q ≤ 1e-04 m3/s 
Constraints on liquid level in each tank 0 ≤ Hi ≤ 0.35 m, i=1,2,3 

Simulation parameters Time of simulation 600 s
Sample time Ts=1 s

Table 4. Simulation parameters for unconstrained and constrained fuzzy-neural MPC 
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Figures below show typical results for level control problem. The reference value for each 
tank is changed consequently in different time. The proposed fuzzy-neural identification 
procedure ensures the matrices for the optimization problem of model predictive control at 
each sampling time Ts. The plant modelling process during the unconstrained and 
constrained MPC experiments are shown in Fig. 6 and Fig. 9, respectively.   

4.2 Experimental results with unconstrained model predictive control 
The proposed unconstrained model predictive control algorithm (Table 2) with the Takagi-
Sugeno fuzzy-neural model as a predictor has been applied to the level control problem. The 
experiments have been implemented with the parameters in Table 4. The weighting 

matrices are specified as follow: 0.01 * (1,  1,  1)Q diag= and 10 4 * (1,  1,  1,  1)R e diag= . Note 

that the weighting matrix R  is constant over all prediction horizon, which allows to avoid 

matrix inversion at each sampling time with one calculation of 1R−  at time k=0. 
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Fig. 6. Fuzzy-neural model identification procedure of the multi tank system – 
unconstrained NMPC 

The next two figures - Fig. 7 and Fig. 8, show typical results regarding level control, where 
the references for H1, H2 and H3 are changed consequently in different time. The change of 
every level reference behaves as a system disturbance for the other system outputs (levels). 
It is evident that the applied model predictive controller is capable to compensate these 
disturbances.  
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Fig. 7. Transient responses of multi tank system outputs – unconstrained NMPC 
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Fig. 8. Transient responses of multi tank system inputs – unconstrained NMPC 
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4.3 Experimental results with fuzzy-neural constrained predictive control 

The experiments with the proposed constrained model predictive control algorithm (Table 
3) have been made with level references close to the system outputs constraints. The 
weighting matrices in GPC cost function (19) are specified as (1,  1,  1)Q diag= and 

15 4 * (1,  1,  1,  1)R e diag= . System identification during the experiment is shown on Fig. 9. 
The proposed identification procedure uses the linearized model (60) of the Multi tank 
system as an initial condition.  
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Fig. 9. Fuzzy-neural model identification procedure of the multi tank system –  
constrained NMPC 

The proposed constrained fuzzy-neural model predictive control algorithm provides an 
adequate system response as it can be seen on Fig. 10 and Fig. 11. The references are achieved  
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Fig. 10. Transient responses of the multi tank system outputs – constrained NMPC 
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Fig. 11. Transient responses of the multi tank system inputs – constrained NMPC 
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without violating the operational constraints specified in Table 4. Similarly to the 
unconstrained case, the Takagi-Sugeno type fuzzy-neural model provides the state-space 
matrices A, B and C (the system is strictly proper, i.e. D=0) for the optimization procedure of 
the model predictive control approach. Therefore, the LIQP problem is constructed with 
“fresh” parameters at each sampling time and improves the adaptive features of the applied 
model predictive controller. It can be seen on the next figures that the disturbances, which 
are consequences of a sudden change of the level references, are compensated in short time 
without violating the proper system work.   

5. Conclusions 

This chapter has presented an effective approach to fuzzy model-based control. The 
effective modelling and identification techniques, based on fuzzy structures, combined with 
model predictive control strategy result in effective control for nonlinear MIMO plants. The 
goal was to design a new control strategy - simple in realization for designer and simple in 
implementation for the end user of the control systems. 
The idea of using fuzzy-neural models for nonlinear system identification is not new, 
although more applications are necessary to demonstrate its capabilities in nonlinear 
identification and prediction. By implementing this idea to state-space representation of 
control systems, it is possible to achieve a powerful model of nonlinear plants or processes. 
Such models can be embedded into a predictive control scheme. State-space model of the 
system allows constructing the optimization problem, as a quadratic programming problem. 
It is important to note that the model predictive control approach has one major advantage – 
the ability to solve the control problem taking into consideration the operational constraints 
on the system. 
This chapter includes two simple control algorithms with their respective derivations. They 
represent control strategies, based on the estimated fuzzy-neural predictive model. The two- 
stage learning gradient procedure is the main advantage of the proposed identification 
procedure. It is capable to model nonlinearities in real-time and provides an accurate model 
for MPC optimization procedure at each sampling time. 
The proposed consequent solution for unconstrained MPC problem is the main contribution 
for the predictive optimization task. On the other hand, extraction of a “local” linear model, 
obtained from the inference process of a Takagi–Sugeno fuzzy model allows treating the 
nonlinear optimization problem in presence of constraints as an LIQP.  
The model predictive control scheme is employed to reduce structural response of the 
laboratory system - multi tank system. The inherent instability of the system makes it 
difficult for modelling and control. Model predictive control is successfully applied to the 
studied multi tank system, which represents a multivariable controlled process.  Adaptation 
of the applied fuzzy-neural internal model is the most common way of dealing with plant’s 
nonlinearities. The results show that the controlled levels have a good performance, 
following closely the references and compensating the disturbances.  
The contribution of the proposed approach using Takagi–Sugeno fuzzy model is the 
capacity to exploit the information given directly by the Takagi–Sugeno fuzzy model. This 
approach is very attractive for systems from high order, as no simulation is needed to obtain 
the parameters for solving the optimization task. The model’s state-space matrices can be 
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generated directly from the inference of the fuzzy system. The use of this approach is very 
attractive to the industry for practical reasons related with the capacity of this model 
structure to combine local models identified in experiments around the different operating 
points. 
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